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Abstract

MicroRNA (miRNA) plays a critical role in a wide variety of biological processes. Profiling miRNA expression during
differentiation of embryonic stem cells will help to understand the regulation pathway of differentiation, which in turn may
elucidate disease mechanisms. The identified miRNAs could then serve as a new group of possible therapeutic targets. In the
present paper, miRNA expression profiles were determined during cardiomyocyte-specific differentiation and maturation of
murine embryonic stem (ES) cells. For this purpose a homogeneous cardiomyocyte population was generated from a
transgenic murine ES cell line. Two high throughput array platforms (Affymetrix and Febit) were used for miRNA profiling in
order to compare the effect of the platforms on miRNA profiling as well as to increase the validity of target miRNA
identification. Four time points (i.e. day 0, day 12, day 19 and day 26) were chosen for the miRNA profiling study, which
corresponded to different stages during cardiomyocyte-specific differentiation and maturation. Fifty platform and pre-
processing method-independent miRNAs were identified as being regulated during the differentiation and maturation
processes. The identification of these miRNAs is an important step for characterizing and understanding the events involved in
cardiomyocyte-specific differentiation of ES cells and may also highlight candidate target molecules for therapeutic purposes.
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Introduction

Embryonic stem cells (ES cells) are pluripotent cell lines

generated from the inner cell mass of blastocysts [1]. The

spectrum applications of ES cells is diverse and includes drug

discovery, high-throughput toxicology assays, regenerative medi-

cine and embryology [2,3]. Primary cells, such as hepatocytes or

cardiomyocytes cannot be maintained in culture for long periods

of time [4,5,6]. Furthermore, there is a strong donor-dependent

variability [7]. This is not a problem for immortalized cell lines,

however, they have been shown to be genetically unstable and do

not fully emulate the features of their primary cell counterparts. In

contrast, ES cells have an almost unlimited self-renewal capacity in

their undifferentiated state and the ability to differentiate into fully

mature cells of all cell types of the three embryonic germ layers

[8,9]. Thus, ES cells may constitute a unique source of

differentiated cell types and, as such, the regulation of their

differentiation pathways is under intensive study.

The phenotype of a cell is controlled by gene regulation, which is

the basis for cell differentiation, morphogenesis and the adaptability

of cells [10,11]. Modification of gene expression can occur at

different levels. Apart from epigenetic mechanisms (cytosine

methylation, histone acetylation), regulation can be observed at

the level of transcription initiation (transcription factors), hetero-

nucleic transcript processing (RNA splicing), mRNA transport from

the nucleus into the cytoplasm (nucleocytoplasmatic transport

factors, e.g. exportin-5), translation and post-translational modifi-

cations [12,13]. It has recently become evident that the previously

widely ignored non-protein coding genes play an important role in

the control of gene expression. MicroRNAs (miRNA) have become

one of the most important regulation factors and an understanding

of their expression and influence during ES cell differentiation will

help in the elucidation of the whole process [14,15]. In contrast to

single analysis, miRNA expression can be profiled in a more time-

and cost-effective manner by applying microarray technology [16].

Results from different microarray platforms are not always very well

correlated even for same samples due to differences in design,

manufacturing, hybridization condition, and label/detection meth-

ods. In practice, microarray data are often verified using other

techniques, such as RT-qPCR, but in principle, the result from one
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high throughput platform could also be verified with another

independent high throughput platform.

In the present study, both Affymetrix miRNA 1.0 arrays and Febit

Biochips miRNA arrays were used in profiling miRNA expression

during controlled differentiation of mouse ES cells to cardiomyo-

cytes. Affymetrix miRNA 1.0 arrays cover 610 mouse miRNAs and

Febit miRNA arrays cover 719 miRNAs, 609 of which are common

to both platforms. Febit arrays provide additional information of 110

miRNA for mouse, while Affymetrix arrays have one miRNA

(miR699) that is not covered by the Febit array.

