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Abstract

To elucidate the speciation mechanisms prevalent within hotspots of biodiversity, and the evolutionary processes behind
the rise of their species-rich and endemic biota, we investigated the phylogeny of the giant fire-millipede genus
Aphistogoniulus Silvestri, 1897, a Malagasy endemic. This study is the first comprehensive (molecular and morphological)
phylogenetic study focusing on millipede (class Diplopoda) speciation on Madagascar. The morphological analysis is based
on 35 morphological characters and incorporates ten described as well as two newly described species (A. rubrodorsalis n.
sp. and A. jeekeli n. sp.) of Aphistogoniulus. The molecular analysis is based on both mitochondrial (COI and 16S), and nuclear
genes (complete 18S rDNA), together comprised of 3031 base pairs, which were successfully sequenced for 31 individual
specimens and eight species of Aphistogoniulus. In addition to the null-model (speciation by distance), two diversification
models, mountain refugia and ecotone shift, were discovered to play a role in the speciation of soil arthropods on
Madagascar. Mountain refugia were important in the speciation of the A. cowani clade, with three species occurring in the
Andringitra and Ranomafana Mountains in the southeast (A. cowani), the Ambohijanahary and Ambohitantely Mountains in
the mid-west (A. sanguineus), and the Marojejy Mountain in the northeast (A. rubrodorsalis n. sp.). An ecotone shift from the
eastern rainforest to the unique subarid spiny forest of Mahavelo was discovered in the A. vampyrus - A. aridus species-pair.
In the monophyletic A. diabolicus clade, evidence for divergent evolution of sexual morphology was detected: species with
greatly enlarged gonopods are sister-taxa to species with normal sized gonopods. Among the large-bodied Spirobolida
genera of Madagascar, Colossobolus and Sanguinobolus were found to be close sister-genera to Aphistogoniulus. Forest
destruction has caused forest corridors between populations to disappear, which might limit the possible resolution of
biogeographic analyses on Madagascar.
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Introduction

Madagascar is one of the world’s centers of endemism and is

considered a biodiversity hotspot [1]; with its highly diverse

ecosystems, it mirrors a small continent rather than an island.

Although now located off the coast of eastern Africa, until 88

million years ago Madagascar formed a landmass with India [2].

The Madagascar-India landmass separated from continental

Africa in the early Mesozoic era, 158–160 million years ago [3],

although land bridges towards Antarctica might have existed up to

a more recent date [4]. The long isolation of Madagascar from

other continents resulted in mixed-origins of the Malagasy fauna:

neo-endemics whose ancestors colonized the island and quickly

diversified [5–7]; and truly ancient endemics, whose ancestors

were present before Madagascar became an island [8–11].

The isolation of Madagascar makes the island an ideal model

region for the study of diversification in species, because unlike on

most continents, introgression or admixture events with lineages

that evolved outside the area can be almost ruled out [12]. Recent

studies, almost exclusively on vertebrates, present different

hypotheses of diversification mechanisms on Madagascar (see

overview in [12]), including mountain refugia [13,14], retreat-

dispersal watersheds [15], and river barriers [16]. Unfortunately,

some speciation patterns might already be artificially modified due

to habitat destructions by humans, especially in the transitional

zones [17].

Currently, the study of speciation events on Madagascar focuses

primarily on vertebrates (e. g. [14,18–21]). Although terrestrial

invertebrates represent the largest percentage of Madagascar’s

diversity, little is known about their biogeography. The existing

studies of Madagascar’s invertebrates focus on taxa more likely to

be dispersers, either through their ability to fly [6,22,23] or to wind

disperse [24]. Non-flying soil invertebrates are, with some notable

exceptions in mollusks [25,26], generally ignored. For Madagas-

car, the general absence of studies of taxa with few dispersal

abilities is problematic because, unlike in mobile taxa, certain
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dispersal mechanisms can be ruled out, which provides a clearer

view of the past [27]. Many soil invertebrates are good model taxa

for biogeographic studies because they possess poor dispersal

abilities, are often confined to now discontinuous habitats, and

show slow growth and low fecundity [28]. For example, in the

Australian wet tropics non-flying invertebrates have a much

greater number of subregional endemics compared to vertebrates

(50% vs. 9%, [29]). Furthermore, invertebrates have smaller

habitat requirements than vertebrates [30], and are more likely to

have a continuous history of occupation on a site than a mammal

species [27].

The incorporation of less vagile lineages into the studies of

speciation events on Madagascar may be useful because they are

phylogenetically older, can survive in smaller habitats during

climatically unfavorable times, and might represent relictual

elements, living witnesses of a climatically different past.

This study utilizes the giant fire-millipede genus Aphistogoniulus

Silvestri, 1897 as a test case for invertebrate speciation on

Madagascar. As in other groups of organisms [31], species

representing the largest, most widespread and most colorful

Malagasy millipede genus were described first. For the Spirobolida

from Madagascar, this was the large-bodied fire-millipede genus

Aphistogoniulus [32], with its first species being described almost 130

years ago [33]. Species of Aphistogoniulus feature a striking

pitchblack/blood-red aposematic color, sometimes accompanied

by golden legs, and can reach a body length of up to 185 mm. A

complete taxonomic revision of Aphistogoniulus was recently

undertaken [34], providing a foundation for the phylogenetic

study undertaken here. The wide distribution of the genus renders

Aphistogoniulus a suitable model taxon to test different methods of

species diversification on Madagascar (as proposed by [12]).

Species of the genus can be found in montane and lowland

rainforests all the way from the southeastern tip of the island,

expanding north, leaving out only the far north of Madagascar

[34]. Two species almost never live in sympatry, but replace each

other in adjacent areas. Only a single species, A. aridus Wesener,

2009, lives in the dry spiny forest.

Although a complete revision of the genus Aphistogoniulus was

undertaken recently, two additional undescribed species were

discovered in more or less recent collections, including the pet

trade. These new discoveries prompted the attempts undertaken in

this study to construct a phylogeny of all species of the genus

Aphistogoniulus, in combination with all other large-bodied Spir-

obolida genera from Madagascar. This study is one of only a

handful of molecular systematic studies of millipedes [35] and the

first dealing with millipedes in the southern hemisphere. It is

investigated which diversification mechanisms, such as mountain

refugia [13] or retreat-dispersion watersheds [15], most-likely

played a role in the speciation of the endemic rainforest soil biome

on Madagascar.

