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Abstract

Recently, the construction of networks from time series data has gained widespread interest. In this paper, we develop this
area further by introducing a network construction procedure for pseudoperiodic time series. We call such networks episode
networks, in which an episode corresponds to a temporal interval of a time series, and which defines a node in the network.
Our model includes a number of features which distinguish it from current methods. First, the proposed construction
procedure is a parametric model which allows it to adapt to the characteristics of the data; the length of an episode being
the parameter. As a direct consequence, networks of minimal size containing the maximal information about the time series
can be obtained. In this paper, we provide an algorithm to determine the optimal value of this parameter. Second, we
employ estimates of mutual information values to define the connectivity structure among the nodes in the network to
exploit efficiently the nonlinearities in the time series. Finally, we apply our method to data from electroencephalogram
(EEG) experiments and demonstrate that the constructed episode networks capture discriminative information from the
underlying time series that may be useful for diagnostic purposes.
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Introduction

The definition and the study of discrete objects in the form of

graphs or networks with specific properties is a topic that reaches

back over two hundred years [1–3], eventually leading to the

founding of graph theory [4–6]. Despite the mathematical origin

of this field, its contemporary form, sometimes called network

analysis [7–10], attracts interdisciplinary interest as networks can

be found pervasively in nature. For this reason many new methods

have been developed in recent years to provide quantitative

approaches for the structural analysis of complex networks [11].

One specific aspect of network analysis that is currently of great

interest is the inference, reconstruction and construction of

networks from data. For example, in molecular biology and the

biomedical sciences powerful experimental assays allow the

measurement of the activity of genes or gene products on a

genome-scale. Several methods have been introduced to infer

various forms of gene networks [12] from such high-throughput

data [13–20]. Similarly, in neuroscience one tries to infer neural

networks that capture the interactions among neurons or neuronal

regions [21–23]. The ultimate goal of these methods is to infer

causal networks [24,25]. That means in the above networks an

interaction in the inferred networks corresponds to a predicted

physical interaction among system variables that can be verified

experimentally [26]. For example, in gene networks this could

correspond to the binding of two proteins or for neural networks

this could be the synaptic connection of two neurons. In other

words, it is assumed that there exists a network that underlies the

data which shall be estimated or reconstructed from the data.

Recently, a fundamentally different way to construct networks,

using time series data, has been introduced [27–34]. The principle

difference to the methods discussed above is that the networks

constructed this way are merely a representation of the data. That

means it is not assumed that there exists a network that is behind

the data which should be reconstructed, but the network is

constructed from the data to form a formal representation thereof,

which serves as a means for further analysis. In the remainder of

this paper we are concerned with the latter type of networks.

Specifically, there are two network construction methods for

time series data that have gained considerable popularity since

their introduction. The first network construction method

generates so-called cycle networks [34]. For this method a node in

the constructed network corresponds to a cycle in the time series

and two nodes are connected if the corresponding cycles are

similar to each other as measured by a correlation coefficient. That

means the correlation coefficients between pairs of cycles give the

components of a similarity matrix which is used to obtain the

connectivity of the cycle network. The resulting network is

undirected, because the correlation coefficient does not provide

information about a directionality. It is noted in [34] that the

similarity matrix can be either filtered by applying a global

threshold parameter transforming it into a binary network or the

similarity matrix can be used unfiltered in which case it is a fully

connected network. The key of the above method is that each
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cycle corresponds to a well defined part of the time series, which

can be seen as a profile vector of a certain length. The second of

these methods constructs so-called visibility graphs from a time series

[30]. In a visibility graph, nodes correspond to time points of a

time series and two nodes are connected if there is a certain

criterion met that involves the values of the time series. A

visualization of this criterion shows that two nodes are connected if

one time point is visible from the second one, hence the name of

these networks. This leads to an undirected and unweighted

network.

The major purpose of this paper is to introduce a construction

procedure for networks from pseudoperiodic time series. Here, by

pseudoperiodic we mean a time series that exhibits oscillatory or

even chaotic behavior. Our construction method adds on previous

methods, and includes several key features that makes it distinct.

