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Abstract

Background: Many complex systems can be represented as networks, and how a network breaks up into subnetworks or
communities is of wide interest. However, the development of a method to detect nodes important to communities that is
both fast and accurate is a very challenging and open problem.

Methodology/Principal Findings: In this manuscript, we introduce a new approach to characterize the node importance to
communities. First, a centrality metric is proposed to measure the importance of network nodes to community structure
using the spectrum of the adjacency matrix. We define the node importance to communities as the relative change in the
eigenvalues of the network adjacency matrix upon their removal. Second, we also propose an index to distinguish two kinds
of important nodes in communities, i.e., ‘‘community core’’ and ‘‘bridge’’.

Conclusions/Significance: Our indices are only relied on the spectrum of the graph matrix. They are applied in many
artificial networks as well as many real-world networks. This new methodology gives us a basic approach to solve this
challenging problem and provides a realistic result.
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Introduction

Networks, despite their simplicity, represent the interaction

structure among components in a wide range of real complex

systems, from social relationships among individuals, to interactions

of proteins in biological systems, to the interdependence of function

calls in large software projects. The network concept has been

developed as an important tool for analyzing the relationship of

structure and function for many complex systems in the last

decades[1–5]. Many real-world systems show the existence of

structural modules that play significant and defined functional roles,

such as friend groups in social networks, thematic clusters on the

world wide web, functional groups in biochemical or neural

networks [6]. Exploring network communities is important for the

reasons listed below [7]: 1) communities reveal the network at a

coarse level, 2) communities provide a new aspect for understanding

dynamic processes occurring in the network and 3) communities

uncover relationships among the nodes that, although they can

typically be attributed to the function of the system, are not

apparent when inspecting the graph as a whole. As a result, it is not

surprising that recent years have witnessed an explosion of research

on community structure in graphs, and a huge number of methods

or techniques have been designed [6,8–17](see [9] as a review).

It is believed that community structure is important to the

function of a system [18–20]. In many situations, it might be

desirable to control the function of modular networks by adjusting

the structure of communities. For example, in biological systems,

one might like to identify the nodes that are key to communities

and protect them or disrupt them, such as in the case of lung

cancer [19]. In epidemic spreading, one would like to find the

important nodes to understand the dynamic processes, which

could yield an efficient method to immunize modular networks

[20]. Such strategies would greatly benefit from a quantitative

characterization of the node importance to community structure.

Some important work related to this topic has been proposed. In

2006, Newman proposed a community-based metric called

‘‘Community Centrality’’ to measure node importance to

communities [8]. His basic idea relies on the modularity function

Q. Those vertices that contribute more to Q are more important

for the communities than those vertices that contribute less.

Kovacs et al. also proposed an influence function to measure the

node importance to communities [21].

In fact, the important nodes can have distinct functions with

respect to community structure. Some previous studies have also

revealed such classifications. Guimera et al. have proposed a

classification of the nodes based on their roles within communities,

using their within-module degree and their participation coeffi-

cient [22]. They divided the hubs into three categories: provincial

hubs, connector hubs and kinless hubs. Other approaches have

also been suggested to discuss the connection between nodes and

modularity in biological networks, by dividing hub nodes into two

categories called ‘‘party hubs’’ and ‘‘date hubs’’ [23–25]. When
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removed from the network, party and date hubs have strikingly

distinct effects on the overall topology of the network. Recently,

Kovacs et al. proposed an interesting approach. They introduced

an integrative method family to detect the key nodes, overlapping

communities and ‘‘date’’ and ‘‘party’’ hubs [21]. In a very recent

work, the authors mentioned that modular networks naturally

allow the formation of clusters, and hubs connecting the modules

would enhance the integration of the whole network, such as in the

case of neuron networks [26]. As a result, it is intuitive that nodes

that are important to communities can be divided into

‘‘community cores’’ and ‘‘bridges’’. However, using the previous

methods such as participation coefficient and the influence

function to distinguish these two kinds of vertices, the exact

communities of the network must first be given [21,22]. In

contrast, it is interesting to characterize node importance to

communities without knowing the exact partition of the network.