Materials and Methods

Nomenclatural Acts
The electronic version of this document does not represent a

published work according to the International Code of Zoological

Nomenclature (ICZN), and hence the nomenclatural acts

contained in the electronic version are not available under that

Code from the electronic edition. Therefore, a separate edition of

this document was produced by a method that assures numerous

identical and durable copies, and those copies were simultaneously

obtainable (from the publication date noted on the first page of this

article) for the purpose of providing a public and permanent

scientific record, in accordance with Article 8.1 of the Code. The

separate print-only edition is available on request from PLoS by

sending a request to PLoS ONE, Public Library of Science, 1160

Battery Street, Suite 100, San Francisco, CA 94111, USA along

with a check for $10 (to cover printing and postage) payable to

‘‘Public Library of Science’’. In addition, this published work and

the nomenclatural acts it contains have been registered in

ZooBank, the proposed online registration system for the ICZN.

The ZooBank LSIDs (Life Science Identifiers) can be resolved and

the associated information viewed through any standard web

browser by appending the LSID to the prefix ‘‘http://zoobank.

org/’’. The LSID for this publication is: urn:lsid:zoobank.org:-

pub:BE53B87F-9FDA-4B75-B461-A7110D373A99; urn:lsid:zoo-

bank.org:pub:BE53B87F-9FDA-4B75-B461-A7110D373A99.

Morphological Phylogenetic Analysis
Taxon selection. Because the closest relative of Aphistogoniulus

is unknown, several genera were selected as outgroups. The distant

outgroup includes Madabolus maximus Wesener & Enghoff, 2008

from Madagascar and Epibolus pulchripes from continental Africa,

members of the tribe Pachybolini, which are not closely related to

Aphistogoniulus [36]. The near-outgroup includes members of all

other large-bodied Spirobolida genera from Madagascar [37], the

monotypic Corallobolus Wesener, 2009 and Sanguinobolus Wesener,

2009, as well as two species of the genus Colossobolus, C. semicyclus

Wesener, 2009 and C. oblongopedus Wesener, 2009. For the

ingroup, all ten described species as well as two newly

discovered species of Aphistogoniulus, distributed above the whole

island of Madagascar (Fig. 1) were added to the character matrix.

All material was either the type series, or a specimen which was

directly compared to the types. For all specimens studied see

Table 1.

Character selection. A character matrix was created using

Mesquite 2.6 ([38], see Table 2). A total of 35 characters were

selected, focusing on the male copulatory devices (gonopods, see

also Supporting Information S5). Two character sets of

Aphistogoniulus, the endotergum ( = underside of the body rings)

and the female vulva (see Supporting Information S3) were

illustrated for the first time (see Supporting Information S4). Due

to a lack of sufficient material, endotergum characters could not be

added to the matrix (see Supporting Information S6). All

characters were scored as ‘unordered’ with equal weights.

Drawings were produced using a standard camera lucida

mounted on an Olympus SZH10 dissecting microscope. For

scanning electron microscopy, samples were cleaned and

dehydrated in an ethanol series and air-dried overnight before

being sputter coated (Denton Vacuum Desk IV) for 180 seconds.

SEM micrographs were taken using a Zeiss (Leo) EVO SEM,

based at the FMNH.

Phylogenetic analysis. A maximum parsimony Branch and

Bound tree search was conducted in PAUP* 4.0b10 [39].

Accelerated transformation was used as character optimization

criterion. Six of the 35 characters were parsimony uninformative.

The search yielded a single shortest tree with a length of 35.

Furthermore, a bootstrap analysis, incorporating 2000

pseudoreplicates, was undertaken in PAUP 4.0b10 under the

tree-bisection-reconnection (TBR) branch-swapping algorithm.

Molecular Phylogenetic Analysis
Taxon selection. Sequences of the Spirostreptida species

Doratogonus sp., one of the few millipedes for which the 18S

[AY288687.1], COI [AY288738.1] and 16S [AY288715.1] genes

are available on Genbank, were downloaded and used as far-

outgroup. Because of the unclear position of the genus

Aphistogoniulus inside the family, Madabolus with its type species

Mountain Refugia and Aphistogoniulus Speciation
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M. maximus of the tribe Pachybolini [36], and two species of the

subfamily Spiromiminae [40], Spiromimus simplex Wesener &

Enghoff, 2009 and S. triaureus Wesener & Enghoff, 2009 were

both chosen as far-outgroups for the Spirobolida. Furthermore,

the type species of the genus Colossobolus, C. semicyclus Wesener,

2009, was chosen as near-outgroup because of morphological

similarity. All available species of Aphistogoniulus, including

populations from different areas, were included. Eight of the

twelve Aphistogoniulus species (25 different terminals) were

successfully sequenced. The four missing species (A. sakalava, A.

rubrodorsalis n. sp., A. diabolicus and A. aridus) are currently only

known from their original type series [34].

Specimen sampling and DNA extraction. Freshly collected

specimens were euthanized through freezing, which relaxes the

specimen and allows for further study without breaking. Two legs

were removed immediately and stored in 95% ethanol which was

changed once after approximately four weeks. The specimen was

then transferred to 75% ethanol. The other 22 specimens were

previously stored in 75% ethanol and were collected between 1995

and 2006 (see Supporting Information S1 and Supporting

Information S8). From these specimens, muscle from the male

gonopods was removed and transferred to 95% ethanol. All tissue

samples came from male specimens, with the exception of M.

maximus B and A. infernalis E which came from mature females.

Total genomic DNA was extracted using the DNAeasyH Blood &

Tissue kit from QiagenTM, following the manufacturer’s extraction

protocol. The leftover DNA extraction product as well as the

complete second elution will be stored at the Field Museum’s

cryogenic storage facility. To allow a later identification and

verification of the species after a taxonomic update, voucher

specimens were deposited (see Table 3).