Affymetrix applies photolithography in-situ oligo synthesis

technology, which enables very high feature numbers on chips

[17]. Oligonucleotides with a maximum length of 25mer were

synthesized directly on chip. The GeneChipH miRNA Array

covers miRNAs from 71 organisms on a single array including

human, mouse and rat. The GeneChip miRNA Array also

includes human small nucleolar RNAs (snoRNAs and scaRNAs),

which are short, non-translated RNAs that play a role in the

processing of ribosomal RNAs following transcription. snoRNAs

have also been implicated in the regulation of alternative splicing.

Samples were labeled with biotin before hybridization and stained

with fluorescent labeled streptavidin after hybridization.

In contrast to Affymetrix technology, Febit Biochips were

produced using light-activated in-situ oligonucleotide synthesis by

means of a digital micromirror device. The probes are designed as the

reverse complements of all major mature miRNAs and the mature

sequences as published in the Sanger miRBase release (version 14.0

September 2009, see http://microrna.sanger.ac.uk/sequences/in-

dex.shtml) for mus musculus. Additional nucleotides are bound on

the 59-end of each capture oligonucleotide necessary for the on-chip

labeling technology MPEA (Microfluidic Primer Extension Assay).

This special procedure extends and labels perfectly hybridized probes

directly on the chip. With this method, noise resulting from mismatch

probes is expected to be reduced.

Due to the great differences in probe design, array production

and hybridization techniques used to generate Affymetrix- and

Febit-miRNA arrays, they can both be considered as two entirely

independent platforms.

To investigate the processes of cardiac differentiation of mouse ES

cells, we are interested in miRNA profiling during cardiomyocyte-

specific differentiation and maturation events. To date, considerable

effort has been made in the establishment of reproducible protocols to

control stem cell growth and differentiation. Regardless of the large

variety of differentiation protocols that have been established, it is

difficult to generate a uniform population of cells [18,19]. In order to

collect valid results to understand a specific differentiation process it is

particularly important to have homogeneous, synchronized and clonal

cell populations available for the undifferentiated as well as for the

differentiated cell type. For this reason, a transgenic mouse ES cell

clone was used in our experiments. This clone is derived from D3 ES

cells [20] that had been stably transfected with DNA constructs

allowing the expression of puromycin resistance (PAC) gene and

enhanced green fluorescent protein (EGFP) reporter gene under the

control of mouse cardiac-specific ã-myosin heavy chain (ã-MHC)

promoter. Through induced differentiation and selection a highly

pure cardiomyocyte cell population (.99.9%) can be produced. Such

Cor.AtH cardiomyocytes are fully functional cardiomyocytes which

contract spontaneously and rhythmically and express cardiac-specific

genes including those relevant for cardiocyte ion channels [21,22].

When transplanted into a cryoinfarcted area of the mouse heart, such

donor cells fully integrate into the host cardiac tissue and restore

functionality [22]. With the transgenic ES cell clone as reference,

Cor.AtH cardiomyocytes are an ideal model for cardiac-specific

differentiation and maturation research.

In the present study, Affymetrix miRNA gene arrays and Febit

Geniom Biochips miRNA arrays have been used in parallel to

profile miRNAs during the differentiation of mouse ES cells to

cardiomyocytes. The comparison of undifferentiated ES cells with

highly pure cardiomyocytes derived from the same stem cell clone

enables the examination of changes in miRNA expression during

differentiation and maturation under defined conditions. On one

hand, the data can help in understanding the impact of platforms

in miRNA profiling and, on the other hand, assist in the

verification of miRNA profiling data obtained with the platforms.

Results

In vitro differentiation and maturation of ES cells to
cardiomyocytes

The use of pure ES cell lineages is a prerequisite to be able to

make reliable statements about changes in miRNA expression

during differentiation and maturation to cardiomyocytes. A

transgenic mouse ES cells clone (aPIG44) has been used which

harbors a genetic construct with a puromycin resistance cassette

and an EGFP reporter under the control of the cardiac a-MHC

promoter. These ES cells can be propagated continuously on

feeder cells in an undifferentiated state (Figure 1a), avoiding the

variability often observed by using different lots of primary cells.

