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Abstract

Diabetes pathology derives from the combination of hyperglycemia and hypoinsulinemia or insulin resistance leading to
diabetic complications including diabetic neuropathy, nephropathy and retinopathy. Diabetic retinopathy is characterized
by numerous retinal defects affecting the vasculature and the neuro-retina, but the relative contributions of the loss of
retinal insulin signaling and hyperglycemia have never been directly compared. In this study we tested the hypothesis that
increased retinal insulin signaling and glycemic normalization would exert differential effects on retinal cell survival and
retinal physiology during diabetes. We have demonstrated in this study that both subconjunctival insulin administration
and systemic glycemic reduction using the sodium-glucose linked transporter inhibitor phloridzin affected the regulation of
retinal cell survival in diabetic rats. Both treatments partially restored the retinal insulin signaling without increasing plasma
insulin levels. Retinal transcriptomic and histological analysis also clearly demonstrated that local administration of insulin
and systemic glycemia normalization use different pathways to counteract the effects of diabetes on the retina. While local
insulin primarily affected inflammation-associated pathways, systemic glycemic control affected pathways involved in the
regulation of cell signaling and metabolism. These results suggest that hyperglycemia induces resistance to growth factor
action in the retina and clearly demonstrate that both restoration of glycemic control and retinal insulin signaling can act
through different pathways to both normalize diabetes-induced retinal abnormality and prevent vision loss.
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Introduction

Type 1 diabetes is characterized by multiple metabolic changes,

notably insulin deficiency and hyperglycemia. Systemic insulin

administration both restores depressed insulin signaling through

increased ligand availability, and normalizes blood glucose levels

through increased glucose uptake, storage and utilization in insulin

sensitive tissues. There has been increasing interest in dissecting

the relative contributions of hyperglycemia and hypoinsulinemia

to the pathophysiology of diabetes and diabetes complications

because current treatments for diabetes fail to normalize

metabolism or eliminate the risk of complications, and hypogly-

cemia limits the use of intensive insulin therapy [1].

A strategy to differentiate the roles of hyperglycemia and insulin

deficiency to diabetic complications is to separately restore insulin

signaling in an affected tissue without effecting glucose exposure

and to correct systemic hyperglycemia without increasing insulin

levels. Subconjunctival injection of insulin can accomplish the

former in retinal tissue, while systemic treatment with phloridzin, a

natural compound extracted from the bark of fruit trees, can

accomplich the latter. Phloridzin inhibits the sodium-linked

glucose transporters SGLT1 and SGLT2 in kidney tubular and

small intestinal epithelium [2]. Daily administration of phloridzin

in diabetic animals restores glycemic levels close to normal by

increasing renal glucose uptake and thus increased glucose

excretion, leading to decreased blood glucose levels. Administra-

tion of phloridzin to partially pancreatectomized diabetic rats

normalized plasma glucose levels without exogenous insulin

administration or raising plasma insulin concentrations [3].

Restoration of normoglycemia with phloridzin improved whole-

body insulin sensitivity [4,5] and residual pancreatic beta-cell

function in rodents [6]. Systemic phloridzin and intracerebral

insulin administration were recently used to demonstrate that

decreased local insulin signaling was the main cause of decreased

brain cholesterol biosynthesis in diabetic mice [7]. Renal function

was demonstrated to remain intact in humans with primary renal
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glycosuria in whom glucose reabsorption is totally blocked [8], and

phloridzin has been used in numerous studies without reports of

deleterious effects on animal behavior or activity, while efficiently

normalizing systemic glycemic levels in diabetic animals [7,9,10].

SGLT inhibitors are also under evaluation in multiple Phase I and

Phase III clinical trials without reports of major side-effects

(ClinicalTrials.gov) [11].

Whereas hyperglycemia is often thought to be the primary

driver of complications progression, there is reason to suspect that

impaired insulin signaling could contribute to the retinal pathology

observed in diabetic retinopathy. We and others have shown that

diabetes depresses retinal insulin signaling with decreased kinase

activities of the insulin receptor and downstream signaling proteins

including Akt1 and Akt3 [12,13,14]. Insulin receptor and Akt

signaling regulate retinal neuronal cell survival in culture [15] and

in type 2 diabetic rats [16]. Insulin-deficient diabetes increases

retinal cell death within 4 weeks after diabetes onset in rats and

increased neuronal apoptosis has been documented in post-

mortem human eyes [17,18]. Therefore, we hypothesized that

restoration of retinal insulin signaling and glycemic normalization

would exert differential effects on retinal cell survival and retinal

physiology during diabetes. Interestingly, both insulin-independent

normalization of systemic hyperglycemia and ocular delivery of

insulin without normalization of blood glucose partially reversed

diabetes-induced retinal cell death. Further analysis demonstrated

that both normalization of hyperglycemia and increased ocular

insulin signaling reversed diabetes-induced insulin receptor/Akt

signaling defects. In keeping with these observations, transcrip-

tomic analysis demonstrated that these treatments normalized

partially overlapping sets of retinal genes that were altered by

diabetes. Thus, loss of local insulin signaling and systemic

hyperglycemia have both common and separable effects on the

retina. These findings are important for understanding the

contributions of factors in the diabetic milieu that contribute to

diabetic retinopathy and may be modifiable to improve visual

outcomes in patients.