It is understood that the adjacency matrix contains all the

information of the network. Developing methods based only on

the adjacency matrix of the network to detect important nodes to

communities and then distinguish them as either ‘‘community

core’’ or ‘‘bridge’’ is an interesting and important problem in

network research. In this manuscript, based only on the adjacency

matrix of the network, we try to access the fundamental questions:

how to evaluate the node importance to communities and how to

distinguish different kinds of important nodes? It is implied that in

many cases the spectrum of the adjacency matrix gives an

indication of the community structure in the network [27]. If the

network has c strong communities, the c largest eigenvalues of the

adjacency matrix are significantly larger than the magnitudes of all

the other eigenvalues. These large eigenvalues are key quantities to

the community structure. For this reason, we suggest a basic

approach to solve the above open problem using the spectrum of

the graph. We define the importance of nodes to communities as

the relative change in the c largest eigenvalues of the network

adjacency matrix upon their removal. Furthermore, using the

eigenvectors of the graph Laplacian, we divide the important

nodes into community cores and bridges. We apply our method to

many networks, including artificial networks and real-world

networks. This new methodology gives us a basic approach to

solve this challenging problem and provides a realistic result.

Methods

Centrality Metric Based on the Spectrum of the
Adjacency Matrix

We consider a binary network G~(V ,E) with n nodes. The

adjacency matrix A is the matrix with elements Aij~1 if there is

an edge joining vertices i and j, otherwise 0. We denote each

eigenvalue of A by l and the corresponding eigenvector by v, such

that Av~lv. The eigenvectors are orthogonal and normalized.

The eigenvalues are ordered by decreasing magnitude:

l1§l2§ � � �§ln. It is easy to show that A is symmetric and

the eigenvalues of A are real. Consider the case of networks that

have c communities. It is implied that when these communities are

disconnected, each one has its own largest eigenvalue. With proper

labeling of the nodes, the matrix A will have a block matrix

structure with c|c blocks. Blocks on the diagonal correspond to

the adjacency matrices of the individual communities, while the

off-diagonal blocks correspond to the edges between communities;

in other words, we can consider them as a perturbation.

Therefore, A can be written as

A~A0zdA, ð1Þ

where A0 is a matrix whose diagonal block elements are the

diagonal block elements of A and whose off-diagonal block

elements are zeros, while dA is a matrix with zeros on its diagonal

blocks and with the off-diagonal blocks of A as its off-diagonal

block elements. Chauhan et al. have proved that if the

perturbation strength is small, the largest eigenvalues of discon-

nected communities are perturbed more weakly than the

perturbation applied [27]. The spectrum of the adjacency matrix

of a network gives a clear indication of the number of communities

in the network. If the network has c strong communities, the c
largest eigenvalues are well separated from others. These

eigenvalues are key quantities to the community structure.

For this reason, we define the importance of node k to

communities as the relative change in the c largest eigenvalues of

the network adjacency matrix upon its removal:

Pk~{
Xc

i~1

Dli

li

, ð2Þ

where c is the number of communities. To avoid the computa-

tional cost, we use perturbation theory to provide approximations

of Pk in terms of the corresponding eigenvector v. Let us denote

the matrix before the removal of the node by A and the matrix

after the removal by AzDA; the eigenvalue of this matrix is

lzDl, and the corresponding eigenvector is vzDv. For large

matrices, it is reasonable to assume that the removal of a node has

a small effect on the whole matrix and the spectral properties of

the network, so that DA and Dl are small. We obtain

(AzDA)(vzDv)~(lzDl)(vzDv): ð3Þ

The effect on the adjacency matrix A of removing node k is

given by (DA)ij~{Aij(dikzdjk). We cannot assume that the Dv is

small because Dvk~{vk, so we set Dv~dv{vkk where dv is

small and is the unit vector for the k component. Left multiplying

(3) by vT and neglecting second order terms vTDAdv and vTDldv,

we obtain

Dl~
vTDAv{vT vkDAêek

vT v{v2
k

: ð4Þ

For a large network (n&1), we know that vT v&v2
k; therefore, we

can write

Dl&
vTDAv{vT vkDAêek

vT v
ð5Þ

Because (DA)ij~{Aij(dikzdjk), we obtain

vTDAv~{2lv2
k,vT vkDAêek~{lv2

k: ð6Þ

Finally, the importance of node k to the community structure is

obtained by

Pk~{
Xc

i~1

Dli

li

&
Xc

i~1

v2
ik

vT
i vi

, ð7Þ

where c is the number of communities, vik is the kth element of vi

and Pk lies in the interval ½0,1�. If Pk is large, node k is important
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to the community structure; otherwise, k is on the periphery of the

community.