This pure population of undifferentiated ES cells can be compared

to Cor.AtH cardiomyocytes originating from the same clone by

inducing differentiation via the formation of embryoid bodies

(Figure 1b). An essential advantage in obtaining reliable results is

that following the differentiation protocol, cells that have not

differentiated to cardiomyocytes can be killed with the selection

agent puromycin. This prevents contaminations with RNAs from

other cell types. Differentiation to Cor.AtH cardiomyocytes can be

easily monitored by the presence of the EGFP reporter gene that is

selectively expressed by cardiomyocytes. Three days after

puromycin-mediated selection for Cor.AtH cardiomyocytes, the

cells in the cardiobodies demonstrate EGFP reporter activity

(Figure 1c) which can also be seen after plating as a single cell

suspension (Figure 1d). During further culture, the cells become

larger and cell-cell contacts are established (Figure 1e, g). Striated

a-actinin structures are formed by day 19 and gap-junctions

between the cells become visible (connexin-43 staining) (Figure 1i).

The detection of which is increased by day 26 (Figure 1f, h, j).

Cor.AtH cardiomyocytes display a normal, stage-specific electro-

physiological phenotype that matches their in vivo counterparts, as

described in the literature [21,23,24] (data not shown).

The expression levels of miRNAs are distributed
differently on the two platforms

The profiling of miRNAs during differentiation and maturation

can provide a good approach to understand the process of

cardiomyocyte differentiation. For this purpose, miRNA samples

were analyzed from undifferentiated ES cells (day 0) and from cells

at different time points after differentiation to Cor.AtH cardiomy-

ocytes (i.e. days 12, 19, and 26). To authenticate the information

for miRNA changes, 2 different array platforms were chosen for

the analyses. To exclude normalization method dependent effects,

raw data of both data sets was analyzed using robust multi-array

analysis (RMA) as well as with variance stabilization normalization

(VSN). Since the miRNA platforms used were different in the

context of the oligos on the array as well as the method used for

probe-labeling, it could be assumed that the data obtained

independently from each of the platforms and their respective

normalization methods was highly valid.

miRNA Profiling in Cardiomyocyte Differentiation
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Firstly, the number of expressed (present) miRNAs was deter-

minded for the undifferentiated ES cells (day 0) and for the different

time points after differentiation (i.e. days 12, 19, and 26). A stable

number of miRNAs was observed from the analysis using the

Affymetrix platform (Table 1), while the number of miRNAs increased

significantly from time point day 0 to day 26 using the Febit platform.

A detailed list of miRNAs detected is shown in table S1.

To get an impression of the degree of similarity between the

results obtained by the two independent miRNA array platforms

the data has been presented as box-plots (Figure 2). Using this kind

of illustration, the degree of dispersion (spread) and skewness of the

data (and outliers) has been compared. In the upper part, the raw

data from Affymetrix and Febit have been plotted. The median of

the samples varied slightly as well as the distances between 25th

and 75th percentile values. The variances were greater in the Febit

data. However, no outlier could be identified between the samples.

The data after VSN normalization is depicted in the lower part of

figure 2. The boxes containing the 25th to 75th percentile have

been extended, and the variance of medians reduced. Data

generated from the Affymetrix platform demonstrated a more

even distribution than that from the Febit platform.

Samples are well clustered according to differentiation
and maturation stages

To abstract the relationship of the data, principle component

analyses (PCA) were made for data from both platforms after

RMA or VSN normalization. The first 2 components have been

plotted in figure 3. The upper part of figure 3 illustrates the PCA

plot of data after VSN normalization. The lower part shows PCA

plot data after RMA normalization. Data points from duplicate

samples were located together in both plots (circles around

duplicates), indicating that both biological replica scarcely showed

any difference in their variations. Data points were most clearly

separated in the first component axis by platform origin,

independent of the normalization method used (Figure 3). This

indicated that the results showed platform-dependent differences.