Methods

Ethics statement
All experiments were conducted in accordance with the

Association for Research in Vision and Ophthalmology Resolution

on the Care and Use of Laboratory Animals and these studies

were specifically approved by the Penn State University (IACUC

#2008-038 and 2009-095) and University of Michigan (UCUCA

#10463) animal care and use committees.

Induction of diabetes and insulin therapies
Age-matched male Sprague-Dawley rats (Charles River, MA)

were housed under a 12 h light/dark cycle with free access to a

standard rat chow and water. Diabetes was induced by

intraperitoneal injection of streptozotocin (STZ) (65 mg/kg;

Sigma, St. Louis, MO) dissolved in sodium citrate buffer,

pH 4.5, and control rats received equivalent volumes of buffer

alone as described previously [18]. STZ-injected rats were

considered diabetic when exhibiting blood glucose levels

.13.9 mmol/l (250 mg/dl) within 5 days after diabetes induction

(One-Touch meter; Lifescan, Milpitas, CA).

Acute, short-term insulin therapy consisted of a daily subcon-

junctival injection of Novolin (20 mIU) or the control vehicle (PBS

with 0.1% BSA) for the last 4 days of the studies. This dose was

chosen on the basis of preliminary studies showing activation of

the retinal insulin receptor signaling pathway without reducing

blood glucose levels (Figure 1A). The 4 and 12 weeks diabetes

duration studies were chosen because they lead to increased

neuronal cell death, microvascular leakage, astrocyte defects,

microglial cell activation, and impaired insulin receptor signaling

[18,19,20,21,22]. Insulin-independent glycemic control was

achieved by phloridzin therapy. The rats received 2 daily sub-

cutaneous injections of phloridzin (200 mg/kg of body weight) or

vehicle alone (60% 1, 2-Propanediol) during the last 3 full days of

the experiment, as well as the morning of the 4th day, 3 h prior to

euthanasia. Blood glucose and insulin levels were monitored to

determine the efficacy of the treatment while food intake and

activity were monitored to insure that the treatments were not

appreciably affecting overall wellness. Vitreous glucose was

measured at time of harvest to monitor the effect of the therapeutic

treatments on ocular glucose levels using a glucometer as

previously described by Kirwin et al. [23].

For rapid dissection of retinas, rats were anesthetized with

injection of sodium pentobarbital, 100 mg/kg i.p., and killed by

decapitation following motor reflex loss. Retinas were immediately

frozen in liquid nitrogen and stored at 280uC until analysis (see

below).

Insulin assays
Serum and retinal insulin levels were measured by 2 different

methods: the sensitive rat RIA kit (SRI-13K Milipore/Linco), and

a Rat/Mouse insulin ELISA kit (EZRMI-13K, Millipore). For

both methods serum was obtained by promptly centrifuging the

clotted blood at 2,0006g for 15 minutes at 462uC. For the RIA,

each retina was sonicated in 120 ml of assay buffer supplied in kit

with protease inhibitor (Roche), and lysates were rocked at 4uC for

15 minutes followed by centrifugation at 10,0006 g for 10 min.

The supernatant was used for the RIA as per the manufacturer’s

protocol. Protein concentrations of tissue lysates were determined

using a DC protein assay kit (Bio-Rad, Hercules, CA) and retinal

insulin levels were normalized to total retinal protein concentra-

tion. For the ELISA, each retina was sonicated in 40 ml of lysis

buffer (10 mM HEPES, 42 mM KCl, 5 mM MgCl2, 0.1 mM

EDTA, 50 mM sodium pyrophosphate, 1 mM DTT, 1 mM

PMSF, 1 mM Na3VO4, 10 mM NaF, 10 mM benzamidine, 10%

glycerol, 1% Nonidet P-40, and one protease inhibitor tablet/

10 ml) before being centrifuged for 10 min at 10,0006 g at 4uC.

The ELISA was performed as per the manufacturer’s instructions

using the protocol option A for serum, with 10 ml of serum and

10 ml of buffer, and option B for the retinal assay, using 20 ml of

lysate.

Cell death detection assays: ELISA and TUNEL
Apoptosis was measured by two complementary approaches

previously demonstrated to show corresponding results [24]. A

Cell Death Detection ELISA (Roche Diagnostics) was used

according to the manufacturer’s instructions with minor modifi-

cations. Briefly, after homogenizing the retinal tissue, samples were

incubated for 30 minutes and centrifuged at 100006g for 10 min

prior to 20 ml of the supernatant, as well as of the positive and

negative controls being transferred into the ELISA plate along

with the immunoreagent complex. Following incubation and

washes, the colorimetric solution was added and incubated until

the colorimetric reaction developed. After adding the stop

solution, the colorimetric signal was measured with a fluorescence

plate reader (SpectraMax Gemini EM; Molecular Devices) with

excitation at 405 and 490 nm. Cell death was also measured by

terminal transferase dUTP nick end labeling (TUNEL) with

horseradish peroxidase detection in whole-mount retinas as

described previously [18].

Glucose and Insulin Roles in Diabetic Retinopathy
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Kinase activity assays
Insulin receptor (IR) and insulin-like growth factor-1

(IGF-1R) IGF-1R kinase assays. Retinas were homogenized

by sonication in lysis buffer (see above) and 500 mg of tissue

lysates were immuno-precipitated using anti-IR or anti-IGF1R

antibodies (Santa Cruz), as described previously [13]. After

washing the immune complex, its specific kinase activity

was assessed using radiolabeled ATP (25 mCi/ml [32P]-ATP,

Amersham) incorporation onto receptor specific peptides as

described previously [13]. After stopping the kinase reaction by

brief centrifugation, the supernatant was spotted onto filter papers

that then underwent several washes before being analyzed for

radioactive counts on a scintillation counter.