If a network which has n nodes and c communities, it indicates thatPn
k~1

Pk~c. In order to let the sum of the index scales to 1, we define

the new index as Ik~Pk=c that obeys
Pn

k~1

Ik~1. Then we consider

an ER random network with n nodes as a null model, the network is

homogeneous and there expects no important nodes to communities.

So the index of each node in the null model would be 1=n. Thus 1=n
could be a criterion to evaluate the significance of the nodes. If index

I of a node is large than 1=n we consider it as important nodes.

Using this metric I , we can quantify the node importance to the

community structure. If the node is important to the community

structure, when we remove it from the network, the relative

changes of the c largest eigenvalues are large; otherwise, the

changes are small. Before applying I , the value of c needs to be

determined. The determination of the number of communities is

important in community analysis and still open for researchers.

Generally speaking, every algorithm for detecting communities

should have a method to give the best number of the partition. So

there are already some suggestions to determine the number of

communities [9]. Using the spectrum of the graph is also an easy

way to detect the optimal number of the communities [27,28]. If c
is given, our method can characterize the node importance to

communities without knowing the exact partition of the network.

Distinguish Two Kinds of Important Nodes
As mentioned above, there are two kinds of nodes that are

important to communities. One is the ‘‘community core’’, and the

other is the ‘‘bridge’’ between communities. Each will affect

communities deeply upon its removal. When we remove the

‘‘community core’’, the community structure in the network will

become fuzzy, while the community structure will become clear

when we remove the ‘‘bridge’’. See Fig. 1 for an example. Vertices

1 and 8 are the ‘‘community cores’’, and they organize their

respective communities. Meanwhile, node 15 is the ‘‘bridge’’

between the two communities. The ‘‘community core’’ is the

leader in the community, and it can organize the function of each

community. In contrast, the ‘‘bridge’’ connects the modules and

can enhance the integration of the whole network. It is believed

that a combination of both segregation and integration, such as in

neural systems, is crucial [26]. It is clear that effectively

disconnected and fully non-synchronous regions cannot allow

collective or integrative action of the elements. Similarly, a fully

synchronized regime does not allow separated or segregated

performance of the elements. Therefore, both situations are

biologically unrealistic, as can be seen from the existence of related

conditions, such as epileptic seizures (collective phenomena) and

Parkinson’s disease (segregated phenomena) [29]. For this reason,

both the ‘‘community core’’ and the ‘‘bridge’’ are important to

communities, but they play different roles. The metric I we

proposed before can determine the nodes that are important to

communities, but now a method to distinguish these two kinds of

important nodes is needed.

In agreement with earlier findings [21,23–25], we assumed that

bridge nodes should have more inter-modular positions than

community cores. The existence of bridge nodes often leads to some

inter-modular edges. Given a graph, the simplest and most direct way

to construct a partition of the graph is to solve the mincut problem

(minimize the number of edges between communities R) [30]. In

practice, however, this method often does not lead to satisfactory

partitions. The problem is that, in many cases, the solution of mincut

simply separates one individual vertex from the rest of the graph. Of

course, this is not what we want to achieve in clustering, as clusters

should be reasonably large groups of points. Due to this shortcoming

in the mincut problem, one common objective function to encode the

desired information is RatioCut [31]:

RatioCut(C1, � � �Cc) ¼:
Xc

i~1

R(Ci, �CCi)

jCij
, ð8Þ

where jCij is the size of community Ci. If the sizes of the communities

are almost the same, the RatioCut problem reduces to the mincut

problem.

The Condition of c~2. If the network is divided into only

two communities (c~2), we define an index vector s with N

elements:

si~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�CCj=jCj

p
if vertex i[C,

{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jCj=j�CCj

p
if vertex i[�CC:

8><
>: ð9Þ

Figure 1. Sketch of a network composed of 15 nodes.The diameter of one vertex is proportional to the centrality metric I . Moreover, the color
of one vertex is related to the index w-score. Red vertices behave like ‘‘overlapping’’ nodes or ‘‘bridges’’ between communities, and yellow vertices
often lie inside their own communities.
doi:10.1371/journal.pone.0027418.g001
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Then the RatioCut function is obtained as follows [28]:

RatioCut(C, �CC)~
1

jV j s
T Ls, ð10Þ

where jV j is the number of vertices in the network and L is the

graph Laplacian. L is defined as Lij~{Aij for i=j and Lii~ki,

where ki is the degree of node i. We also have two constraints on s:Xn

i~1

si~0 and
Xn

i~1

s2
i ~n. Here the partition problem is equal to

the problem

min sT Ls; subject to
Xn

i~1

si~0,
Xn

i~1

s2
i ~n: ð11Þ

If the components of the vector s are allowed to take arbitrary

values, it can be seen immediately that the solution of this problem

is given by the vector s that is the eigenvector corresponding to the

second-smallest eigenvalue of L, denoted by u2. So we can

approximate a minimizer of RatioCut by the second eigenvector

of L. Unfortunately, the components of s are only allowed to take

two particular values.