In the second component axis, data were separated according to

differentiation and maturation stages. Day 0 (undifferentiated ES

cells) samples were, as expected, far apart from the Cor.AtH
cardiomyocytes samples (days 12, 19, and 26). The distance from

day 0 to other time points was greater for Affymetrix data than for

Febit data, suggesting that Affymetrix platform was more sensitive

in miRNA profiling. Day 19 and day 26 data were not very well

separated. This phenomenon was more obvious on the Febit

platform, suggesting that day 19 and day 26 samples were similar

in miRNA expression profile.

miRNAs are differentially expressed during cardiac
differentiation

To discover the role of miRNA in cardiac differentiation and

maturation, linear models were fitted for miRNA expression data with

LIMMA package from Bioconductor. Three comparisons were made

to analyze miRNA regulation during cardiomyocyte-specific differ-

entiation and maturation: day 12 vs. day 0, day 19 vs. day 0 and day

26 vs. day 0. The results showed effects of platforms as well as of

processing methods. Histograms of expression differences and p-

values in the 3 comparisons are shown in figure 4. Results from the

Affymetrix platform showed a higher number of miRNAs with little

regulation compared to results obtained with the Febit platform.

There were also more miRNAs with low p-values after statistical

analyses for data from the Affymetrix platform.

The miRNAs that were differentially expressed in a significant

manner have been illustrated in Venn diagrams. The results from

day 12 versus day 0, day 19 versus day 0 and day 26 versus day 0,

respectively, are represented in independent Venn diagrams

(Figure 5). The 4 circles in each Venn diagram represent

significantly regulated miRNAs detected under 4 combinations

of platform and normalization methods: Affymetrix with RMA

(blue), Affymetrix with VSN (red), Febit with RMA (brown), and

Febit with VSN (green). There was a good miRNA overlap

between the 2 platforms as well as between the 2 normalization

methods. In the comparison day 12 to day 0, 31 miRNAs were

identified as regulated under all four circumstances mentioned

above. 27 miRNAs and 39 miRNAs were detected for the same

principle in comparisons of day 19 to day 0 and day 26 to day 0.

The Affymetrix platform detected far more miRNAs than the

Febit platform. For example, in the comparison of day 12 to day 0,

beside the 31 platform and pre-processing method independently

regulated miRNAs, there were 77 pre-processing method

independent regulated miRNAs detected only from the Affymetrix

platform. This number was 12 for the Febit platform. In the other

comparisons (day 19 to day 0 and day 26 to day 0) similar results

are shown (99 vs. 6 and 90 vs. 1, respectively).

To elucidate the overlapping results as well as the platform-

dependent discrepancies, 6 selected miRNAs were analyzed by

RT-qPCR assays as a third independent method. Two miRNAs

(miR-1 and miR-292-3p) represented overlapping results from

Affymetrix and Febit miRNA platforms. miR-295* represented

those miRNAs only being identified as being regulated by the

Affymetrix platform. miR-208a was an example for miRNAs

which were detected as being regulated only by the Febit platform.

miR-501-3p was selected on behalf of the group of miRNAs which

gave controversial results with the two platforms, while miR-715

represented those miRNAs not detected as being regulated by

either platform.