The first feature of our method is to estimate the connectivity

structure of the constructed network from the underlying time

series. This is different to the construction of visibility graphs [30]

that establish the connectivity among nodes by testing a geometric

criterion, instead of a statistical one. However, this is similar to

cycle networks [34] that estimate the correlation coefficients

between cycles. Also financial networks have been constructed

based on the estimation of correlation coefficients [29]. Consid-

ering the fact that we assume a time series to behave oscillatory or

even chaotic one can expect that this time series is strongly

nonlinear. For this reason we estimate mutual information values,

instead of correlation coefficients, because the mutual information

is capable of capturing nonlinear effects in a time series [35,36]

and, hence, provides more accurate estimates of the similarity of

nonlinear time series intervals. Also, this builds directly on results

obtained from other fields in which estimates of mutual

information values have been used to infer causal gene networks

[14,37,38]. Second, we define a node in the constructed network

as an episode. An episode is a temporal interval of the time series

that consists of ne§1 consecutive cycles. That means an episode is

ne times longer than a cycle. The extended length of an episode,

compared to a cycle, has the advantage of increasing the accuracy

of the statistical estimates of the mutual information value. The

reason for this is that a cycle does not need to have a certain

minimal length to qualify as a cycle. However, it is clear that very

short cycles convey less information about the time series than long

cycles. Due to the fact that the notion of a ‘cycle’ is parameter free,

one cannot adjust for this shortcoming. For this reason we extend

the principle idea behind the usage of a cycle in the construction of

a network [34] by means of an episode. Third, our network

construction model is a parametric method because an episode is a

function of ne, the number of consecutive cycles. This gives us a

parameter that can be optimized to result in the ‘best’ network for

a given time series. We call the optimal value of ne the effective length

of an episode and provide a procedure to estimate its value. None

of the previous methods introduced to construct networks from

time series data is parametric. Fourth, the size of the constructed

network, which corresponds to the number of nodes, is adjustable

in our model. Again, this is related to the length of an episode. For

the effective length of an episode, this results in networks of minimal

size, which means that it consists of the least number of nodes.

This paper is organized as follows. In the next section we

introduce episode networks and their construction. Then we

present results studying the influence and the distribution of the

mutual information values of episode networks. Next, we compare

properties of episode and cycle networks. We then show several

examples to demonstrate how the effective length of an episode

can be estimated. Finally, we apply our method to EEG data. By

this analysis we demonstrate that the constructed episode networks

capture discriminative information from the underlying time series

that might be useful for diagnostic purposes. We finish this article

with a summary and conclusions.

Methods

In this section we introduce and discuss the construction

procedure for episode networks. Further, we introduce an

algorithm to estimate the efficient length of an episode to construct

such networks.

Construction of episode networks
Episode networks, defined below, are based on mutual

information values [39,40]. The mutual information is a measure

for the nonlinear dependency of two random variables X and Y ,

defined by

I(X ,Y )~
X

xi[X

X

yi[Y

P(X~xi,Y~yi):log
P(X~xi,Y~yj)

P(X~xi):P(Y~yi)
ð1Þ

Here by log we mean the logarithm to the base 2. I(X ,Y ) is

always §0. If the two random variables are independent from

each other the mutual information becomes zero, because

P(x,y)~P(y)P(x).

Before we define the construction procedure for episode

networks formally, we provide a brief depiction of it. The basic

idea that underlies the networks we want to construct is as follows.

For a given pseudoperiodic time series that consists of fCigNc

i~1

cycles we define an episode as ne consecutive cycles. This results in

Ne~Nc=ne different episodes fEjgNe

j~1. That means an episode is

an interval of a time series that contains ne consecutive cycles. This

is visualized in Fig. 1. We use these episodes as the nodes in a

network. The connection of this network is based on the similarity

between these episodes. Here we measure the similarity between

pairs of episodes by their mutual information value [39,41],

I(Ei,Ej). That means we estimate a similarity matrix W , whose

components correspond to the mutual information values between

pairs of episodes, i.e., Wij~I(Ei,Ej). From the similarity matrix

W we construct an episode network as the maximal connected

component, which is an undirected, unweighted network. Here we

define the maximal connected component as the network G obtained

from W which is (1) a connected network and (2) the edges used to

construct G have maximum mutual information values. The first

property means that in an episode network each node is connected

via an undirected path to any other node. The second property

defines its construction procedure from W which is as follows:

First, we initialize the adjacency matrix A of G as a zero matrix.

Then we identify the largest edge weight (mutual information

value) in W and its corresponding episode pair (i,j) and add an

undirected, unweighted edge in A, i.e., Aij~Aji~1. If this results

in a connected component of the vertices in A we stop, otherwise

we proceed to the next largest edge weight in W and continue

until we obtain a connected component of the vertices in A.

Formally, our construction corresponds to a greedy optimization [42]

of the mutual information values used to construct G.

The construction of the maximal connected component is

visualized in Fig. 2. Assuming the black edges have already been

added and all other edge weights are zeros, except wa and wb, for

which holds wawwb. In the next step we face a decision which of

the two edges wa and wb to include. According to our construction

procedure, the edge wa will be added because its mutual

information value is larger than wb. This is in contrast to the

minimum spanning tree (MST) algorithm [42] which would add the

Construction of Episode Networks from Time Series
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edge wb instead of wa. That implies that the resulting network we

obtain from our procedure does not need to be a tree, but the

network can have an arbitrary complex structure.