Thus, the simplest solution is achieved by assigning vertices to

one of the groups according to the sign of the eigenvector u2. In

other words, we assign vertices as follows: if ui
2w0, we assign

vertex i to community C; otherwise, we assign it to �CC. Assignation

priority begins with the most positive and the most negative; the

node with the most positive magnitude is first to be assigned to C,

then the second and so on, while the node with the most negative

magnitude is similarly the first to be assigned to �CC. If a node’s

corresponding element is close to zero, it may have nearly equal

membership in both communities, and we can assign it to both

communities. In conclusion, if the network is divided into only two

communities, we can use this method to characterize which are

the ‘‘community cores’’ and which are the ‘‘bridge’’ between

communities. If node i is a ‘‘community core’’, jui
2j is relatively

large; otherwise, jui
2j is near zero.

The Condition of cw2. Consider the division of a network

into c nonoverlapping communities, where c is the number of

communities. We define an n|c-index matrix S with one column

for each community, S~(s1js2j � � � jsc), by

si,j~
1=
ffiffiffiffiffiffi
jCj j
p

if vertex i[Cj ,

0 otherwise:

�
ð12Þ

Following the previous section, we obtain

RatioCut~Tr(ST LS), ð13Þ

where Tr is the trace of a matrix and ST is the transpose matrix of

S. L is a semi-positive and symmetric matrix. We can write

L~UDUT , where U is the eigenvector of L, U~(u1ju2j � � � jun)
and D is the diagonal matrix of eigenvalues Dii~bi. We therefore

obtain

RatioCut~
Xn

j~1

Xc

k~1

bj(u
T
j sk)2: ð14Þ

It can also be written as

RatioCut~
Xc

k~1

Xn

j~1

bj ½
Xn

i~1

UijSik�2: ð15Þ

Now we define the vertex vector of i as ri, and let

½ri�j~Uij : ð16Þ

If the network has almost equal-sized communities, then equation

(15) can be written as

RatioCut&

Pc
k~1

Pn
j~1

bj ½
P

i[Gk

½ri�j �
2

jCj , ð17Þ

where Gk is the set of vertices belonging to community k and jCj is
the community size.

Minimizing the RatioCut can be equated with the task of

choosing the nonnegative quantities so as to place as much of the

weight as possible in the terms corresponding to the low

eigenvalues and as little as possible in the terms corresponding

to the high eigenvalues. This equates to the following maximiza-

tion problem:

Max
Xc

k~1

Xp

j~1

bj ½
X
i[Gk

½ri�j �
2
, ð18Þ

where p is a parameter. We could choose p~c if the community

structure was clear. To this end, we propose an easy way to

distinguish two kinds of important nodes using the theory of the

graph Laplacian. If the community structure is quite clear, we

focus on the vertex vector magnitude jrij in the first p terms, denoted by

the b:

bi~
Xp

j~1

½ri�2j : ð19Þ

If the index b of a given vertex is nearly zero, it indicates that

the presence of that node results in a large RatioCut. Thus it is

considered as a ‘‘bridge’’ node. Moreover, it also need to state the

criterion of the index b. The same as Pk in Eq. (7), for a network

with n nodes and c communities, it indicates that
Xn

k~1

bk~c. We

can also define the new index as wk~bk=c and then
Pn

k~1

wk~1.

Then we consider an ER random network with n nodes as a null

model, the network is homogeneous and there expects no ‘‘bridge’’

nodes to communities. So the index of each node in the null model

would be 1=n. Thus 1=n could also be a criterion to evaluate the

‘‘bridgeness’’ of the nodes. If the w-score of a given vertex is

smaller than 1=n, we believe that this vertex has nearly equal

membership in more than one community, and it is likely to be the

‘‘bridge’’ of these communities. This discrimination process

equates to the ‘‘fuzzy’’ division of the network into communities.

In many cases, this type of fuzzy division could result in a more

accurate picture of real-world networks.