Akt isoform-specific kinase assays. Akt isoform-specific

kinase assays were performed as previously described [25].

Briefly, supernatants (500 mg of protein) of retinal tissue

homogenates prepared as for the IR or IGF1R kinase assay

were subjected to immunoprecipitation (1 h at 4uC) with 2 mg of

anti-Akt-1 or Akt-3 primary antibody (Millipore). After washing

the immune complex, its specific kinase activity was assessed

using radiolabeled ATP incorporation onto a crosstide peptide

substrate (GRPRTSS-FAEG, 30 mM, Millipore) as described

above for the IR and IGF1R kinase assays. In all kinase assays

equivalent efficiency of the immunoprecipitation was verified by

immunoblot analysis of the immune complexes after sufficient

decay of the radioactivity.

RNA isolation, Real-time RT-PCR and Illumina Microarray
analysis

Total RNA from retinal tissues was isolated with Tri-Reagent/

BCP (Molecular Research Center, Cincinnati, OH) following

standard methods and quality and quantity was assessed using

the RNA 6000 Nano LabChip with an Agilent 2100 Expert

Bioanalyzer (Agilent, Palo Alto, CA). An equal quantity of RNA

from each sample was converted to cDNA using the SuperScript

First-Strand Synthesis System for RT-PCR (Invitrogen). Quanti-

tative PCR analysis was performed as described previously [26].

Briefly, quantitative PCR was performed using the 7900HT

Sequence Detection System (Applied Biosystems, Foster City, CA),

384-well optical plates, and Assay-On-Demand (Applied Biosys-

tems) gene specific primers and probes. ABI SDS 2.2.2 software

and the 2-DDCt analysis method were used to quantify relative

amounts of product using beta-actin as an endogenous control.

Beta-actin levels were determined to be unchanged in an absolute

quantification experiment (data not shown). For the Illumina

microarray, 750 ng of purified cRNA was prepared for hybrid-

ization of Illumina RatRef-12 Expression BeadChips according to

the manufacturer’s instructions. Briefly, Chips were incubated in a

hybridization oven for 20 h at 58uC before being disassembled,

washed and Streptavadin-Cy3 stained. Chips were dried and

subsequently scanned using a BeadArray Reader and images were

imported into GenomeStudio software v2010.1 (Illumina Inc, San

Diego, CA). After performing the quality controls, background

Figure 1. Subconjunctivally delivered insulin reaches the retina without having systemic effects. A dose-response study of the blood
glucose levels of non-diabetic control rats 30 minutes after subconjunctival administration of insulin was conducted and showed that doses over
0.0325 IU per 100 g of body weight significantly decreased blood glucose levels (A). Further analysis of lower doses of insulin showed that
administration of 20–40mIU of insulin had no systemic effect on serum glucose (B) or insulin (C) levels, while significantly increasing retinal insulin
levels (D).
doi:10.1371/journal.pone.0026498.g001

Glucose and Insulin Roles in Diabetic Retinopathy
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subtraction and intra-array normalization, GenomeStudio-export-

ed files were imported into GeneSpring GX11.0 software (Agilent

Technologies). The array data are MIAME compliant and have

been deposited in the ArrayExpress MIAME compliant database

(accession # E-MTAB-771).

Immunohistochemistry
Immunohistochemistry was performed as previously described

[22]. Briefly, eyecups were embedded in OCT and snap-frozen in

dry ice, cooled with 2-methylbutane, directly after enucleation.

Sections (10 mm) from each experimental group were mounted on

the same slide. The slides were blocked with donkey serum before

incubations at 4uC overnight with the primary antibodies against

GFAP (Roche) and Cyanine2 conjugated secondary antibodies

were used (Jackson Immunoresearch) and after mounting in Gel/

Mount (Biomeda, Foster City, CA) the resulting immunolabeling

was examined and photographed using a confocal microscope

(Leica, Lasertechnik GmbH). Controls were prepared by omitting

the primary antibody during the incubation; no specific staining

could be detected in these controls.

Pathway Analysis
Microarray data were analyzed using the MetaCoreTM (Genego

Inc.) software suite for pathway analysis to identify the most

significant pathways affected by diabetes and reversed by the

independent treatments.

Statistical Analysis
ANOVA models with heterogeneous variances, adjusted for the

replication of the experiment, were fit to the data to assess

differences between control, diabetic and treated animals. The

means 6 SEM and statistically significant differences are reported.

Analyses were performed using non-repeated measures ANOVA

followed by the SNK test for multiple comparisons or t-test for a

single comparison.

Results

Subconjunctival administration of low dose insulin
reaches the retina without systemic effects

Systemic insulin treatment allows for relatively good control of

diabetes through mechanisms that can be attributed to normal-

ization of the glycemic levels and activation of insulin signaling

pathways in various tissues. We previously demonstrated that

intravitreal injection of insulin restores retinal IR activity [14]. To

differentiate between the two effects, we first performed a dose-

response study of subconjunctivally administered insulin followed

by analysis of glucose and insulin blood levels. Preliminary analysis

showed that blood glucose levels of non-diabetic control rats were

similarly decreased by subconjunctival insulin doses greater than

50 mIU/100 g of rat body weight (Figure 1A). We then further

analyzed the effects of doses below this threshold on blood insulin

and glucose levels as well as retinal insulin concentration.