The construction procedure of an episode network from a time

series can be summarized by the following four steps.

Algorithm 1 construction of an episode network

1: Given: pseudoperiodic time series

2: Initialize: adjacency matrix A as zero matrix

3:. Initialize: episode length ne as a natural number

4: identify all cycles in the time series, fCigNc

i~1

5: construct Ne~Nc=ne episodes from the cycles,

fEjgNe

j~1

6: for i [ f1, . . . Neg do

7: for j [ f(iz1), . . . ,Neg do

8: Wij~I(Ei,Ej) - estimate mutual information

9: end for

10: end for

11: whileA is not connected do

12: (i�,j�)~ argmax fWijg
13: Wi�,j�~Wj�,i�~0

14: Ai�,j�~Aj�,i�~1

15: end while

16: Return: adjacency matrix A of the episode network

1. Identify the cycles fCigNc

i~1 in the time series.

2. Define the episodes fEjgNe

j~1 in the time series. An episode

corresponds to a node in the constructed network G.

3. Estimate the similarity between pairs of episodes

Wij~I(Ei,Ej) by their mutual information value.

4. Connect nodes (episodes) in the network G if they are part

of the maximal connected component in W .

Formally, the construction procedure for episode networks is

defined in algorithm 1. We want to point out that, usually, the

length of different cycles Ci will be different, hence, the length of

Figure 1. Top: Hypothetical time series. Middle: Identification of all cycles in the time series. Bottom: Definition of episodes. In this case, an
episode consists of three consecutive cycles.
doi:10.1371/journal.pone.0027733.g001

Figure 2. Construction principle based on the maximal
connected component. If wawwb , edge wa will be added, otherwise
wb . This is in contrast to the MST algorithm which would always add wb .
doi:10.1371/journal.pone.0027733.g002
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different episodes Ei will be different too. In order to estimate the

mutual information value between episode pairs of different

length, we employ a similar strategy as in [34,43] used for

correlation coefficients. That means if episode Ei is longer than Ej

we estimate all possible mutual information values one can obtain

by shifting the start position s of Ej with respect to Ei and select

from these values the maximum mutual information value, i.e.,

I(Ei,Ej)~ max
s
fI(Ei,Ej(s))g: ð2Þ

This allows to circumvent the problem of unequal episode lengths.

Our network model to construct episode networks is similar to

the construction of cycle networks [34] but has the following

benefitial features. First, due to the fact that the model is intended

to convert a pseudoperiodic time series into a network, one can

assume that the signal in the time series is strongly nonlinear. For

this reason it appears sensible to estimate the similarity between

episodes with a measure that is capable of capturing such

nonlinearities. The mutual information is a nonlinear extension

of the correlation coefficient between two random variables and,

hence, possesses this property [35,36]. Further, it has been

demonstrated for large-scale high-throughput data from gene

expression experiments that mutual information based inference

methods are able to reconstruct molecular interactions among

genes or gene products reliably [14,37,38,44,45]. This demon-

strates that theoretical properties of the mutual information

translate to data from experiments making this measure a

favorable choice over correlation coefficients.

Second, a cycle is a well defined entity within a pseudoperiodic

time series [46] and as such is appropriate to represent a node of a

network. However, this bears an implicit limitation with respect to

the length of the profile vectors that are compared. The problem is

that from simulation studies we found that the estimated

correlation coefficients between two cycles is in general very high,

and frequently even close to 1. One reason for this is that for

pseudoperiodic time series the length distribution of the profile

vectors is of similar order. Another reason is the ‘periodic shape’ of

the cycles, which they naturally represent. Both effects do not

prevent, but hamper that the full range of possible correlation

coefficients from {1 to z1 is actually observed. The usage of an

episode as basic building block of a node, and of the profile

vectors, leads naturally to larger profile vectors and enables by this

a larger diversity of observed similarity values among different

episodes.

Third, an episode network grows proportional to the number of

episodes #fEigNe

i~1 in the time series. That means, the number of

nodes in an episode network grows with the number of episodes,

Ne~#fEigNe

i~1, and not with the number of cycles

Nc~#fCigNc

i~1 as the cycle networks. Due to the fact that an

episode consists of ne cycles we obtain Ne~Nc=ne. That means the

size of an episode network is directly controllable by the number of

cycles ne that define an episode. Further practical implications of

this relate back to point 2 discussed above as well as to a more

efficient computational complexity of an analysis of smaller

compared to larger networks.