Our method requires less computational cost than other

methods. Since most of the real-world network is sparse,

combining the Lanczos and QL algorithms, we expect to be able

to find all eigenvalues and eigenvectors of a sparse symmetric
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matrix in time O(mn), where m and n is the number of edges and

nodes, respectively [32]. On the other hand, the method proposed

in Ref. [8] is slower than ours since the modularity matrix is not

sparse. So from this point of view, our method has the advantage

compared with the method proposed in Ref. [8]. On the other

hand, the method proposed by Ref. [21] has runtime complexity

O(n(nzm)) and O(m(nzm)).

Results

Now we test the validity of our indices I and w-score introduced

before in various artificial networks and real-world networks.

Artificial Networks
First, we consider a sketch composed of 15 nodes (see Fig. 1)

formed by two communities. It is intuitive that vertices 1, 8 and 15

are important to the community structure in this sketch. Vertices 1

and 8 are the so-called ‘‘community cores’’, and they organize

both the communities. Vertex 15 is the ‘‘bridge’’ between

communities, and it connects these two communities. As we

discussed before, removing vertex 1 or 8 will make the community

structure fuzzy, and removing vertex 15 will make it clear.

Here we use the index H proposed by Hu et al.[14] to measure

the significance of communities:

H~
n

�kk
Pn

j~cz1

1

jb{bj j

, ð20Þ

where b is the eigenvalue of the graph Laplacian, b is the average

value of b2 through bc, �kk is the average degree of the network and

n is the number of vertices in the network. In networks with strong

communities (many links are within communities with very sparse

connections outside), H is always large. Here we focus on the

change of H due to the removal of vertices, denoted by DH . We

also use the centrality metric proposed by Newman [8], which we

denote here by M. The results are shown in Tab. 1. Through DH,

it is implied that vertices 1 and 8 are more important than other

vertices because the magnitude of DH is relatively larger than

others. Moreover, their removal makes the communities fuzzy,

while vertex 15 acts like a ‘‘bridge’’ between the communities, and

its removal makes the communities clear. We can see that our

centrality metric performs quite well; it can identify not only the

‘‘community cores’’, but also the ‘‘bridge’’ between communities.

M can also identify the ‘‘community cores’’, but it has some

problems. One issue is that its values tend to span a rather small

dynamic range from largest to smallest. Moreover, in some cases

(such as this sketch), M cannot recognize important vertices

among communities. In calculating the index H , we need to go

through every vertex in the network, incurring significant

computational cost. In contrast, our method provides a more

efficient way, requiring less computational cost, and yields the

correct answer.

Here we use the classical GN benchmark presented by

Girvens and Newman to test the measurements [12]. Each

network has N~128 nodes that are divided into four communities

(c = 4) with 32 nodes each. Edges between two nodes are

introduced with different probabilities, which depend on whether

the two nodes belong to the same community or not. Each node

has vkinw links on average with its fellows in the same

community and vkoutw links with the other communities, and

we impose vkinwzvkoutw~16. The communities become

fuzzier and thus more difficult to identify as kout increases. Because

the GN benchmark is a homogenous network, there should not be

any nodes that are important to the community structure. To

check whether our conjecture is correct or not, we let vkinw~12
so that the community structure is quite clear and average the

result for the GN benchmark over 100 configurations of networks.

From the result, all the nodes’ index I lie in the interval

½0:007,0:008�. The mean value of I is 0.0078, and the standard

deviation is 0.0008. It can be concluded that, in the GN

benchmark, there are no nodes that are important to the

community structure.

We may also test the method on the more challenging LFR
benchmark presented by Lancichinetti et al.[33]. In the LFR

benchmark, the degree distribution obeys a power-law distribution

p(k)!k{a, and the sizes of the communities are also taken from a

power-law distribution with an exponent c. Moreover, each node

shares a fraction 1{m of its links with other nodes of its own

community and a fraction m with others in the rest of the network.

The community structure can be adjusted by the mixing

parameter m. Without loss of generality, we let

a~2:5,c~1:0,m~0:25 and the size of the network N~1000.

Our numerical results in the LFR benchmark are shown in Fig. 2.

In this case, there is no ‘‘bridge’’ between communities because

m~0:25. We may also calculate the w-score, of which the mean

value is 0.001 and the standard deviation is 2:5|10{4. which

indicates that there is no obvious ‘‘bridge’’ nodes in LFR

benchmark. Moreover, the centrality metric is positively correlated

with node degree (r2~0:907), but some vertices have quite high

centrality while having relatively low degree, and thus the

correlation index is not very high. Moreover, we have varied the

Table 1. Centrality metrics of the example sketched in Fig. 1.