Figure 1. Differentiation and maturation of undifferentiated ES cells to Cor.AtH cardiomyocytes. a) Undifferentiated mouse ES cells
(clone aPIG44) on feeder cells. b) Mouse ES cells aggregated into EBs at day 3 after initiation of differentiation. c) Mouse ES cell derived Cor.AtH
cardiomyocytes after 12 days of differentiation and 3 days of puromycin treatment, before dissociation. d) Mouse ES cell derived Cor.AtH
cardiomyocytes after 12 days of differentiation and 3 days of puromycin treatment, after dissociation (probe Cor.AtH cardiomyocytes 12 days). e,g,i)
Cor.AtH cardiomyocytes after additional 7 days of culture (probe Cor.AtH cardiomyocytes 19 days): e) transmission, g) same region EGFP fluorescense
indicating differentiation to cardiomyocytes, i) overlay of immunostainings: blue = nucleus staining with DAPI, green =a-actinin (structured) and GFP,
red = connexin 43. f, h, j) Cor.AtH cardiomyocytes after additional 7 days of culture (probe CorAt 26 days): e) transmission, g) same region GFP
fluorescense indicating differentiation to cardiomyocytes, i) overlay of immunostainings: blue = nucleus staining with DAPI, green =a-actinin
(structured) and GFP, red = connexin 43.
doi:10.1371/journal.pone.0025809.g001

Table 1. Number of present miRNAs at different stages (day
0, day 12, day 19 and day 26) during cardiomyocyte specific
differentiation and maturation.

day 0 day 12 day 10 day 26

Affymetrix 318 366 323 346

Febit 71 184 211 343

doi:10.1371/journal.pone.0025809.t001

miRNA Profiling in Cardiomyocyte Differentiation

PLoS ONE | www.plosone.org 4 October 2011 | Volume 6 | Issue 10 | e25809



The RT-qPCR Cq values of these 6 miRNAs are illustrated in

figure 6, and have been overlaid with their intensity values on the

Affymetrix and Febit platforms. For miR-1 and miR-292-3P,

results were consistent for both miRNA array platforms and the

RT-qPCR data verified these results. This was also true for miR-

715, which showed no change in expression with all three

methods, although the absolute intensity from Affymetrix data

matched better with the Cq value of RT-qPCR. For the miRNAs

with controversial results from Affymetrix and Febit platforms, the

RT-qPCR shared results partially with Affymetrix and partially

with Febit. For example, RT-qPCR results were closer to

Affymetrix results for miR-501-3p, which showed a clear up-

regulation at day 12. This was also the case for miR-295*, for

which both Affymetrix and RT-qPCR detected a down-regulation

during the differentiation process. However, for miR-208a the

RT-qPCR result was closer to the Febit result, which detected an

up-regulation (whereas Affymetrix did not).

We selected the miRNAs, which were identified as being

regulated under all four circumstances as platform- and analysis-

independent results. All miRNAs that were identified in the

comparisons between undifferentiated ES cells and Cor.AtH
cardiomyocytes at maturation timepoints (days 12, 19, and 26)

resulted in a pool of 50 miRNAs. In the subsequent study, we

focused on these 50 miRNAs.

A closer inspection of the 50 miRNAs that were regulated in a

platform- and normalization-independent manner revealed that 18 of

these miRNAs were regulated throughout the total differentiation

and maturation process. Among these 18 miRNAs, 13 were identified

as being up regulated while 5 were down regulated. There were 7

miRNAs (4 up regulated, 1 down regulated, and 2 with an unclear

trend between Affymetrix and Febit data) that were regulated

uniquely by day 12. One was down regulated only by day 19, and 13

were up regulated by day 26. Most of the 50 (31) miRNAs were

already regulated by day 12 (see Venn diagram Figure 7).

Clustering of miRNAs, which reacted similarly during cardio-

myocyte differentiation, will help in the elucidation of the miRNA

regulation pathway for cardiomyocyte differentiation. For this

purpose, heat-maps were made for the expression values of the

above-mentioned 50 miRNAs for data from both platforms

(Figure 8). Columns in the upper part of figure 8 (for Affymetrix

platform) showed that replicate samples were clustered together.

Undifferentiated samples (day 0) were separated from differenti-

ated samples (day 12, day 19 and day 26). Among differentiated

samples, day 19 was closer to day 26 than to day 12. The sample

cluster of Febit data (Figure 8 lower part) showed that replicates

from day 19 and day 26 were mixed but day 0 samples and day 12

samples were well separated. The miRNAs were clustered into 2

groups in both heat-maps. The upper group was up regulated

during the differentiation process while the lower group was down

regulated in the differentiated samples.