Subconjunctival injections of 50 mIU insulin lowered blood

glucose level at 30 min after injection, whereas lower doses up to

40 mIU had no significant impact on blood glucose levels at 30

and 60 min after injection (Figure 1B). While the 80 mIU dose

raised serum insulin levels approximately 3 fold, the 20 mIU had

no effect (Figure 1C). In contrast, subconjunctival injection of the

same 20 mIU dose, significantly increased insulin content within

retinal tissue (Figure 1D). Furthermore, insulin administered by

subconjunctival injection was detected in the retinas as soon as

5 minutes after injection and was detectable for over an hour after

injection (data not shown). Therefore, the doses of subconjunctival

insulin used for subsequent studies are specific to the eye and do

not alter systemic metabolism.

Subconjunctival insulin administration specifically
increases retinal insulin signaling in diabetic rats while
phloridzin normalizes hyperglycemia in an insulin-
independent manner

The systemic effects of both local insulin and phloridzin

treatments were analyzed by monitoring glucose and insulin

serum levels. Daily subconjunctival administration of 20 mIU of

insulin for 4 consecutive days to rats with 4 weeks of STZ-induced

diabetes did not reduce the hyperglycemia (Figure 2A). Similarly,

no differences in serum insulin levels were detected between the

treated and untreated diabetic rats, demonstrating that subcon-

junctival administration of low doses of insulin had no effect on the

systemic hypoinsulinemic condition (Figure 2B). Phloridzin

administration significantly reduced mean serum glucose levels

of diabetic rats from 531 mg/dL and maintained them at normal

levels (206 mg/dL) for at least 6 h post-injection at day 2

(Figure 2A). Phloridzin had no effect on serum insulin levels

confirming that the effect of phloridzin on serum glucose levels is

independent of plasma insulin (Figure 2B). Specificity of the

treatments was also observed when rats with longer duration of

diabetes (12 weeks) were treated (Figure 2C and 2D). Ocular

effects of the treatments were also assessed by monitoring vitreous

glucose and retinal insulin levels at the end of the treatment. In

correlation with the systemic results, the mean vitreous glucose

concentrations were reduced from means of 448 to 254 mg/dL by

phloridzin treatment, but were unaffected by local insulin

administration (Figure 2E and 2F), and retinal insulin levels did

not increase in phloridzin treated rats (Figure 2G). In contrast,

subconjunctival injection of insulin in diabetic rats lead to

significantly increased retinal insulin levels (Figure 2G). Neither

local insulin administration nor systemic phloridzin treatment

significantly affected the body weights or food consumption of rats

during the 4 days of treatment (Figure 2H). Also, while retinal

insulin levels after subconjunctival injections are supra-physiologic,

they did not cause any increase in retinal cell death (Figure 3).

Together, these data demonstrate that the ocular metabolic

parameters were affected in specific manners by these pharmaco-

logical manipulations.

Increased ocular insulin signaling and systemic blood
glucose reduction protect retinal cells from diabetes-
induced cell death

We have previously demonstrated that diabetes significantly

increases retinal cell death within 4 weeks after the onset of

hyperglycemia, systemic insulin administration restores depressed

insulin receptor signaling and cell death, and intravitreal insulin

injection restores retinal insulin receptor activity [14]. In the

present study, subconjunctival administration of low-dose insulin

partially prevented this increased cell death as demonstrated by

both reduction in the number of TUNEL-positive retinal cells and

DNA fragmentation in the treated rats when compared to the

untreated diabetic animals (Figure 3A and 3B). Both subconjunc-

tival administration of low-dose insulin and systemic administra-

tion of phloridzin reversed the increased retinal cell death

observed in 4 weeks diabetic rats (Figure 3B). Interestingly,

applications of both treatments reversed diabetes-induced retinal

cell death to similar degrees (over 60%) after longer duration of

diabetes as demonstrated by the effect on both the number of

TUNEL positive cells (Figure 3C) and DNA fragmentation

(Figure 3D) in retina from 12 weeks diabetic animals. Since the

Glucose and Insulin Roles in Diabetic Retinopathy
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Figure 2. Distinct physiological effects of subconjunctivally delivered insulin and systemic phloridzin treatment. Two or four days of
local insulin administration (20 mIU) had no effect on serum glucose (A, C) or insulin (B, D) levels of 4 (A–B) or 12 (C–D) weeks diabetic animals, while
phloridzin administration rapidly normalized serum glucose levels at both 4 (A) and 12 (C) weeks of diabetes without affecting serum insulin levels
(B, D). Ocular insulin administration had no effect on vitreous glucose levels (E, F) while greatly increasing retinal insulin levels (G) whereas phloridzin
reduced high vitreous glucose levels (E, F) without affecting retinal insulin levels (G). Rat body weights were unaffected irrespective of the treatments
as demonstrated in 12 wks diabetic STZ-rats (H). n$8/group; *significantly different from control the same day (P,0.05); #significantly different from
untreated diabetic the same day (P,0.05).
doi:10.1371/journal.pone.0026498.g002
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two treatments have different effects on hyperglycemia and insulin

levels, they were then used in combination to test for a potential

additive effect. Surprisingly, no additive effect was observed,

suggesting that both treatments use similar or converging parallel

intracellular signaling pathways that are individually sufficient, at

least for short-term cell survival.