Vertex
Label I M DH w-score

1 0.16 0.758 -0.145 0.0623

8 0.16 0.758 -0.145 0.0623

15 0.086 0.69 0.116 0.0333

2,7,9,14 0.045 0.704 0.04 0.0529

3,6,10,13 0.05 0.7535 -0.021 0.0739

4,5,11,12 0.052 0.7327 -0.054 0.0837

doi:10.1371/journal.pone.0027418.t001

Figure 2. The distribution of index I and the correlation
between I and node degree k in LFR benchmark.(a) The Zipf plot
of the nodes’ centrality to communities. The dash line indicates the
threshold 1=n. (b) The centrality metric we propose is correlated with
node degree. The parameters in the LFR benchmark are as follows:
a~2:5,c~1:0,m~0:25 and the size of the network N~1000.
doi:10.1371/journal.pone.0027418.g002
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parameter m in the LFR benchmark and given the changes of

indices with the change of m. In the related calculations, we used

the predetermined number of communities as the c in the metrics.

Because if mw0:5 the whole network becomes fuzzy and how to

determine the community number c is a tough problem. We

consider the largest degree nodes in both the biggest and the

smallest communities and the results are obtained by averaging

over 20 independent realizations. From the result in Fig. 3, it is

implied that with the network become fuzzy, the index I of the

largest degree nodes in both the biggest and the smallest

communities tend to become bigger while the index w-score

becomes smaller.

Real-world Networks
We apply our method to some real-world networks, such as the

Zachary club network [34], the word association network [35], the

scientific collaboration network [36], and the C. elegans neural

network [37].

First, we consider a famous example of a social network, the

Zachary’s karate club network. This network represents the

pattern of friendships among members of a karate club at a North

American university. It contains 34 vertices, and the links between

vertices are the friendships between people. The nodes labeled as 1

and 34 correspond to the club instructor and the administrator,

respectively. They had a conflict which resulted in the breakup of

the club. Most other nodes have a relationship with node 1, node

34, or both. In this network, c~2. The numerical results are

shown in Fig. 4 and Fig. 5. In Fig. 4(a), we can see that nodes 1

and 34 are the most important nodes in the communities. Our

method to distinguish important nodes are shown in Fig. 4(b).

Node 3 is considered as a ‘‘bridge’’ node between communities

and displays a smaller value of w-score. Moreover, we compared

the ‘‘bridge’’ nodes with overlapping nodes found by the method

suggested in Ref. [38]. We found that the two results are usually

consistent with each other. That means the bridges are usually

overlapping nodes, such as node 3. However, there are some

differences. For instance, our method considers vertex 14 as a

bridge node while in Ref. [38] the authors doesn’t consider it as an

overlapping node. However, vertex 14 has the degree 5 and it links

both communities so considering it as a bridge node is also

acceptable. From what we discussed before, bridge nodes are more

likely to be overlapping nodes. Furthermore, we compare our

method with Newman’s. This result is also shown in Fig. 4(a), and

the two metrics are normalized by

xnor~
x{vxw

sx

, ð21Þ

where vxw is the average value of each index and sx is the

standard deviation of each index. It is implied that these two

methods have some differences. In our method, nodes 1 and 34

are absolutely more important than other nodes, while in

Newman’s method, nodes 2 and 33 are also quite important,

even more than node 1. In this network, the modularity function Q
reaches its maximum value when the network is divided into 4

communities; this fact may be the cause of the differences between

the results of these two methods. The visualization of the karate

network with our two measurements is sketched in Fig. 5. The

diameter of each vertex is proportional to the centrality metric I . A

large diameter indicates an important vertex. Additionally, the

color of each vertex is related to the index w-score. Red vertices

behave like ‘‘overlapping’’ nodes or ‘‘bridges’’ between commu-

nities, and yellow vertices often lie inside their own communities.

Second, we analyze the word association network starting

from the word ‘‘Bright’’. This network was built on the University

of South Florida Free Association Norms [35]. An edge between

words A and B indicates that some people associate the word B to

the word A. The graph displays four communities, corresponding

to the categories Intelligence, Astronomy, Light, Colors. The word Bright

is related to all of them by construction. We applied our method to

this network, and the results are shown in Fig. 6. From the results,

we can observe that our method considers Bright, Sun, Smart, Moon

as important nodes to the community structure. It may be inferred

from the result that Moon and Smart are the ‘‘community cores’’,

while Bright and Sun are the ‘‘bridges’’ between communities.