The selected 50 regulated miRNAs belong to cardiac
differentiation and embryonic development-related
groups

The time course of the miRNAs can tell us more about when

and how the miRNAs were regulated during cardiac differenti-

ation and maturation. For this reason the changes of expression

values of miRNAs compared to undifferentiated samples have

Figure 2. Boxplots of raw and pre-processed miRNA microarray data. Upper part left: boxplot of the raw log2 intensities of Febit miRNA
arrays, upper part right: boxplot of the raw log2 intensities of Affymetrix miRNA arrays, lower part left: VSN normalized Febit miRNA array data, and
lower part right: VSN normalized Affymetrix miRNA array data. X-axis shows sample names, Y-axis is in log2 arbitrary units. The black bar represents
the median of each distribution. The open circles represent the outliers.
doi:10.1371/journal.pone.0025809.g002
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been illustrated in figure 9. Three major clusters were identified.

Cluster A and cluster B were sub-groups of the up-regulated

groups in the heat-map. Cluster A included miRNAs which

increased until day 12, and then were maintained until day 26.

Typical cardio-specific miRNAs (such as miR-143) could be found

in this cluster, as well as some embryo-related miRNAs (such as

miR-298) [25]. Some of the miRNAs in this cluster were reported

to be involved in both cardiac- and embryonic-process. Cluster B

included miRNAs which continually increased during the

differentiation and maturation process. Most of the miRNAs in

cluster B were cardiac differentiation related miRNAs, though

there were also miRNAs reported as for both functions (e.g. miR-

21). miRNAs in cluster C were down regulated after the beginning

of differentiation. Many embryo miRNAs, such as miR-293, miR-

290-3p or miR-290-5p were in cluster C. Cluster C also included

miR-106a which is believed to be both ES cell-specific and

cardiac-related [26].

Target genes of differentiated expressed miRNAs are
heart development-related

miRNAs have been reported to be involved in the regulation

process through interaction with mRNA. Target prediction makes

it possible to speculate the regulation pathway of miRNA. In

mouse gene ontology, 243 genes have been annotated under the

term ‘‘GO:0007507: heart development’’. 188 miRNAs have been

predicted to be regulators for these genes. Among these 188

miRNAs, 23 were found in the 50 selected miRNAs. Six embryo

marker genes (Myc, Sox2, Klf4, Lin28, Nanog, Pou5f1) were also

predicted as regulators of miRNAs, 18 miRNAs were predicted to

be target miRNAs (data not shown). As shown by RT-qPCR, the

expression of the embryonic markers Klf4, Pou5F (Oct4) and Sox2

was completely down regulated by day 12 and remained depressed

until day 26 (Figure 10). This effect was well synchronized with the

up-regulation of miR-145.

Discussion

miRNA in murine ES cells undergoing a cardiomyocyte-specific

differentiation and maturation was profiled with the Affymetrix

GeneChip platform and the Febit Geniom Realtime Analyzer.

Instead of verifying miRNA profile results with RT-qPCR, the two

independent high throughput platforms were used to verify results

against each other. After differentiation analysis, miRNAs that

were regulated in a platform-independent manner were identified

for further study of their roles in cardiac differentiation and

maturation.

Expression level of miRNAs were distributed differently
on the two platforms

Previous studies have shown that not all miRNAs are expressed

in ES cells [15,27]. Boxplot of the data from this study also showed

that most of the miRNAs had low expression levels during the

whole cardiomyocyte-specific differentiation and maturation

process. There were more miRNAs detected in the differentiated

samples than in the undifferentiated samples, based on the Febit

platform results. However, this trend was not obvious for data

from the Affymetrix platform. Since identical samples were

applied in both studies, this could only be due to the different

design principles and detection methods used by the platforms.