Subconjunctival insulin administration and phloridzin
treatment both partially restore diabetic-induced retinal
insulin signaling defects

Next, we examined the mechanisms by which subconjunctival

injection of insulin and systemic phloridzin treatment prevented

the death of retinal cells. First, we demonstrated that the increased

retinal insulin levels after subconjunctival injection of insulin in

control rats correlated with increased Akt phosphorylation when

compared to basal levels, indicating the activation of the insulin

signaling pathway and confirming the biological activity of the

exogenous insulin reaching the retina (Figure 4A). We then studied

the effects of both treatments on the insulin signaling pathway and

its disruption during diabetes. Reduction of the insulin receptor

activity induced by diabetes was partially reversed by both ocular

insulin administration and phloridzin treatment (Figure 4B). As

previously reported, neither diabetes nor any of the treatments had

any impact on retinal IGF-1 receptor activity (Figure 4C). Since

Akt isoforms are key downstream kinases of the insulin signaling

cascade and crucial elements in retinal cell survival [17], we also

analyzed their activity in response to diabetes and both treatments.

As previously demonstrated, Akt1 and Akt3 activities in the retina

were reduced by diabetes (Figure 4D and 4F). Local insulin

treatment totally restored Akt1 activity (Figure 4D), while

phloridzin treatment partially restored both Akt1 and Akt3

activities (Figure 4E and 4F). This finding suggests that both local

insulin administration and blood glucose normalization can restore

retinal insulin receptor signaling, although direct activation by the

ligand is more effective.

Increased local insulin and systemic normalization of
glycemia protect retinal neurons through different
pathways

In addition to targeted studies of the insulin receptor signaling

pathway, we also employed a discovery approach to examine the

genomic effects of insulin administration and glucose reduction. A

microarray analysis of the retinal transcriptome changes of

diabetic rats and diabetic rats that received local insulin or

Figure 3. Ocular insulin administration and serum glucose normalization can both block diabetes induced retinal cell death. Retinal
cell death was measured in diabetic rats (4 and 12 weeks duration) following local or systemic insulin administration and/or phloridzin treatment for 4
days using TUNEL staining or DNA fragmentation ELISA Assay. The number of TUNEL positive cells in 4 weeks diabetic rat retinas was significantly
reduced by local insulin administration (A) while cell death rate analysis using a DNA fragmentation ELISA assay showed a significant reduction by
either local insulin administration or phloridzin treatment without additive effect when the treatments were combined (B). Similarly, the number of
TUNEL positive cells in 12 weeks diabetic rat retinas was significantly reduced by phloridzin and systemic insulin treatment (C) while cell death rate
measured using the DNA fragmentation assay was also reduced by phloridzin and local insulin administration (D). n$6/group; *significantly different
from control (P,0.05); #significantly different from diabetic (P,0.05).
doi:10.1371/journal.pone.0026498.g003

Glucose and Insulin Roles in Diabetic Retinopathy
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phloridzin treatments revealed 983 genes were significantly

affected greater than 1.2 fold (statistically significant with

p,0.05) by diabetes (Table S1). Of those, close to 700 were at

least partially (30% or more when compared to untreated diabetic)

reversed by at least 1 of the 2 treatments. More than 600 of these

genes were reversed by subconjunctival insulin administration,

while only 298 were reversed by phloridzin treatment. Interest-

ingly over 200 of them were reversed by both treatment, but only a

third of them were reversed to a similar extent. Gene pathway

analysis gives critical information on the main biological aspects

that are affected by the pathological and treatment conditions, and

is critical to understanding of the pathophysiology of other diabetic

complications [27]. Interestingly, while over half of the genes

reversed by phloridzin were also reversed by local insulin

administration, pathway analysis using the MetaCore knowledge

database and software (Genego Inc.) clearly showed that local

insulin signaling primarily affects inflammatory, cytoskeleton

regulatory pathways and angiogenesis related pathways (Table 1),

while the effects of phloridzin treatment are mainly on growth

factor signaling pathways without decreasing the inflammatory

component (Table 2). This analysis strongly demonstrated that

local insulin signaling but not hyperglycemia was crucial in

controlling several aspects of the immune response to diabetes,

including the classical complement pathway, cytokine-induced

Figure 4. Ocular insulin administration and phloridzin partially restore local insulin signaling. Representative immunoblots and
quantification of Akt phosphorylation in retinas of non-diabetic rats receiving subconjunctival insulin. After 30 min, retinas were analyzed for Akt
phosphorylation. Retinal Akt serine 473 phosphorylation was significantly elevated in eyes receiving insulin (*p,0.05; A). The effect of local insulin
and phloridzin treatment on the insulin signaling pathway was measured using kinase activity assays for IR (B), IGF1R (C), Akt1 (D–E) and Akt3 (F).
Both local insulin and phloridzin treatment restored the diabetic induced IR activity after 12 weeks of diabetes (B) without any effect on the IGF1R
activity (C). Activity of the downstream kinase Akt1 was also restored by both local insulin and phloridzin treatment (D–E) while Akt3 activity was
restored by phloridzin treatment. n$8/group; *significantly different from control (P,0.05); #significantly different from diabetic (P,0.05).
doi:10.1371/journal.pone.0026498.g004

Glucose and Insulin Roles in Diabetic Retinopathy
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signaling pathways and lipid metabolism in the retina. Control of

hyperglycemia was demonstrated to be more associated with

pathways involved in the regulation of cytoskeleton remodeling,

cell signaling and energy metabolism.