The last point raises the question how to choose the length of an

episode to construct episode networks, which are best suited for a

given time series. This point is addressed in the next section.

Effective length of an episode
First, we would like to note that in order to define a procedure

to determine the effective length of an episode we need to specify a

measure c. This measure will serve as a reference that allows us to

quantify what we mean by effective. Because the length of an

episode has an influence on the structural properties of the

resulting episode network G, we are looking for a measure to

quantify the structural properties of a network, i.e., c(G).
Potentially, there are several choices for such a measure. For

example, the mean path length or the edge density of a network

are possible measures. Due to the fact that we will study the value

of this measure for different values of the episode length, cne
(G),

we require it to be largely independent of the size of the network,

because ne effects directly the size of the constructed episode

network. For our analysis we use the global clustering coefficient as

measure. The global clustering coefficient, also called global

transitivity, is a well-known measure that captures an important

property of complex networks [47]. Briefly, it measures the

probability that adjacent nodes of a vertex are connected with

each other. For our analysis we use the global clustering coefficient

of a network, c(G), which is defined as the average clustering

coefficient of all individual nodes in the network. In the following

definition we specify the notion of the effective length of an episode.

In this definition, the function h is directly related to the measure c
as will be explained in more detail below.

Definition 1 (effective length) As effective length of an episode we define

the maximal length of an episode, denoted as nel
e (h), for which the structural

properties of a population of episode networks is maximal, as measured by h.

Quantitatively, we define nel
e (h) as

nel
e (h)~maxfargmax

ne

fhnegg ð3Þ

with respect to the function h.

In order to point out that the effective length nel
e (h) of an

episode network is defined with respect to a network measure, h,

we included this dependency in the above definition explicitly for

reasons of clarity. The efficient length is the maximum of

argmaxne
fhne
g because in case there are several elements that

maximize hne
, we want to chose the largest episode length because

this results in the smallest networks.

Algorithm 2 procedure to estimate the effective length nel
e of

an episode

1: Initialize:

2: nmax
e w1

3:mne
(G)~

PE
j~1 cj(G) for ne [ f1, . . . ,nmax

e g
4: s2

ne
~Var(mne

(G)) for ne [ f1, . . . ,nmax
e g

5: mmax~m1(G) - mean global clustering coefficient for

ne~1

6: h~mmax{s1(G)

7: hne
~0 for ne [ f1, . . . ,nmax

e g
8: h1~mmax

9: forne [ f2, . . . ,nmax
e g do

10: if mne
(G){sne

(G)|f §h then

11: hne
~mmax

12: else

13: hne
~mne

(G)

14: mmax~hne

15: h~mmax{sne
(G)

16: end if

17: end for

18: Return:

19: nel
e (h)~maxfargmaxne

fhne
gg

Construction of Episode Networks from Time Series

PLoS ONE | www.plosone.org 4 December 2011 | Volume 6 | Issue 12 | e27733



The rational behind the above definition of the optimization

criterion is to select the length of an episode in a way that provides

us with the maximal information from an episode network of

minimal size. The information is maximal because for ne~1 an

episode network consists of the maximal number of nodes, Nc,

and, hence, can exhibit its largest structural diversity. This can be

seen as the highest resolution achievable. Increasing the value of

ne, leads to a reduction of the number of nodes in an episode

network and, potentially, to a restriction in the diversity of the

network structure. However, by searching the maximum of h and

ne, we obtain smaller episode networks that represent approxi-

mately the same structural information as larger networks. Hence,

using the effective length nel
e leads to the smallest size of an episode

network with similar structural properties as larger episode

networks, constructed from the same time series.

The discrete function h in the above definition is obtained from

estimates of structural properties of G in dependence on ne.

Formally, we define h in algorithm 2. In this procedure, mne
(G)

corresponds to estimates of the mean global clustering coefficients

of a population of episode networks and sne
to the standard

deviations. Practically, we approximate this population of

networks by an ensemble of networks of size E. The basic idea

underlying the definition of the function h is to utilize information

about the variability of the structural properties of networks from

the same population. It is necessary to formulate this with respect

to a population, because every structural property of an episode

network, e.g., the clustering coefficient c(G) is a random variable,

due to the fact that the time series used to construct G is just a

sample from a dynamical system. In order to assess such a random

variable one needs to consider its inherent variability. As long as

mne
(G){sne

(G)|f §h holds, the values of the constructed

episode networks are within one standard deviation of the

threshold h. Here the factor f allows to adjust this range, but for

our simulations we used f ~1:0. According to the central limit

theorem, for a sufficiently large episode network the values of the

global clustering coefficients c(G) are approximately normal

distributed (Pne
~N(mne

(G),s2
ne

(G)=
ffiffiffiffiffi
ne
p

)) with mean mne
(G) and

variance s2
ne

(G)=
ffiffiffiffiffi
ne
p

[48], because the global clustering coefficient

is the average of the clustering coefficients of the individual nodes

in the network. Considered from this perspective, the criterion

mne
(G){sne

(G)|f §h means that the probability to observe a

value of c(G) larger or equal to h is 1{FPne
(h). Here FPne

is the

cumulative distribution function of Pne
. Hence, our procedure

identifies the maximal length of an episode nel
e for which the

structural properties of episode networks are still within the

variability range of the population of episode networks.