DNA amplification and sequencing. Three genes, the

mitochondrial partial 16S rRNA gene, the cytochrome oxidase c

subunit I (COI) partial gene, and the complete nuclear 18S rRNA

gene, were amplified using the polymerase chain reaction (PCR)

[41]. All three genes and gene fragments were successfully used in

previous millipede studies and provided good resolution up to

family level [11]. Amplification reactions were carried out on a MJ

Research� PTC 200 thermal cycler. Temperature profile and

summaries of the amplification reactions can be found in previous

studies [11]. Negative and positive controls were included in every

PCR setup. The PCR product was purified with a commercial kit

(QIAquick� PCR Purification Kit, Qiagen GmbH). Cycle

sequencing for sequencing was conducted with BigDye on a Bio-

nad DyadH DNA Engine, cleaned with ethanol on an Eppendorf�

centrifuge 5810R and sequenced on a Hitachi/AB 3730 automatic

DNA sequencer, using the same primer sets as for PCR or, in the

case of the 18S rDNA, specific primer pairs (see Supporting

Information S9). Sequencing reads were assembled and proofread

with the program SeqmanTM II (DNASTAR, Inc.) while the

identity of all new sequences was confirmed with BLAST searches

[42]. All used primer sequences are listed in Supporting

Information S9, while all new sequences were deposited in

GenBank (see Table 3 for accession numbers).

Alignment. Datasets were aligned using MUSCLE Version

3.6 [43] with default settings, including gene sequences from a

Spirostreptida as far-outgroup taxon (Doratogonus sp. [AY288687],

[AY288738], [AY288715]). The final alignments consisted of 655

basepairs (bp) (COI), 513 bp (16S rRNA) and 1863 bp (18STable 1. Species included in the morphological character
matrix, with their collection codes and depository.

Species Deposited

Epibolus pulchripes (Gerstäcker, 1873) ZMUC

Madabolus maximus Wesener & Enghoff, 2008 FMNH-INS 5466

Corallobolus cruentus Wesener, 2009 FMNH-INS 5397

Sanguinobolus maculosus Wesener, 2009 FMNH-INS 3918

Colossobolus semicyclus Wesener, 2009 FMNH-INS 5488

Colossobolus oblongopedus Wesener, 2009 FMNH-INS 55031

Aphistogoniulus cowani (Butler, 1882) FMNH-INS 7791–7792

Aphistogoniulus erythrocephalus (Pocock, 1893) FMNH-INS 3925

Aphistogoniulus hova (de Saussure & Zehntner,
1897)

CASENT 9032821

Aphistogoniulus corallipes (de Saussure &
Zehntner, 1902)

FMNH-INS 56116

Aphistogoniulus sanguineus Wesener, 2009 FMNH-INS 7890

Aphistogoniulus infernalis Wesener, 2009 FMNH-INS 56007

Aphistogoniulus diabolicus Wesener, 2009 FMNH-INS 6169

Aphistogoniulus aridus Wesener, 2009 CAS BLF 5241

Aphistogoniulus vampyrus Wesener, 2009 FMNH-INS 5414

Aphistogoniulus rubrodorsalis n. sp. FMNH-INS 55999

Aphistogoniulus jeekeli n. sp. CASENT 9032822

CAS = California Academy of Sciences; FMNH = Field Museum of Natural History;
ZMUC = Natural History Museum of Denmark.
doi:10.1371/journal.pone.0028035.t001

Table 2. Morphological Character matrix.

Characters

Species 1–10 11–20 21–30 31–35

Epibolus pulchripes 1111102000 0000000000 ---000-00- 00-00

Madabolus maximus 1111102000 0000000000 ---000-00- 00-00

Corallobolus cruentus 0000011000 0000000000 ---000-00- 00-00

Sanguinobolus maculosus 0000002110 0011000011 101000-00- 00-00

Colossobolus semicyclus 0000002111 1110000111 011000-00- 00-00

Colossobolus oblongopedus 0000002111 1110000111 011000-00- 00-00

Aphistogoniulus cowani 0000002000 0000110011 0001111000 00100

A. erythrocephalus 0000002000 0000110011 0000100000 01100

A. hova 00---02000 0000110011 0000101000 01100

A. corallipes 00---02000 0000111011 0000000000 00200

A. sanguineus 00---02000 0000110011 0001111000 00100

A. infernalis 00---02000 0000111011 0000000111 10100

A. diabolicus 00---02000 0000111011 0000000000 00000

A. aridus 00---02000 0000111011 0000000111 00001

A. vampyrus 00---02000 0000111011 0000000111 00001

A. rubrodorsalis n. sp. 00---02000 0000110011 0001111000 00100

A. jeekeli n. sp. 0000002000 0000111011 0000000011 00010

doi:10.1371/journal.pone.0028035.t002

Figure 1. Distribution map of the genus Aphistogoniulus. New species described are already added. New locality information given in
Supporting Information S1. Boxes surround localities from which DNA could be extracted from specimens.
doi:10.1371/journal.pone.0028035.g001
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rRNA). The alignment of the combined dataset can be found in

the Supporting Information S7. The combined analysis consisted

of 3031 bp. Uncorrected p-distances of all three genes are given in

Supporting Information S10.

Maximum Parsimony phylogenetic analysis. The

program PAUP*4.0b10 [39] was used for maximum parsimony

(MP) analyses using the TBR branch swapping algorithm with an

unenforced ‘MaxTrees’ option. The number of parsimony

informative characters in the dataset was 645. Total number of

shortest length trees with 2114 steps was 15, which all showed

identical topologies on the species-level. A strict consensus tree

was built out of all 15 shortest-length trees. To test if no tree

island was overlooked during the heuristic search, a Winclada-

Asado� Ratchet analysis [44] was conducted under Asado

version 1.7�. The Ratchet parameters were set to: number of

iterations = 200 (default), number of trees to hold at each

iteration = 5 (default = 1), number of characters to sample = 350

(default = 303). All other settings were within the default

parameters of Asado 1.7.

To assess statistical support for hypothesized clades, 1,000

bootstrap pseudoreplicates were calculated with the program

PAUP*4.0b10, under the TBR branch swapping algorithm, with

one tree held at each step and without enforcing maximum trees.