Complementary to the microarray analysis, the effects of both

treatments on a panel of previously developed mRNA biomarkers

of diabetic retinopathy [28] was analyzed and demonstrated that

the two treatments differentially affected these biomarkers. Local

insulin and phloridzin reversed 10 and 8 of the 15 biomarkers,

respectively, but only 5 of these were shared between the two

treatments (Figure 5). Also of note, our previous study found that

changes in13 of these 15 same mRNA biomarkers were

significantly reversed by systemic insulin treatment [28]. Remark-

ably, local insulin and phloridzin each reversed one of the 2

biomarkers not affected by systemic insulin (Figure 5E), QRT-

PCR analysis of this panel of genes also allowed for the validation

of the results of the microarray analysis as demonstrated by the

good accordance between the levels of expression detected by both

methods (Figure 5F).

Pathway analysis of the microarray data strongly suggested

differential effects of both treatments. The first two pathways

highlighted by the pathway analysis, G-protein signaling and IL-1

beta-dependent CFTR expression, along with the effect on ATP

metabolism suggested an impact on retinal glial cells. This

prompted us to assess the effect of both treatments on gliosis, as

indicated by Müller cell expression of glial fibrillary acid protein

(GFAP) in the retinas of diabetic animals. As shown in Figure 6,

phloridzin reversed the increased GFAP immunoreactivity in

Müller cells from diabetic animals leading to its sole detection in

the astrocytes, while local insulin administration only partially

decreased the intensity of the gliosis. This observation again

confirms the differential mechanisms and responses involved in the

beneficial effects of the two treatments.

Discussion

Diabetic retinopathy is one of the major complications of

diabetes but the selective impact of hyperglycemia and hypoinsu-

linemia on retinal cell response have not been determined in vivo.

We previously showed that systemic insulin therapy could restore

retinal insulin signaling and prevent retinal cell death induced by

diabetes [14,18]. In the present study we employed a double

approach using phloridzin and local ocular insulin administration

to dissect the effects of decreased retinal insulin signaling and

systemic hyperglycemia and their respective roles in the patho-

Table 1. Top ten pathways affected by diabetes and reversed by ocular insulin administration.

ranking Maps min(pValue)

1 Immune response_Classical complement pathway 4.112E-12

2 Cell adhesion_Role of tetraspanins in the integrin-mediated cell adhesion 5.144E-09

3 Immune response_Lectin induced complement pathway 9.611E-08

4 Regulation of lipid metabolism_Regulation of lipid metabolism via LXR, NF-Y and SREBP 1.089E-07

5 Development_Role of IL-8 in angiogenesis 5.124E-07

6 Cytoskeleton remodeling_Regulation of actin cytoskeleton by Rho GTPases 8.567E-06

7 Immune response_IL-22 signaling pathway 7.801E-05

8 Cytoskeleton remodeling_Neurofilaments 1.972E-04

9 Immune response_IL-5 signalling 4.053E-04

10 Development_Slit-Robo signaling 4.831E-04

List of the top ten pathways obtained considering only the list of genes from the microarray analysis that were affected by diabetes and reversed by local insulin
administration using MetaCoreTM (Genego Inc.) software. Pathways are ranked based upon p-value.
doi:10.1371/journal.pone.0026498.t001

Table 2. Top ten pathways affected by diabetes and reversed by phloridzin treatment.

ranking Maps min(pValue)

1 G-protein signaling_RhoB regulation pathway 5.335E-03

2 IL-1 beta-dependent CFTR expression 5.335E-03

3 NGF activation of NF-kB 1.704E-02

4 G-protein signaling_G-Protein alpha-s signaling cascades 2.564E-02

5 Cell adhesion_Role of tetraspanins in the integrin-mediated cell adhesion 2.698E-02

6 dATP/dITP metabolism 2.798E-02

7 Signal transduction_cAMP signaling 2.836E-02

8 Regulation of lipid metabolism_Regulation of lipid metabolism via LXR, NF-Y and SREBP 2.836E-02

9 Translation _Regulation of EIF2 activity 2.976E-02

10 Transcription_NF-kB signaling pathway 2.976E-02

List of the top ten pathways obtained considering only the list of genes from the microarray analysis that were affected by diabetes and reversed by systemic phloridzin
treatment using MetaCoreTM (Genego Inc.) software. Pathways are ranked based upon p-value.
doi:10.1371/journal.pone.0026498.t002
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physiology of diabetic retinopathy. This work clearly demonstrates

for the first time that hyperglycemia and decreased retinal insulin

signaling each exert common and distinct effects on retinal

pathophysiology, and that their combined disruptive effects

contribute to increased retinal cell death during diabetes. Thus,

the retina responds to both tissue insulin availability and nutrient

levels, similar to peripheral insulin-sensitive organs. These effects

involve post-translational regulation of the retinal insulin receptor

signaling pathway and gene expression changes. The restoration of

pro-survival pathways by phloridzin treatment along with the

partial effect of subconjunctival insulin administration on the same

pathways suggest retinal growth factor resistance due, at least in

part, to systemic hyperglycemia. These findings are important to

the design of therapeutic strategies to minimize hypoglycemia and

long-term complications. Targeting increased insulin action in

accessible tissues may augment the benefits of systemic insulin

therapy.