Results

In the following we, first, study the influence and the

distribution of the mutual information values of episode networks

and compare properties of episode and cycle networks [34]. Then

we show how to determine the effective length of an episode to

construct the networks. Finally, we apply our method to EEG data

to demonstrate that the constructed episode networks capture

discriminative information from the underlying time series.

Influence and distribution of the mutual information
For the following analysis we use time series data generated with

a Rössler system [49] given by

_xx(t)~{y(t){z(t) ð4Þ

_yy(t)~x(t)za:y(t) ð5Þ

_zz(t)~bzz(t):(x(t){c) ð6Þ

For parameter values of a~0:398,b~2:0,c~4:0 the Rössler

system exhibits a chaotic behavior. From this system, we use the x-

component to generate a time series with 800 cycles. For ne~5 we

obtain 160 episodes. From this we estimate an episode and a cycle

network GE and GC . First, we want to note that the episode

network contains 3090 edges and the cycle network contains 2582
edges. Already from these numbers one gets the impression that

the usage of the mutual information as estimator of episode

similarity has a profound impact on the inferred network structure.

In order to demonstrate this more clearly, we show in Fig. 3 the

histograms of the mutual information values (left figure) and the

correlation coefficients (right figure) of all none-zero edge weights

of the mutual information matrix and the correlation matrix.

From this follow two interesting observations. First, the distribu-

tion of mutual information (MI) values appears vertically mirrored

compared to the distribution of the correlation coefficients. That

means, if one goes from high to small values of the MI values, one

enters first the long tail of the distribution and then reaches the

center of mass of the majority of values. For the correlation

coefficients this behavior is reversed. Due to the fact that our

network construction procedure adds successively edges starting

with high edge weights (mutual information values) and working

toward lower values, the distributional shape of the mutual

information values is beneficial because it allows for a more

selective procedure.

The second related observation refers to the covered range of

selected values, colored in red in Fig. 3. In this figure, the mutual

information (MI) values and the correlation coefficients that were

actually used to construct GE and GC are colored in red. For the

episode network the range covered by the selected values is

0:875 = (maximal value of the selected MI values - minimal value

of the selected MI values)/(maximal value of all MI values -

minimal value of all MI values) whereas for the cycle network the

covered range is only 0:094. This is intimately connected with the

distributional shape of both networks, as discussed above, and the

location of its tail. To quantify the distributional shape of the tail of

the mutual information values we conduct a statistical test

suggested in [55] to test if the tail follows a power law *I{a. A

maximum-likelihood fit results in an exponent of a~3:02 and a

goodness-of-fit test (Kolmogorov-Smirnov) gives a p-value of

1:3|10{4, indicating that the tail of the mutual information

values is unlikely to follow a strict power law. That means the

distribution has a long tail but does not exactly decay as *I{a.

The next dynamical system we study is a Duffing map [50],

xnz1~xn ð7Þ

ynz1~{bxnzayn{y3
n ð8Þ

For the parameters a~2:77 and b~0:1 the obtained time series is

chaotic. Using this parameter configuration we generate a time

series with 1811 episodes (ne~5). A maximum-likelihood fit of the

tail of the mutual information values gives an exponent of a~7:06
and the goodness-of-fit test gives a p-value of 0:0022 [55]. This test

shows that the tail of mutual information values for the Duffing

Construction of Episode Networks from Time Series
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map is closer to a power law than the Rössler system, but is also

unlikely to be an exact power law, *I{a.

To demonstrate that the resulting episode networks for a

Rössler system and a Duffing map have a different network

connectivity, we show in Fig. 4 the degree distribution of the

episode networks (left: Rössler system 1607 episodes; right: Duffing

map with 1811 episodes). Despite the fact that we used parameters

of the Rössler system and the Duffing map leading to a chaotic

behavior of both time series, the resulting degree distributions of

the episode networks are quite different from each other. This

means that not every chaotic system maps to a network with the

same connectivity structure. Despite the fact that the mutual

information distribution of an episode network of a Rössler system

has a long tail, its degree distribution has not. This is similar to the

results obtain for cycle networks [34].