Platforms and analysis methods have a strong influence
on miRNA profiling results

In the PCA plots of the first 2 components, an absolute separation

was observed in the axis of the first component, suggesting that the

platforms exert a great influence on the profiling results. The

Affymetrix data points were on the negative side while the Febit

data points located on the positive side of the first principal

component. This result indicates that the choice of platform may

exert an even greater influence than the differentiation treatment

itself. Along the axis of the second principal component sub-clusters

were seen for sample from different stages during the maturation

process especially for data generated using the Affymetrix platform.

Day 0, which represents undifferentiated ES cells, is on one end of

the axis, while day 12, day 19 and day 26 are on the other end of the

axis. This cluster effect is also significant for data generated using the

Febit platform, but day 0 was separated from other samples by less

distance. The data for the day 19 and day 26 samples were difficult

to separate on the Febit platform. This suggests that the Affymetrix

platform may possess a higher sensitivity in detecting regulation of

miRNA expression, an interpretation that was also supported by the

differentiation analysis. Furthermore, according to the results of the

Figure 3. Principle component analysis (PCA) plots of micro-
array data. Upper part: VSN normalized microarray data from
Affymetrix platform (black) and Febit platform (grey). Lower part:
RMA normalized data from Affymetrix platform (black) and Febit
platform (grey). Circles indicate day 0, triangles day 12, rhombuses day
19, and squares day 26. Closed symbols and open symbols represent
two replicate samples from the corresponding time points after
differentiation.
doi:10.1371/journal.pone.0025809.g003
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6 miRNAs analyzed by RT-qPCR, the Affymetrix miRNA array

platform seemed to have a slight advantage over Febit miRNA

array platform. Although a larger sample size would be required to

allow a surer general statement regarding the reliability of the

miRNA array platforms, it may be concluded that the results

obtained by a single method should be considered with caution.

Analysis methods also have an influence on identifying

differentially expressed miRNAs. In our study, the same samples

analyzed on the same platform but only pre-processed with either

RMA or VSN resulted in an approximately 30% variant hit list.

For example, from the comparison of the results obtained with the

Affymetrix platform from day 12 to day 0, we identified 124

miRNAs, which were significantly regulated after applying RMA

and VSN methods. Of these miRNAs, 43 could only be identified

after VSN while 48 miRNAs could be identified only after

applying RMA. This result emphasized the importance of the

verification procedure in miRNA profiling studies, especially when

using microarray technology.

miRNAs are differentially expressed during
cardiac-specific differentiation and maturation

Despite the strong effect of platforms and pre-processing

methods, there was a clear correlation between miRNA

expression and cardiac-specific differentiation in the PCA plots.

Furthermore, miRNA expression analysis also verified the

separation of samples from undifferentiated ES cells and samples

from Cor.AtH cardiomyocytes. Fifty miRNAs were identified as

being significantly regulated in a platform- and pre-processing

independent manner. Compared to single high throughput

platform analyses, the number of regulated miRNAs that were

detected in the present study is relatively low. However, we

believe that the application of 2 independent platforms for

miRNA profiling results more plausible candidate groups. The

small number of regulated miRNAs found in the present

investigation could also be due to the use of pure populations

of Cor.AtH cardiomyocytes.

Thirty one of the 50 miRNAs had also been identified as

regulated by day 12. This result indicates that the onset of the

miRNAs changes during differentiation started before day 12.

Among these 31 miRNAs, 18 were regulated throughout the

whole differentiation and maturation period. An example of these

18 miRNAs is miR-22, which was recognized as one of the

miRNAs, which increase dramatically during differentiation.