We first demonstrated that subconjunctival injection of low dose

of insulin (20 mIU) once daily for 4 days significantly increased the

retinal insulin concentration without affecting serum glucose and

insulin levels (Figure 1). We also showed that this exogenous

insulin in the retina was biologically active, as indicated by the

increase in phosphorylation on the serine 473 residue of Akt

(Figure 3), which is one of the kinases downstream of the insulin

receptor that mediates neuroprotection [29]. Likewise, we

demonstrated that twice daily subcutaneous administration of

the SGLT1 and SGLT2 glucose transporter inhibitor phloridzin,

restored normal glycemia without affecting systemic or ocular

levels of insulin (Figure 2). Rossetti et al. [6] observed increased

insulin secretion following phloridzin injections in a partially

Figure 5. Local insulin administration and phloridzin treatments differentially affect the previously characterized diabetic
retinopathy biomarker panel. PCR analysis of the expression of the 15 genes of the diabetic retinopathy biomarker panel was performed on
retinal mRNA samples from diabetic rats that received local insulin or phloridzin treatments. Local insulin (A, C) and phloridzin (B, D) respectively
normalized the expression of 10 and 8 of those 15 genes. Comparison of the effect of both treatments on the expression of the panel demonstrated
that only 5 of the normalized genes were common between the 2 treatments (E) demonstrating that they only partially overlap. Fold changes
correlation of 10 of the genes of the biomarker panel detected by microarray and qRT-PCR (F). n$4/group; *significantly different from control
(P,0.05); #significantly different from diabetic (P,0.05).
doi:10.1371/journal.pone.0026498.g005
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pancreatectomized rat model, while Lisato et al [5], similarly to us,

showed no effect of phloridzin on serum insulin levels in a

streptozotocin-induced diabetic rat model. The difference between

these studies probably reflects a more profound loss of beta cells in

the latter model, preventing any potential stimulation of insulin

secretion by remaining beta cells. Hong et al. [4] used phloridzin

to examine the insulin-independent effects of glycemic normali-

zation on peripheral and hepatic insulin resistance. A major

difference between the brain and the retina and the peripheral

insulin-sensitive tissues is the blood-brain and blood-retinal

barriers, which control nutrient exchange between the systemic

circulation and these tissues. In this study, we used this

characteristic to independently study the effects of insulin-

independent glycemic normalization and locally-restricted insulin

signaling stimulation.

Normalization of blood glucose and increased local retinal

insulin levels both reversed the diabetes-induced retinal cell death

(Figure 3) in correlation with the reversal of retinal insulin

signaling as demonstrated by complete or partial restoration of IR

and Akt1 kinase activity (Figure 4). We have shown that retinal

insulin receptor signaling is disrupted in insulin-deficient diabetes

but it was unclear whether it results from hyperglycemia and/or

hypoinsulinemia. In the present study, we show that the

hyperglycemia was only partially responsible for the loss of activity

of the retinal insulin signaling pathway. The reversal observed

when retinal insulin levels were increased suggests that this is also

due to loss of ligand or ligand sensitivity. Insulin resistance has

been shown in the vasculature of rats with Type 2 diabetes [30]

but this is, to the best of our knowledge, the first evidence for

impaired insulin action in response to hyperglycemia in the retina.

The beneficial effects of local insulin on the viability of sensory

neurons in the retina in this study parallel the improved nerve

conduction velocity observed in diabetic rats following insulin

injection adjacent to the sciatic nerve or intrathecally [31,32].

Inflammation is increasingly understood as a central component

of diabetes and its complications. Our pathway analysis of the

effects of phloridzin and local insulin on the retinal transcriptome

changes induced by diabetes clearly demonstrated that only local

insulin specifically repressed retinal inflammation, particularly the

complement activation. Gene expression profiling comparison of

isolated Müller cells from diabetic and non-diabetic STZ-rats

identified a large cluster of genes associated with inflammation

that were highly upregulated in diabetes [33]. Among those genes

were several components of the complement pathway and other

Figure 6. Phloridzin treatment completely reverses the diabetes-induced retinal gliosis while local insulin only reduces it.
Immunolocalization of GFAP in normal and 12 week diabetic rats after phloridzin or local insulin treatment. The retinal sections were counterstained
with Hoecht to visualize nuclei layers (blue). As previously described, GFAP was only detected in the astrocytes in control animals where it was
reduced by diabetes in correlation with an induction in the Müller cells. While local insulin administration only reduced the intensity of the staining in
the Müller cells, GFAP could only be detected in astrocytes of phloridzin treated rats. The sections selected are representative of the results observed
in 3 independent animals for each conditions.
doi:10.1371/journal.pone.0026498.g006
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aspects of inflammation including antigen presentation and cell

adhesion, which has also been identified in our analysis as the

second most represented pathway specifically, reversed by local

insulin administration. Insulin’s effect on inflammation could

explain in part why local insulin was able to reduce the Müller cell

activation observed in diabetes (Figure 6). Activation of the

complement pathway has been demonstrated by increased protein

expression of several factors such as C3, C4b, C9 and factor B in

the vitreous of diabetic patients with proliferative diabetic

retinopathy [34]. The same study also showed increased mRNA

expression of C3 and factor B in the retina from other diabetic

patients with proliferative diabetic retinopathy (PDR). These data

suggest a specific potential for ocular insulin in addition to systemic

insulin for the treatment of the inflammatory component of

diabetes complications.