In Fig. 5 we show two visualizations of episode networks. The

top network is obtained from a Rössler system consisting of 321
nodes and 4208 edges. Its average path length is 9:06, the

clustering coefficient is 0:822 and the maximal degree is 40. The

second network is obtained from a Lorenz system,

_xx(t)~s:(y(t){x(t)) ð9Þ

_yy(t)~x:(t{z(t)){y(t) ð10Þ

_zz(t)~x(t):y(t){b:z(t) ð11Þ

with the parameters s~10, t~28 and b~8=3, which lead to a

chaotic time series. The episode network was constructed using the

x-component of the Lorenz equations and consists of 1663 nodes

and 31430 edges. Its average path length is 6:89, the clustering

coefficient is 0:756 and the maximal degree is 143. Both networks

are obtained for ne~5. It is interesting to see that despite the fact

that both time series are chaotic the resulting episode networks

‘look’ quite different, which reflects also in their structural

properties. We want to emphasize that the shown episode

networks are obtained by the application of algorithm 1. That

means, there is no manual adjustment of any parameter necessary.

In Fig. 6 we show the degree distribution for the episode

network constructed from the Lorenz equations, shown in Fig. 5.

Comparing this degree distribution with the ones for the Rössler

system and the Duffing map, shown in Fig. 4, one can see that also

the episode network constructed from the Lorenz equations has a

characteristic connectivity structure that is different to the other

two dynamical systems. This confirms also the visual impression

from the graphical representation of the episode networks shown

in Fig. 5.

Estimation of the effective length of an episode
In the previous section we used an episode length of ne~5 to

construct the episode networks. That means we defined an episode

as 5 consecutive cycles as the nodes in our networks. In this section

we use the quantitative procedure introduced in the methods

section that allows to determine the effective length of an episode

automatically. Our results will show for different systems that in

general ne~5 is a good choice for the effective length of an

episode.

In order to determine the effective length of an episode we start

with a time series of a fixed length L and construct for various

values of ne the corresponding episode networks. According to the

definition of effective length, we need to identify the value ne from

which on the characteristics of the networks change. Per definition,

this is the point of the first decrease of the maximal global

clustering coefficient.

The first time series we study is again from a Rössler systems

with the same parameters as in Eqn. 4–6. The left Fig. 7 at the top

shows our results averaged over E~25 independent time series.

Here the black dots correspond to the mean value of the clustering

coefficient and the error bars give its standard deviation.

Interestingly, the mean clustering coefficient does not only increase

in the first step from ne~1 to ne~2 but its standard deviation

decreases considerably. This indicates a stabilizing effect of longer

episodes on the constructed episode networks. That means despite

the fact that 25 different time series have been used, the resulting

networks become more similar to each other for ne [ f2, . . . ,15g

Figure 3. Histogram of mutual information values (left) and correlation coefficients (right) obtained for a time series with 160
episodes and 800 cycles generated with a Rössler system. Only the values colored in red are used to construct the corresponding episode and
cycle network.
doi:10.1371/journal.pone.0027733.g003
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than for other values of ne. This kind of robustness is desirable

because the networks should reflect characteristics of the

underlying dynamical system, rather than only of the individual

time series used, which provides merely a sample thereof. In order

to provide a quantitative cut-off value of the effective episode

length, we use algorithm 1 to calculate the function h. The result of

this is included in Fig. 7 showing the function h in red. The

maximal value of ne for which h is maximal is indicated as a

vertical line, corresponding to an effective length of nel
e ~15.

For the above analysis we used time series of a fixed length L,

and constructed different episode networks for different values of

ne. Due to the fact that the time series is of fixed length L, the

networks constructed for larger values of ne are smaller (consist of

fewer nodes) than the networks for smaller ne values. In order to

study if this effects the obtained results we repeated the above

analysis, however, this time we keep the size (number of nodes) of

each constructed episode network fixed. That means we need to

generate larger time series for larger values of ne. More precisely,

in order to maintain a constant size of the episode networks, the

length of the time series used to construct an episode network for

ne needs to be of length L|ne. The right Fig. 7 at the top shows

the results of this analysis, again averaged over 25 independent

simulations. Due to the larger length of the time series used for this

new analysis the variances are in general smaller. This leads to a

more conservative estimate of nel
e which is in this case 5.

As a second example we determine the effective episode length

for time series from Lorenz equations, see Eqn. 9 to 11. As time

series we use again the x-component of the Lorenz equations. The

results of our analysis are shown in the second row in Fig. 7. The

obtained results are similar to the Rössler system with the

difference that for the Lorenz equations the determined effective

length is 5 for the fixed length time series (left figure) and the fixed

size episode networks (right figure). As a general observation from

our studies we note that there is always an increase in the

clustering coefficient at the first step regardless of the considered

time series. That means it is always beneficial to use an episode

length new1 to construct episode networks.