Bayesian phylogenetic analysis. Bayesian analyses were

conducted using MrBayes v3.1.2 [45]. Appropriate DNA-

substitution models were determined separately for all analysed

three genes under the Bayesian information (BIC) [46]

implemented in jModeltest 0.1.1 ([47,48]. In the Bayesian

analysis, the combined data set was partitioned (see MrBayes

manual for details) to allow unlinked models and model

parameters for all three genes. Following the MrBayes manual,

the most appropriate substitution model was specified without

fixing the parameter values, allowing them to vary during the

annealing process. This method leads to more conservative results

but more realistic posterior probabilities. The Bayesian analysis

was conducted by computing 3,000,000 Monte Carlo Markov

chain (MCMC) generations in two parallel runs each with three

cold chains and one hot chain. Trees were sampled every 100

Table 3. Newly sequenced species, Museum voucher and GenBank access codes.

Species Voucher # nc 18S mt CoI mt 16S

Madabolus maximus A FMNH-INS X01 HQ891264 HQ891241 -

Madabolus maximus B FMNH-INS X02 HQ891265 HQ891242 -

Spiromimus simplex CASENT 9032813 HQ891266 HQ891243 HQ891215

Spiromimus triaureus CASENT 9032804 HQ891267 HQ891244 HQ891216

Colossobolus semicyclus A CASENT 9032800 - HQ891239 -

Colossobolus semicyclus B CASENT 9032801 HQ891263 HQ891240 -

Aphistogoniulus vampyrus A FMNH-INS 5387 HQ891259 - HQ891213

Aphistogoniulus vampyrus B FMNH-INS 5366 HQ891260 HQ891237 -

Aphistogoniulus vampyrus C FMNH-INS 5392 HQ891261 HQ891238 HQ891214

Aphistogoniulus vampyrus D FMNH-INS 5414 HQ891262 - -

Aphistogoniulus infernalis A FMNH-INS HQ891252 HQ89127 HQ891204

Aphistogoniulus infernalis B FMNH-INS HQ891253 HQ89128 HQ891205

Aphistogoniulus infernalis C FMNH-INS-56488 HQ891254 HQ89129 HQ891206

Aphistogoniulus infernalis D FMNH-INS-56488 HQ891255 - HQ891207

Aphistogoniulus infernalis E CASENT 9032823 HQ891256 HQ89130 HQ891208

Aphistogoniulus corallipes A FMNH-INS-56116 HQ891245 HQ891217 HQ891196

Aphistogoniulus corallipes B FMNH-INS-56116 HQ891246 HQ891218 HQ891197

Aphistogoniulus jeekeli n. sp. A CASENT 9032790 HQ891257 HQ891231 HQ891209

Aphistogoniulus jeekeli n. sp. B CASENT 9032822 HQ891258 HQ891232 HQ891210

Aphistogoniulus erythrocephalus A CASENT 9032802 - HQ891222 HQ891200

Aphistogoniulus erythrocephalus B CASENT 9032810 - HQ891223 -

Aphistogoniulus hova A CASENT 9032803 HQ891249 HQ891224 HQ891201

Aphistogoniulus hova B CASENT 9032821 HQ891250 HQ891225 HQ891202

Aphistogoniulus hova C FMNH-INS-55886 HQ891251 HQ891226 HQ891203

Aphistogoniulus cowani B FMNH-INS 7792 HQ891247 HQ891219 -

Aphistogoniulus cowani C FMNH-INS 7791 - HQ891220 HQ891198

Aphistogoniulus cowani D FMNH-INS 7866 HQ891248 HQ891221 HQ891199

Aphistogoniulus sanguineus A FMNH-INS 54 - HQ891233 HQ891211

Aphistogoniulus sanguineus B FMNH-INS 7904 - HQ891234 -

Aphistogoniulus sanguineus C FMNH-INS 44981 - HQ891235 -

Aphistogoniulus sanguineus D FMNH-INS 7890 - HQ891236 HQ891212

For locality information, see Supporting Information S8.
doi:10.1371/journal.pone.0028035.t003
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generations. The number of burn-in generations was determined

by manual inspection of the likelihood score over the 3,000,000

generations.

Maximum Likelihood phylogenetic analysis. Using

RAxML 7.0.4 [49] a fast maximum likelihood (ML) method

including bootstrap analyses with 10,000 pseudoreplicates was

performed. The dataset was partitioned to allow different

parameters for each of the three analysed genes under

GTRMIX parameter settings (see RAxML 7.0.4 manual for

details).

Analysis of the Historical Biogeography of
Aphistogoniulus

In order to explain the current biogeographic distribution of the

analyzed eight species of Aphistogoniulus we used RASP (formerly S-

DIVA) to reconstruct the habitat ranges of the ancestral taxa [50].

Habitat classifications were defined based on the collection site of

the studied species (see Fig. 1), following the atlas of the vegetation

of Madagascar. Habitat A refers to seasonal dry forests, habitat B

refers to montane rain forests, habitat C refers to lowland

rainforests and habitat D refers to mid elevation rain forests. It is

important to note that the outgroup taxon Colossobolus semicyclus

was chosen primarily for rooting the phylogeny, not for

determining the ancestral habitat of the genus Aphistogoniulus. A

Bayesian binary MCMC analysis was run using default settings:

number of chains = 10, frequent of sample = 100, discard sam-

ples = 100, temperature = 0.1, maximum number of areas = 4,

state frequencies = fixed (Jukes-Cantor), and an across-site rate

variation = equal. However, we increased the number of cycles

from 50,000 to 100,000. All results in detail are listed in

Supporting Information S11.

Results

Morphologic Phylogenetic Analysis
The first split in the tree occurs between the members of the

tribe Pachybolini (Epibolus pulchripes, Madabolus maximus) and the

rest of the large-bodied Spirobolida from Madagascar (Fig. 2).

Characters supporting this split are found in the anatomy of the

head (Supporting Information S5, c1) and mouthparts (c2), as well

as the special shape of the vulva (c3, c4, c5), and is also supported

by a bootstrap value (100%) in the analysis (Fig. 2).

The next well-supported split divides the southern Malagasy

genus Corallobolus from the three genera Sanguinobolus, Colossobolus

and Aphistogoniulus (Fig. 2: clade A). All members of clade A share a

strongly elongated coxite (Supporting Information S5, c19) and a

disc-shaped telopodite of the posterior gonopods (S5, c20).