Indeed, our metric yields the correct answer. For example, Smart is

the core of the community Intelligence, while Moon is the core of the

community Astronomy. Meanwhile, the w-score of node Bright is

Figure 3. The indices I and w-score as a function of the
parameter m in LFR benchmark. The parameters in the LFR
benchmark are as follows: a~2:5,c~1:0 and the size of the network
N~1000. The results are obtained by averaging over 20 independent
realizations.
doi:10.1371/journal.pone.0027418.g003

Figure 4. The usage of our method in Zachary’s karate club
network.It is shown that our method works quite well. Nodes 1 and 34
are the instructor and the administrator, respectively. In Fig. 4(a), we can
see that these two nodes are more important to the community
structure than other nodes. We also compare our method with
Newman’s and find that the two methods exhibit some differences.
In Fig. 4(b), it is implied that Node 3 is likely to be a ‘‘bridge’’ node since
it displays a rather low w-score.
doi:10.1371/journal.pone.0027418.g004
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0.006, which is close to zero. We would therefore conclude that it

is a ‘‘bridge’’ between communities, and Bright is in fact the

‘‘bridge’’ among these four communities, as the network was

originally derived from it. Moreover, we have investigated the

effect of node removal on the indices Q and H and the results

show that the removal of ‘‘community core’’ makes the network

fuzzy while the community structure becomes clear when the

‘‘bridge’’ is removed.

We may also apply our method to social networks, such as the

scientist collaboration network [36], and neural networks,

such as the C. elegans neural network [37]. We analyzed the

largest connected component of each network. The scientist

collaboration network represents scientists whose research centers

on the properties of networks of one kind or another. There are

379 vertices, representing scientists who are divided into 12

communities. Edges are placed between scientists who have

published at least one paper together. The neural network of C.

elegans contains 302 neurons and 2,359 links. This network is

divided into 3 communities, with each node representing a neuron

and each link representing a synaptic connection between

neurons. Here we consider the C. elegans neural network to be

undirected. The results are shown in Fig. 7.

In the scientist collaboration network, our centrality metric I

identifies ‘‘group leaders’’, such as M. Newman, S. Boccaletti, and

A. Barabasi. Their w-scores are not very large because they often

have some collaboration between scientists outside their own

communities. We can also find so-called ‘‘community cores’’ based

on our method, such as R. Sole, and ‘‘bridge’’ vertices among

Figure 5. Sketch of the Zachary’s karate club network, which is composed of 34 vertices. Vertex diameters indicate the community
centrality I . The color of each vertex is proportional to the index w-score.
doi:10.1371/journal.pone.0027418.g005

Figure 6. Index I and w-score for the nodes of the word
association network. The node importance versus vertex rank is
shown in (a). In (b), we distinguish ‘‘community cores’’ and ‘‘bridges’’
using the index w-score.
doi:10.1371/journal.pone.0027418.g006

Figure 7. The usage of our method in scientist collaboration
network and C. elegans neural network. The centrality metric I
and w-score for the scientist collaboration network (a,b). The centrality
metric I and w-score are also calculated in the C. elegans neural
network (c,d).
doi:10.1371/journal.pone.0027418.g007
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some communities, such as B. Kahng. As we know, the C. elegans

neural networks are composed of sensory neurons, interneurons

and motor neurons. The neurons with high centrality metrics often

have the most important functions, and all of them are

interneurons, such as AVA, AVB, AVD, and AVE. These

classes, which synapse onto motor neurons in the ventral cord, are

among the most prominent neurons in the whole nervous system.

They generally have larger-diameter processes than other neurons

and have many synaptic connections [37,39]. As a result, they

have larger I than other vertices, while the typical w-score in these

classes is quite small. In the C. elegans neural network, most of the

important nodes are likely to be ‘‘bridge’’ nodes since the

connection between communities is more necessary and frequent

due to some special functions.

Applications in Weighted networks
Our method can be generalized to weighted networks because

the adjacency matrix in an undirected weighted network is real

and symmetric. Thus, in weighted networks, the importance of a

node and its role in communities are also characterized by its I

and w-score. Let us first consider an artificial weighted network.