The above analysis shows that the efficient episode length nel
e

resulting from a ‘fixed length time series’ can be the same as from a

‘fixed size episode networks’, but it does not have to. Due to the

fact that the variability the in latter analysis is usually smaller the

resulting estimates for nel
e are more conservative and, hence,

preferred. From this follows that it is advisable to use no episode

lengths longer than 5 because this will lead to changing structural

characteristics of the constructed networks. Using smaller values

than nel
e is in principle possible, however, the resulting networks

are larger. That means these networks contain a similar amount of

information as the episode network constructed for nel
e , but they

are larger because they consist of more nodes due to smaller

episode lengths. Usually, larger networks consume more time for

their analysis. For this reason, it is desirable to have the smallest

networks possible that contain the same information.

Application: EEG data
Finally, we demonstrate that episode networks are useful in the

practical analysis of time series data. We use electroencephalo-

graphic (EEG) time series data which measure the electrical

activity of the brain [51,52]. From the total dataset available for a

study that contains recordings from a 128-channel amplifier

system [53], we select three different types of data which come

from extracranial and intracranial recordings. The first type

corresponds to surface EEG recordings of control patients. The

second and third type are from intracranial recordings from

presurgical patients measured in the hippocampus formation.

Type 3 represent only seizure free intervals, whereas type 2
measures seizure activity.

For these three data types, we use a total of 96 single-channel

recordings of 23:6 seconds duration. From these data we create 24
time series of length 94:4~4|23:6 seconds to obtain time series

of a sufficient length. That means in total we construct for each of

the three different data types 8 individual episode networks and

average over the obtained results. This mimics three (small)

populations of patients in order to estimate the variability within

Figure 4. The degree distribution of episode networks. Left: Rössler system with 1607 episodes. Right: Duffing map with 1811 episodes.
doi:10.1371/journal.pone.0027733.g004
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these populations. For constructing the episode networks we use as

efficient length nel
e ~4. The results from this analysis for the

average path length and the clustering coefficient are shown in

table 1. The variables mi refer to the mean values whereas s2
i

provide the corresponding variance.

It is interesting to see that the average path length is quite

similar for the first two data types. Only data type three can be

clearly distinguished. The situation is different for the clustering

coefficient. Here there is a clear separation between all three data

types. We confirm this impression statistically by a two-sample t-

test [54] comparing the mean values of the clustering coefficients.

For all three tested cases, we obtain a statistically significant result

assuming a significance level of a~0:05. That means, the null

hypothesis assuming equal means among the groups is rejected.

The selected significance level of a~0:05, which implies an

expected false positive rate of 5%, appears reasonable in the given

context. It is interesting to note that the variance of all variables is

quite small indicating that each of the 8 networks comprising a

population is representative for the other networks of the

population because the measured properties are very similar. This

is a desirable property, because it allows an experimental design

with small sample sizes involving only a few patients. Especially,

for invasive procedures this is an advantage because such

procedures are usually accompanied by severe discomfort for the

patients and costs for Public Health.

In the top row in Fig. 8 we show the distribution of mutual

information values for three episode networks, one for each of the

three data types. From these figures one gets the impression that

all networks follow a power law distribution in the tails for their

corresponding mutual information values. This is quantitatively

confirmed by the statistical test suggested in [55] resulting in the p-

values 0:063, 0:280 and 0:154 for the cut-off values 1:019, 0:96
and 1:02. That means the tails of these mutual information

distributions follow a power law, *I{a, and are not only long tails

as for the Rössler system and the Duffing map.

In the second row in Fig. 8 we show the histograms of the

degrees for these networks. It is interesting to see that despite the

similarity of the distribution of mutual information values for all

networks, their degree distributions are remarkably dissimilar.

The network from the control patients (left most figure) seems to

be between the other two networks with respect to the degree

distribution. Quantitatively, this is confirmed by the mean value

of the distributions which are 51:8 (left figure - data type 1), 24:9
(middle figure - data type 2) and 238:2 (right figure - data type

3). This observation is plausible because it means that during a

seizure the EEG time series becomes more irregular and, hence,

the similarity between different episodes is reduced. This leads to

a reduction in the connectivity in the episode networks, which

can be directly observed in the degree distribution in the middle

Fig. 8. In contrast, during seizure free intervals the episodes

become more similar leading to an increase in the connectivity of

the episode network. However, it is less obvious that episodes of

patients for time series of seizure free intervals (data type 3) are

more similar than for control patients (data type 1). One

implication from this observation is that even for seizure free

intervals the EEG activity of such patients is considerably

different compared to control patients. This might be a property

useful for diagnostic purposes.