Sanguinobolus & Colossobolus form the sister-group to Aphistogoniulus

(Fig. 2). Aphistogoniulus is monophyletic in the tree (Fig. 2, clade B)

and supported by apomorphies such as the elongation of the coxite

process of the anterior gonopods (S5, c15) and the location of the

telopodite retrorse process on the anterior gonopods (S5, c16).

Three clades are present within Aphistogoniulus, the A. cowani, A.

erythrocephalus and A. diabolicus clades. The genus is divided by a

basal split between the A. cowani and A. erythrocephalus sister clades

(Fig. 2: clade C) and a clade comprising A. corallipes and the A.

diabolicus clade (Fig. 2: clade F). Clade (C) is supported by the

presence of a retrorse projection on the anterior side of the main

branch of the posterior gonopods (S5, c25). The main apomorphy

of the A. cowani clade is the lateral membranous fringe which is

developed into a strong process on the main branch of the

posterior gonopods (S5, c24). The A. erythrocephalus clade is

corroborated by a sulcate fringe present on the apex of the

posterior gonopod main branch (Supporting Information S2).

Three characters support the A diabolicus clade: the special shape

(S5, c29) and the sharp, pointed ending (c33) of the basal branch of

the posterior gonopod, as well as the presence of a apico-mesal

fringe on main branch of the posterior gonopod (c30). This clade

also includes the only species of Aphistogoniulus adapted to arid

environments, A. aridus, which is the sister taxon of A. vampyrus

(Fig. 2). The current position of A. corallipes is not well-supported in

the tree, being in a basal position towards the A. diabolicus clade.

Molecular Phylogenetic Analyses
The molecular phylogenetic tree obtained by the parsimony

analysis (Fig. 3) closely resembles the morphological one (Fig. 2).

Aphistogoniulus and Sanguinobolus form a well-supported group (Fig. 3,

clade A), distinct from the other Malagasy genera Spiromimus

(Spiromiminae) and Madabolus (Pachybolini). The monophyly of

Aphistogoniulus (Fig. 3, clade B) is also well supported with a

bootstrap value of 99%. Inside Aphistogoniulus, we observe a basal

split between the species of the A. cowani- and A. erythrocephalus

group (clade C) and the A. diabolicus clade (Fig. 3, clade F). The A.

cowani clade (Fig. 3, clade D) with A. cowani and A. sanguineus is

strongly supported (99%) and clearly distinct from the clade

incorporating A. erythrocephalus and A. hova (Fig. 3, clade D). A.

sanguineus and A. cowani differ moderately in their mitochondrial

DNA (COI: 14–16%, 16S: 4.4–5.7%, see Supporting Information

S10). The A. diabolicus clade (Fig. 3, clade F) is statistically well-

supported (83%) and also incorporates A. corallipes. All species of

the clade (A. jeekeli, A. corallipes, A. infernalis and A. vampyrus) come

out as monophyletic with strong statistical support. The north-

ernmost species of the group, A jeekeli n. sp., is the sister-taxon to

all others, followed by A. corallipes, which is the sister taxon to the A.

vampyrus/A. infernalis species-pair. The genetic difference between A

vampyrus and A. infernalis is moderate (COI: 15–17%, 16S: 5.7–

6.1%), despite their quite distinct copulation legs, especially the

posterior gonopods [34]. In A. infernalis the specimens from the

littoral rainforest of Sainte Luce are the sister group (differences

COI: 6.6%, 16S: 2.0%) to populations from the isolated rainforest

at Grand Lavasoa and from the Andohahela Mountain chain

(Fig. 3).

For the Bayesian analysis, jModeltest indicated the following

models as the appropriate nucleotide substitution models for the

three analysed genes, including the following parameters: 18S

rDNA – Selected model: TPM3+G; 16S rDNA – Selected model:

TrN+G; COI – Selected model: SYM+I+G. For reasons described

above, only the model, not the parameters, has been fixed in the

Bayesian analysis. Manual inspection of the likelihood scores of the

2630,001 trees samples in two parallel runs showed a good

convergence after 650 trees, a value that has therefore been chosen

as the burn-in. Posterior probabilities have been computed from a

majority rule consensus tree of the remaining 2629,351 trees.

The Bayesian tree (not shown, but values in Fig. 4), as well as

the maximum likelihood tree (Fig. 4) show a topology identical to

the maximum parsimony trees (Fig. 3). The branch length of the

likelihood tree indicates larger intraspecific divergence in A.

erythrocephalus, A. hova and A. jeekeli n. sp. than in all other analysed

species (Fig. 4).

Biogeographical Patterns of Aphistogoniulus
Members of Aphistogoniulus are generally distributed in the

rainforests and montane rainforests of Madagascar, spanning

from the northern massif of Marojejy towards the south at

Andohahela and Ambatotsirongorongo. Aphistogoniulus species are

often tree-climbers [34] and show a widespread distribution

(Fig. 1). The elevation-range, even on species-level, varies from

close to sea level to mountaintops [34]. Only one Aphistogoniulus
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Figure 2. Phylogeny and Biogeography of Aphistogoniulus. Shortest tree found with Branch & Bound method. Numbers above branches refer to the
bootstrap support of the node. Symbols behind species names match those of the distribution maps. Color of branches refers to the longitudinal distribution
of the species, with red referring to northern, green to central and dark blue to southern distribution. Pink branches highlight the mountain clade.
doi:10.1371/journal.pone.0028035.g002
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Figure 3. Maximum parsimony (MP) tree based on the combined (16S+CO1+18S) dataset (3033 bp, 455 parsimony-informative
characters). Shortest tree found with Branch & Bound method. Numbers above nodes indicate statistical support based on MP bootstraps .50% of
the combined analysis, below nodes of the 16S/18S/Co1 single gene analysis. Gaps (2) refer to bootstrap support ,50%, ? to missing species (and
therefore nodes) in the single gene analysis. Color photographs (above to below) show Colossobolus sp. (Arne Hartig), Aphistogoniulus cowani (Arne
Hartig), A. infernalis (K. Schütte). Color of branches refers to the longitudinal distribution of the species, with red referring to northern, green to central
and dark blue to southern distribution.
doi:10.1371/journal.pone.0028035.g003
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species, A. aridus, is currently known from a dry habitat, the

southern spiny forest of Mahavelo. In the far north of

Madagascar, Aphistogoniulus seems to be replaced by its sister-

genera Colossobolus and Sanguinobolus (Fig. 2). In this context,

RASP indicates that the most likely ancestral habitat for the

genus Aphistogoniulus was lowland rainforest (90.2%, Fig. 5) which

is still inhabited by five species (Aphistogoniulus jeekeli, A. corallipes, A.

infernalis, A. hova, and A. erythrocephalus). Interestingly, two species

that are restricted to montane rainforests (Aphistogoniulus cowani

and A. sanguineus) represent the sistergroup of two other species

which are found in both lowland and mid-elevation rainforests

(Aphistogoniulus erythrocephalus and A. hova). These results give

evidence for a trend of colonization of higher rainforest levels

from lowland rainforests within this clade.