We use similarity weight in this weighted network. A higher weight

means a closer relationship between vertices. At first, 10 nodes

form a complete network and are divided into two communities

with 5 nodes each. We assign vertices 4 and 9 as the core of each

community, each of which has links with weight 2 connecting to

vertices within its community and weight 0.2 connecting to outside

vertices. All other intra-connections have weight 1, and all other

inter-connections have weight 0.2. Then we introduce vertex 11 as

the bridge between the two communities. It connects to all 10

nodes with weight 1. The index I and w-score for each node are

given in Tab. 2. The results indicate that vertices 4, 9 and 11 are

more important than the other vertices, while vertex 11 is a

‘‘bridge’’ between these two communities. Our method works

quite well in this small artificial weighted network.

As an example of a real-world weighted network, we investigate

the collaboration network among scientists working at the Santa

Fe Institute (the SFI network). Here we consider it as a weighted,

undirected network. Collaboration events between the scientists

can be repeated again and again, and a higher frequency of

collaboration usually indicates a closer relationship. Furthermore,

weights can be assigned to the scientists’ collaboration quite

naturally: an article with n authors corresponds to a collaboration

act of weight
1

n{1
between every pair of its authors [40]. The

results for the SFI collaboration network are sketched in Fig. 8.

Vertex diameters indicate the community centrality I . The color

of each vertex is proportional to the index w-score. Red vertices

behave like ‘‘overlapping’’ nodes or ‘‘bridges’’ between commu-

nities, and yellow vertices often lie inside their own communities.

We do not know the specific names; however, we observe that the

positions of the large vertices are just like the ‘‘group leaders’’.

Vertices 2, 12 and 24 are so-called ‘‘community cores’’ in

communities because their w-scores are quite large. In fact, they

are the group leaders in the fields of Mathematical Ecology,

Statistical Physics and Structure of RNA, respectively. However,

vertices 1, 9 and 11 are the ‘‘bridges’’ between communities, and

they have relative small w-scores. Interestingly, the result in the

weighted network is different from the one in the corresponding

unweighted network. It can be concluded that the edge weight

may affect the result. For example, vertex 9 and vertex 11

collaborate quite often; this makes both of them quite important in

a weighted network, while in an unweighted network, neither of

them is very important to the community structure.

Table 2. Centrality metrics I and w-score in a complete
weighted network.

Vertex Label I w-score

4 0.15 0.0955

9 0.15 0.0955

11 0.067 0.0455

others 0.079 0.0955

doi:10.1371/journal.pone.0027418.t002

Figure 8. Sketch of the SFI scientific collaboration network as a weighted, undirected network. It has 118 scientists. Vertex diameters
indicate the community centrality I . The color of each vertex is proportional to the index w-score.
doi:10.1371/journal.pone.0027418.g008
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Discussion

In this paper, we characterize the node importance to

community structure using the spectrum of the graph. The

eigenspectrum of the adjacency matrix gives a clear indication of

the number of ‘‘dominant’’ communities in a network [27]. We

give a centrality metric based on the spectrum of the adjacency

matrix of the graph, and it can identify the nodes important to the

community structure in many cases. In addition, we propose an

index to distinguish the two kinds of important nodes that we term

‘‘community cores’’ and ‘‘bridges’’ using the spectrum of the graph

Laplacian. We demonstrate a variety of applications of our

method to both artificial and real-world networks representing

social and neural networks. Our method works well in many cases

without knowing the exact community structure, although the

number of communities should be known.

If the network have very heterogeneous cluster sizes the

limitation is likely to occur. There are two results for the limitation

that are both related with the properties of the adjacency matrix.

One is that we cannot find the real community structure when

communities are very different in size. In Ref. [27], the authors

have proved that if N2
smallvNlarge where N is the size of the

communities, the method cannot detect the small communities.

The other problem is that when communities are very different in

size, even we know the real communities by other methods, the

index I may not show the real importance of the node in small

communities because the index I is also based on the spectrum of

the adjacency matrix. Considering a network composed with two

isolated communities. The size of the smaller one is always 10 and

we define d~Nlarge=Nsmall . Let each community be an ER

random network with the probability of connecting p~0:9. The

numerical result in Fig. 9 shows the similar limitation of the index

I . It cannot identify the important nodes in the small communities

when the communities are in very different size.

Our method can also be used in weighted networks. From our

result in the SFI network, it can be inferred that edge weight may

affect the result. Furthermore, it may generalize to directed

networks because the Perron-Frobenius eigenvalues are often real

and positive [41]. We have yet to treat the case of directed

networks. The identification of such key nodes is important and

could potentially be used to identify the organizer of the

community in social networks, to develop an immunization

strategy in an epidemic process, to identify key nodes in biological

networks and so on. We hope our results may be helpful to future

research.
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