Discussion

In summary, in this paper we introduced a method to construct

networks from pseudoperiodic time series, which we called episode

networks. Our method is parametric allowing for the adjustment of

the length of an episode, which defines the nodes in the network,

and, hence, allows for the modification of the size of a network.

We demonstrated, numerically, that it is always beneficial to use

an episode length longer than one cycle and we defined the effective

length of an episode as the solution of an optimization problem for

the measure h. The measure h was defined reflecting the average

global clustering coefficients of episode networks and their

variability with respect to a population of episode networks. Using

the optimal value nel
e as an episode length to construct an episode

network leads to the smallest network that contains, approximate-

ly, the same information as larger episode networks, because

networks constructed for an episode length smaller than nel
e lead to

similar values of h, but larger networks. Another novel feature of

our construction method is that it employes estimates of mutual

information values to assess the similarity between different

intervals of the time series, to construct the connectivity among

the nodes. This allows to capture nonlinearities that are

doubtlessly present in pseudoperiodic time series. From the

application of our network construction method to data from

EEG experiments we found that the episode networks corre-

sponding to different groups (patients or control) capture

discriminative information from the underlying time series

allowing a clear distinction from each other. Furthermore, the

revealed differences in the degree distributions might be useful for

diagnostic purposes. However, additional studies are necessary

with data from independently conducted EEG experiments to

establish the robustness of the obtained results with respect to

Figure 6. The degree distribution of the episode network
constructed from the Lorenz equations, shown in Fig. 5.
doi:10.1371/journal.pone.0027733.g006

Figure 5. Examples of episode networks. Top: The network was constructed from a Rössler system and consists of 321 nodes. Bottom: The
network was constructed from Lorenz equations and consists of 1663 nodes.
doi:10.1371/journal.pone.0027733.g005
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Figure 7. Efficient length of an episode. First row: Rössler system. Left: nel
e ~15. Right: nel

e ~5. Second row: Lorenz equations. Left: nel
e ~5. Right:

nel
e ~5.

doi:10.1371/journal.pone.0027733.g007

Table 1. Numerical results obtained for the EEG dataset [53].

measure m1 s2
1 m2 s2

2 m3 s2
3

average path length 1:930 0:018 1:934 0:006 1:613 0:014

clustering coefficient 0:393 0:017 0:287 0:005 0:542 0:007

The index of the measures refers to one of the three data types used. mi corresponds to the mean value of the measure and s2
i to its variance. The indices correspond

to: 1: control group; 2: patients - seizure free intervals; 3: patients - seizure intervals.
doi:10.1371/journal.pone.0027733.t001

Construction of Episode Networks from Time Series

PLoS ONE | www.plosone.org 10 December 2011 | Volume 6 | Issue 12 | e27733



varying experimental settings and protocols. This could also

provide valuable insights into the experimental design of EEG

experiments and differences among them, leading to a stratifica-

tion in the way that our method could be applied to data from a

certain subgroup of experimental designs.

From the above discussion one might feel tempted to ask if the

traditional methodology for time series analysis [56,57] should be

substituted by the structural analysis of networks constructed from

an underlying time series. However, we do not think that it is

necessary to substitute one approach by the other, instead, the

analysis of networks constructed from time series data should be

considered as a valuable addition to the standard methodology for

time series analysis. Interestingly, from a statistical perspective

there is, in fact, nothing special about the usage of networks as

representation of the data. In the context of gene expression data

this has been demonstrated by [58,59] showing that a correlation

matrix can be interpreted as a weighted network that contains

meaningful information about the interactions among genes. If

seen from this angle, networks form an integral part of many

methods in multivariate analysis [60].

There are several other methods that have been introduced in

recent years to construct a network from time series data

[30,31,33] following the spirit of [34]. Due to the fact that time

series data are available in many different fields, e.g., biology,

chemistry, physics, medicine or the social sciences, methods to

convert these data into networks in order to enable a subsequent

analysis are certainly of interest for a large variety of different

application domains. Specifically, in molecular biology, the

concentration of mRNAs is measured by DNA microarrays

allowing genome-wide expression levels of all genes to be obtained.

For this reason, periodic processes like the cell cycle or the

circadian rhythm could be studied by means of episode networks [61–

63]. From a theoretical perspective, it would be interesting to

investigate in-depth the structural properties of visibility, cycle and

episode networks to gain a thorough understanding of the coupling

between their features and the properties of the time series, with

respect to their generation processes.
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