Figure 4. Maximum likelihood (ML) tree based on the combined (16S+CO1+18S) dataset (3033 bp).
doi:10.1371/journal.pone.0028035.g004
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Two of the three Aphistogoniulus clades match a general

distribution pattern; the A. erythrocephalus clade is distributed in

the northern and median longitudes (Fig. 2, middle) in both

lowland and mid-elevation rainforests. All representatives of the A.

diabolicus clade can be found south of the 21u longitude (Fig. 2,

right), and include the only species of the genus recorded from an

arid ecosystem. Inside the A. diabolicus clade, the northern-most

species (A. jeekeli) is the most basal species (Fig. 3).

The distribution of the A. cowani clade is not consistent with this

coherent biogeographical pattern. Its three members show a

disjunctive distribution in mountains of the south (A. cowani), the

middle (A. sanguineus) and the north (A. rubrodorsalis) of Madagascar

(Fig. 2). The A. cowani clade also shows an unusual pattern

regarding the altitude: its members seem to be restricted to

montane forests, only living in areas of more than 900 m elevation.

Discussion

Speciation Model for Aphistogoniulus
The majority of Aphistogoniulus species, including all members of

the A. erythrocephalus and the A. diabolicus clades, show a stochastical

distribution pattern which can best be explained by a ‘simple’

Figure 5. Graphical results of the ancestral habitats for the given molecular phylogeny of Aphistogoniulus using RASP. Pie charts at
internal nodes show calculated probabilities of alternative ancestral habitats (detailed information are given in Supplementary Information S8; see
also material and methods). Habitat color code: seasonal dry forest (A) = white, montane rainforest (B) = dark blue, lowland rainforest (C) = light green,
mid elevation rain forests (D) = dark green, mixture of B and C = red, and a mixture of C and D = orange. Black sections indicate habitats with
probabilities ,5%. Numbers at nodes indicate estimated p values.
doi:10.1371/journal.pone.0028035.g005
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model reflecting speciation-by-distance, or simply coherent para-

patric speciation. Our analyses give evidence that the most likely

habitat for Aphistogoniulus was lowland rainforest (90.2%, Fig. 5),

supporting these ideas. Major rivers do not appear to delineate

species distribution borders (Fig. 1). At two nodes (Fig. 2), the

phylogeny of Aphistogoniulus reflects two speciation models that are

currently the subject of intense discussion [12].

(1) The A. cowani clade, clade D in our cladogram (Fig. 2),

includes species restricted to areas with an elevation higher than

900 m. Here, the most congruent evolutionary model explaining

the existence of such a clade is mountain refugia [13]. The

ancestor of the A. cowani clade was probably a widespread species

inhabiting lowland rainforests (63.6% probablity, see Fig. 5). The

recent species are distributed in the Andringitra and Ranomafana

massif (A. cowani), the Ambohijanahary and Ambohitantely

Mountains (A. sanguineus), and Marojejy (A. rubrodorsalis). Distribu-

tion and speciation patterns reflecting the A. cowani clade were

previously discovered in dwarf chameleons of the genus Brookesia

[14], which occur in a similar ecological niche (leaf litter and low

vegetation).

(2) The A. vampyrus - A. aridus species pair is an example of

speciation possibly caused by an ecotone shift. The species A.

vampyrus is like all other Aphistogoniulus species distributed in the

rainforest, in this case the rainforests of Andohahela in south-

eastern Madagascar. Its sister-taxon A. aridus is currently only

known from the Mahavelo forest, a spiny forest located

approximately 60 km from Andohahela [51]. Here we have an

ancestor (potentially A. vampyrus) originating in the south-eastern

rainforest colonizing and adapting to the southern spiny forest (A.

aridus). This speciation model was coined ‘‘ecotone shift’’ in other

Malagasy animals, including amphibians and lemurs [12], while in

Malagasy giant pill-millipedes such an ecotone shift seems to have

occurred in the opposite direction from Aphistogoniulus: within the

genera Zoosphaerium [52] and Sphaeromimus [53], the most basal

species are distributed in the dry spiny forest ecosystem [10,11].

Molecular phylogeny of Aphistogoniulus vis-à-vis other
molecular millipede studies

This is the first molecular millipede study on species level in the

Southern hemisphere, and therefore the first on Madagascar.

Millipede molecular studies on species level are still less than 10

and greatly focus on North America [35], with a single one also

conducted in Japan [54]. In North America, Ice Age refugia were

discovered to play a role in the current distribution of haplotypes

of the spirobolid millipede genus Narceus. Unfortunately, the

historical climate on Madagascar is still too little known for any

comparison. There does not seem to be any indication of

glaciation during the last ice ages on Madagascar. While the

molecular Spirobolida dataset cannot be dated due to lack of

fossils, the relatively large genetic distances between the different

Aphistogoniulus species (14–30% of COI, 5–13% in the 16S,

Supporting Information S5) are an indication that the speciation

events in Aphistogoniulus predate the most recent ice ages.

Divergent Gonopod Evolution in the A. diabolicus Clade
The disc of the posterior gonopods is shaped like an almost

closed ‘C’ in most members of the A. diabolicus clade, including A.

jeekeli n. sp., A. diabolicus, A. vampyrus and A. aridus (Fig. 6), and

displays only minor differences between species. However, the two

other species of the A. diabolicus clade, A. corallipes and A. infernalis,

show strongly modified posterior gonopods, where in the former

the main branch and in the latter the basal branch are greatly

enlarged (Fig. 6). This finding needs further investigation

(especially if the corresponding female organs are also enlarged),

and is another hint that divergent evolution in sexual morphology

of related organisms with limited dispersal ability plays a role in

speciation [54].