The retinal lipid metabolism pathway is also specifically

restored by local insulin but not phloridzin. Several studies have

investigated the specific roles of insulin and hyperglycemia using

similar approaches to study their impact on brain metabolism.

One study showed that insulin deficiency is the major driver of

the defects in the basal hypothalamo-pituitary-adrenal function

in diabetes [35] while another study recently used intraventric-

ular insulin versus systemic phloridzin treatment to compare the

respective roles of insulin and glycemia in the control of lipid in

the brain during diabetes [7]. Suzuki et al. demonstrated that

brain insulin deficiency, rather than hyperglycemia, was directly

responsible for the reduced cholesterol biosynthesis observed

during diabetes. Cellular cholesterol and fatty acid homeostasis

are transcriptionally regulated by three members of sterol

regulatory element-binding protein (SREBP) family: SREBP-1a,

SREBP-1c, and SREBP-2. Of these, SREBP-2 preferentially

activates genes responsible for cholesterol synthesis [36]. The

authors found brain Srebf2 and Srebf1a decreased in diabetic

mice and reversed by systemic insulin. In the retina, we found

decreased Srebf2 while Srebf1 was increased, neither of which was

normalized by phloridzin, whereas local insulin totally reversed

Srebf2 but marginally affected Srebf1. In our microarray analysis,

local insulin also restored caveolin-1 expression, a protein

essential for the transport of cholesterol and sphingolipids. This

finding suggests that local insulin signaling may be important for

the regulation of retinal cholesterol synthesis and its proper

subcellular localization. Our study also suggests that local

insulin, which restored SREBP-2 but not SREBP-1 expression,

might specifically restore cholesterol synthesis but not pertur-

bations affecting sphingolipids. This could be demonstrated by

further studying the effect of local insulin on the reduction of

fatty acid elongases observed in rats with untreated short-term

diabetes [37]. This close relationship between insulin signaling

and lipid metabolism was recently demonstrated by the fact that

disruption of plasma membrane lipid rafts with beta-cyclodex-

trin was associated with IR signaling dysfunction in retinal

neurons [38].

Pathway analysis of the specific effects of phloridzin treatment

highlighted its impact on the reversal of the deregulation of G-

protein signaling. Interestingly, among other genes, phloridzin

restored the expression of mDIA2, a protein involved in stress

fiber formation. This result prompted us to assess the effect of

both treatments on the well-described reactive gliosis observed

in the retina during diabetes. We showed that while subcon-

junctival insulin administration only resulted in a reduction of

the intensity of the GFAP staining in Müller cells, phloridzin

treatment totally restored the original expression pattern of

GFAP with the sole expression in the astrocytes. These data

suggests that phloridzin could directly reverse the reactive gliosis

induced by diabetes through the control of the expression of

mDIA2 and potentially other proteins that regulate cytoskeleton

remodeling [39]. Our analysis also showed that phloridzin

specifically restored pathways regulated by interleukin-1 beta

and nerve growth factor, the receptors for which and themselves

are expressed by retinal glial cells [40,41,42], once more

pointing out the role of Müller cells in the effects of phloridzin

on diabetes. We showed that phloridzin but not local insulin

administration reduced ocular glucose levels. One of the effects

of elevated glucose is increased activation of the hexosamine

biosynthesis pathway (HBP), which leads to increased addition

of O-GlcNAc modifications which is known to be a mechanism

of inhibition of protein action, including the insulin signaling

pathway, by competition with activating phosphosites [43]. Our

microarray analysis revealed that phloridzin specifically re-

versed the effect of diabetes on the expression of 2 enzymes

involved in the regulation of glucosamine, heparan sulfate

(glucosamine) 3-O-sulfotransferase 2 and 5 (respectively Hs3st2

and Hs3st5). The effect of phloridzin on those enzymes could

explain the difference between activating the insulin signaling

pathway by increasing local insulin levels and restoring the same

insulin signaling pathway by normalizing systemic blood glucose

using phloridzin. This hypothesis is supported by the fact that

systemic insulin similarly restores Hs3st2 expression [44] and

could explain why Müller cells remain partially activated

(gliosis) despite local insulin-treatment while activation is totally

reversed by phloridzin treatment and systemic insulin therapy

[45], confirming that local insulin administration could

complement systemic insulin treatment.

Diabetes increases the Km of glucose transport systems across

the BRB [46] so higher concentrations of glucose in blood are

necessary for same amount to enter the retina suggesting a

mechanism in the barrier/retina partially counter-acting the

increase blood glucose and decreasing the entry of glucose in the

retina. Phloridzin is not expected to have a direct retinal effect

since SGLT2 mRNA has not been detected in the retina

confirming that the effect observed here is not related to an

ocular effect of phloridzin. However, phloridzin also has

antioxidant properties and is a better inhibitor of lipid peroxida-

tion than 17-B-estradiol [47,48]. These properties, which could be

involved in the protective role of phloridzin against diabetes in

retinal cells will be further investigated in the future.

These findings are clinically relevant because they indicate that

both systemic glucose levels and ocular insulin action influence the

viability of retinal cells via the actions of pro-survival kinases and

the expression of inflammatory mediators and lipid synthetic

pathways. Therapeutic strategies that limit nutrient levels and/or

augment ocular insulin action may enhance the prognosis for

vision in persons with diabetes.

Supporting Information

Table S1 Retinal transcriptome changes in response to
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