Analysis Problems
The current morphological dataset of Aphistogoniulus is com-

prised of only a very limited number of characters (Supporting

Information S5). Although all higher clades are supported by good

apomorphies, more characters would give a higher resolution to

the analysis on the species level. While more morphological

characters (such as the endotergum or the mandible) could be

explored with a scanning electron microscopy study, it is

questionable if (a) enough specimens of all rarely collected

Aphistogoniulus species can be made available, and (b) if such

characters really vary enough and are independent enough to

provide a more robust phylogeny of Aphistogoniulus. Our recon-

struction of the historical biogeography of Aphistogoniulus was also

restricted to the molecular data set.

The three Aphistogoniulus species missing from the molecular

analysis are those species only known from their type series. The

absence of sequence data for A. rubrodorsalis n. sp., A. diabolicus and

A. aridus is regrettable, but all three species are morphologically

close enough to their respective sister taxa. Therefore, their

exclusion from the molecular analysis does not likely affect the

obtained results.

Description of two new species of Aphistogoniulus
Genus Aphistogoniulus Silvestri, 1897

Mystalides Attems, 1910

See Wesener et al. [34] for a revision and complete systematics

of the genus and its species.

Aphistogoniulus rubrodorsalis n. sp. Decker & Wesener

Red-Back Fire-Millipede

urn:lsid:zoobank.org:pub:BE53B87F-9FDA-4B75-B461-

A7110D373A99

Derivatio nominis. Rubrodorsalis, adjective, consisting of

the assembled Latin words ruber = red and dorsalis = back,

referring to the blood-red dorsal side of the species.

Figure 6. Phylogeny of the Aphistogoniulus diabolicus clade with
schematic drawing of the disc of the posterior gonopod
(modified leg podomere used in sperm transfer), anterior
view. For species marked with an asterisk, no sequence data was
available.
doi:10.1371/journal.pone.0028035.g006
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Material examined. 1 M

Holotype. 1 M, FMNH-INS 55999, Madagascar, Province

Antsiranana, PN de Marojejy, along tributary of Manantenina

River, 10.5 km NW Manantenina, montane rainforest, 1625 m,

14u269400S, 49u449050E, leg. S. Goodman et al., general

collecting, 3–9.ix.1997.

Diagnosis. Main branch of telopodite of posterior gonopods

with lateral membranous fringe strongly developed into erect

process (Fig. 7B), a character only shared with A. sanguineus and A.

cowani, identifying this species as a member of the A. cowani clade

(Fig. 2, clade D). Distinguishable from the latter two species by a

massive and apically curved basal branch of telopodite of posterior

gonopods (Fig. 7D), which is slender in both A. cowani and A.

sanguineus, and only in A. sanguineus more conspicuously curved.

Retrorse process of anterior gonopod in A. rubrodorsalis n. sp. is

more strongly developed than in A. sanguineus and A. cowani

(Fig. 7C). Apical lobe of main branch of posterior gonopod folded

backwards at a straight angle (Fig. 7D), while it is more diagonally

folded in A. cowani and A. sanguineus.

Description
Measurements. 49 body rings, circa 91 mm long, 8 mm

wide.

Color (in preserved specimen). Head, antenna, legs and

telson red. Anterior half of collum red, posterior half black. Body

rings ventrally black, dorsally metazonites black and mesozonites

red. Ozopores located in black area.

Antenna short, extending back to ring 4.

Anterior gonopod sternite with shoulders and well-rounded tip

(Fig. 7A). Appendage of telopodite swollen, retrorse process

strongly developed, projecting medially instead of apically

(Fig. 7C). Process of coxite strongly elongated, extending far

beyond telopodite (Fig. 6A).

Posterior gonopod telopodite branches forming a ‘J’ (Fig. 7D).

Basal branch of telopodite massive, apically curved, membranous

folds absent (Fig. 7b). Tip of main branch of telopodite apically

and mesally with characteristic membranous fringes (Figs. 7B, D).

Apical membranous fringe of main branch folded at straight angle

(Fig. 7D). Width of main branch towards apex slightly increasing.

Conservation and distribution. A. rubrodorsalis is

currently only known from the type locality, the Marojejy

Mountain (Fig. 1).

Aphistogoniulus jeekeli n. sp. Decker & Wesener

Jeekel’s Fire-Millipede

urn:lsid:zoobank.org:pub:BE53B87F-9FDA-4B75-B461-

A7110D373A99
Derivatio nominis. Named to honor the late

Myriapodologist Casimir Albrecht Jeekel.
Material examined. 4 M, 3 F
Holotype. 1 M, CAS BLF 12299 (CASENT 9032790),

Madagascar, Province Fianarantsoa, 7,6 km Kianjavato, Forêt

Classée Vatovavy, rainforest, 175 m, 21u249000S, 47u569240E, leg.

Brian L. Fisher et al., general collecting, 6.–8.vi.2005.
Paratypes. 1 F, (CASENT 9032790), same data as

holotype.
Other material examined. 3 M, 2 F, CAS BLF 13962

(CASENT 9032822), Province Fianarantsoa, 24.5 km SW of

Farafangana, Réserve Speciale Manombo, rainforest, 30 m,

23u009570S, 47u439080E, Brian L. Fisher et al., general

collecting, 20.iv.2006.
Diagnosis. Special shape and sharp-edged ending of basal

branch of posterior gonopod (Fig. 8B), and presence of an apico-

mesal fringe on its main branch (Fig. 8D) identify A. jeekeli as a

member of the A. diabolicus clade (Fig. 2, clade F). Membranous

folds also present mesally on main branch of posterior gonopod

(Fig. 8B), a character shared only by A. aridus and A. vampyrus. A.

jeekeli can be distinguished from A. aridus and A. vampyrus by the

presence of a unique rounded lobe (Fig. 7D) on the basal branch of

posterior gonopod: only sclerotized spines are present in A. aridus

and A. vampyrus. Main branch of posterior gonopod apically

undulated (Fig. 8B). Coxite process of anterior gonopod slightly

longer than telopodite (Fig. 8C). Collum completely red.

Description
Measurements. Male: 53–58 body rings, circa 130 mm

long, 9 mm wide. Female: 50–57 body rings, circa 135 mm long,

11 mm wide.

Color of head, antenna, collum, legs and telson red.

Mesozonites of body rings dorsally red, ventrally darker. Anterior

half of metazonite black, posterior half red. Red color extends

ventrally along whole metazona. Ozopores marked in last third of

body by black spots, which become larger towards telson.

Antenna short, extending back to ring 4.

Anterior gonopod sternite triangular, no shoulders, rounded tip

(Fig. 7A). Coxite process elongated, as long as or slightly longer

than telopodite (Figs. 7A, C). Telopodite appendage only weakly

swollen, sharp-edged retrorse process starting to project medially.

Posterior gonopod telopodite branches forming an ‘O’ (Fig. 8B).

Tips of main and basal branch close to but not touching one

Figure 7. Aphistogoniulus rubrodorsalis n. sp., holotype (FMNH-INS 7914) A: anterior gonopods, anterior view; B: right posterior
gonopod, anterior view; C: anterior gonopods, posterior view; D: right posterior gonopod, posterior view. Abbreviations:
app = appendage; bb = basal branch; cp = coxite process; Cx = coxite; mb = main branch; mfr = membranous fringe; rp = retrorse process of
appendage; St = sternite; t = telopodite. Scale bars = 1 mm.
doi:10.1371/journal.pone.0028035.g007
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another. Main branch at mesal margin and apically with

membranous folds, tip bi-lobed (Fig. 8D). Main branch slenderer

and shorter than basal branch. Basal branch along its length of

equal width, but tapering at apex (Figs. 8B, D); mesally with

unique rectangular lobe (Fig. 8D).

Intraspecific variation. There is a difference in the number

of body rings between the two observed populations. The

specimens of Vatovavy possess 57 (F) and 58 (M) body rings,

whereas the male specimens from Manombo only have 53 or 54

body rings and the two females 50 body rings, respectively. The

population from Manombo is only tentatively placed in A. jeekeli

because of strong morphological similarities, their gonopods and

coloration are very similar. The large genetic distances between

both populations (COI: 15.2%, 16S: 8.2%, 18S: 0.8%, see

Supporting Information S10) are, however, only based on a

single specimen from each population. Larger samples should be

analyzed to discover if the population from Manombo might

represent a distinct species.

Conservation and distribution. A. jeekeli is distributed in

lowland rainforests of southeastern Madagascar. Both known

localities, Vatovavy and Manombo, are isolated rainforest vestiges.

Although the locations are 180 kilometers apart, all natural forests

in between the locations are now degraded to pseudosteppe [54].

None of the current areas of distribution are effectively protected.

Outlook
The genetic differences between different populations of the

widespread northern species A. erythrocephalus and A. hova are

conspicuous enough to look into biogeographic patterns and

possibly even cryptic speciation in those taxa when more properly

preserved specimens become available. Further studies are

necessary to highlight intraspecific differences or even cryptic

speciation in two species of the A. cowani clade. Populations of A.

cowani show color differences (amount of red on the collum, [34])

between populations in Ranomafana and Andringitra-Ivohibe

(100 km distance). Also, the long distance (180 km) between both

known populations of A. sanguineus (Ambohijanahary and Ambo-

hitantely) needs to be further investigated for eventual gene flow

and/or undiscovered populations in intermediate areas. Unfortu-

nately, no appropriately conserved material from any of these

populations is currently available for a genetic study.

The discovery of two new Aphistogoniulus species in the last year

highlights how little we know about the millipede fauna of

Madagascar. It is already difficult to say if the current distribution

of the highland species A. sanguineus is so disjunctive because of recent

habitat fragmentation or ecological specialization. Highland vegeta-

tion between the closely related A. sanguineus and the eastern species A.

cowani and A. rubrodorsalis is now completely degraded [55,56], creating

a void of information that hampers biogeographic studies [17].

Phylogenetic data remains lacking for most other millipede

genera from Madagascar. In the order Spirobolida, only the genus

Spiromimus of the subfamily Spiromiminae shares the wide

distribution pattern of Aphistogoniulus [40], all other genera have

a much more restricted range. A phylogenetic analysis of the

Spiromiminae based on a morphological dataset showed several

ecotone shifts occurring between rainforest and dry forest species

of this subfamily [40]. The more mobile habit of the fire-millipede

genus Aphistogoniulus, with its numerous widespread species, is in

itself unusual for Malagasy millipedes. The wide range of the

genus Aphistogoniulus and most of its species (Fig. 1), especially in

comparison to other Spirobolida genera on Madagascar, could be

related to its adaptation to a specific ecological niche, the surface

of the leaf litter and lower branches of trees [34].

It might be interesting to compare the speciation pattern of the

mobile Aphistogoniulus species with those of other Malagasy

millipedes which occupy a different, more cryptic ecological

niche, such as the wood-living genus Hylekobolus Wesener, 2009

(Spirobolida: Spirobolellidae [37]), or the giant pill-millipede

genus Sphaeromimus (Sphaerotheriida: Arthrosphaeridae) that lives

in the leaf litter.

Supporting Information
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Supporting Information S2 Aphistogoniulus hova, from Andasibe
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niulus classification and taxonomy.

(DOC)

Supporting Information S4 SEM images of Aphistogoniulus.

(TIF)

Supporting Information S5 Character discussion.
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Supporting Information S6 Character matrix as nexus file.

(DOC)

Figure 8. Aphistogoniulus jeekeli n. sp., holotype (CASENT 9032790) A: anterior gonopods, oral view; B: left posterior gonopod, oral
view; C: anterior gonopods, anal view; D: left posterior gonopod, anal view. Abbreviations: app = appendage; bb = basal branch;
cp = coxite process; Cx = coxite; mb = main branch; mfr = membranous fringe; rp = retrorse process of appendage; St = sternite; t = telopodite;
ml = mesal lobe. Scale bars = 1 mm.
doi:10.1371/journal.pone.0028035.g008
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Sciences Entomology specimen number.
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