Together with miR-21, miR-22 could regulate targets such as

transforming growth factor-b-induced gene (TGFBi) [27,28]. This

indicates the possibility of negative regulation during differentia-

tion. miR-291a-3p, miR-291a-5p, miR-292-3p, miR-290-5p and

miR-293 belong to the miR-290-295 cluster [27]. This cluster of

Figure 4. Comparison of microarray data dependent on platform used. Histograms of the log2 fold changes and adjusted p-values of
comparisons between differentiated Cor.AtH cardiomyocytes and undifferentiated ES cells for microarray data from Affymetrix (upper part) and Febit
(lower part). The comparisons are day 12 vs. day 0, day 19 vs. day 0 and day 26 vs. day 0 (from left to right).
doi:10.1371/journal.pone.0025809.g004

miRNA Profiling in Cardiomyocyte Differentiation

PLoS ONE | www.plosone.org 7 October 2011 | Volume 6 | Issue 10 | e25809



miRNAs decreases as ES cells differentiate. This result supports

the hypothesis that ES-specific miRNAs were repressed during

differentiation.

miR-21 has been intensively studied over recent years, in

particular for its involvement in cardiovascular disease and cancer

[29]. A study in 2007 [30] showed that miR-21 is up regulated in

proliferating vascular smooth muscle cells (VSMCs) of the rat.

This increase results in decreased cell proliferation and increased

cell apoptosis in a dose-dependent manner in cultured rat aortic

VSMCs. Another study found that miR-21 is strongly increased in

failing heart [31], suggesting miR-21 to be an interesting target

miRNA. Another example of up regulated miRNA is miR-145

which is significantly increased by day 12 and remains a high

expression level until day 26. OCT4, SOX2 and KLF4 can be

directly regulated by miR-145 [32]. As already known, OCT4,

SOX2 and KLF4 are required for ES cell self-renewal and

pluripotency. A high concentration of miR-145 is essential for

stem cell differentiation. As expected, the RT-qPCR results

confirmed that miR-145 target genes (Pou5F, Sox2 and Klf4)

were down regulated by day 12 and remained at a low expression

level during further cardiomyocyte maturation.

Two widely conserved miRNAs that display cardiac- and

skeletal muscle–specific expression during development and in the

adult are miR-1 and miR-133 [33], which are derived from a

common precursor transcript (bicistronic) [34,35]. miR-1 and

miR-133a were up regulated in all three comparisons (days 12, 19,

and 26) between Cor.AtH cardiomyocytes and undifferentiated ES

cells (day 0). In contrast, miR-206, which shares extensive

sequence homology to miR-1, is found expressed exclusively in

skeletal muscle with the co-transcribed miR-133b. Unsurprisingly,

an increase of miR-206 was not observed during the present

cardiomyocyte-specific differentiation process.

miR-1 has been reported to be abundant in rat heart but not in

rat artery [36]. The expression of miR-1 was reported to be

especially high in cardiac precursor cells [33,35]. Experiments also

revealed that excess miR-1 in the developing heart leads to a

decreased pool of proliferating ventricular cardiomyocytes [35].

Many results suggest that miR-1 genes modulate the effects of

critical cardiac regulatory proteins to control the balance between

differentiation and proliferation during cardiogenesis. miR-1 could

also be an important target for use in therapy of cardiovascular

disease. miR-138, which has been reported to regulate cardiac

patterning [28], was only observed to be up regulated in the

Affymetrix data but not in the Febit data.

In the time course study of the 50 selected miRNAs, miR-145

showed the highest increase by day 12, and remained at a high

expression level thereafter. This suggests that miR-145 (and the

other miRNA members of cluster A, Figure 9) is not the candidate

which triggers the maturation process of the Cor.AtH cardiomy-

ocytes during which gap-junctions are built. There are also

miRNAs such as miR-1, miR-133a and miR-133b, which

increased progressively at day 19 and day 26. Together with

miR-21, which was first regulated after the cell-cell contact (i.e.

day 12), they are good candidates to elucidate the maturation

phase of cardiac-specific differentiation.

Many recent studies have already demonstrated that miRNAs

are involved in critical biological processes. In this context,

profiling miRNA expression won increasing emphasis. miRNAs

were also believed to play an important role in ES cell

differentiation and cardiovascular diseases. In the present

manuscript paper, a transgenic mouse ES cell clone was used to

generate uniform Cor.AtH cardiomyocytes. miRNAs were profiled

for undifferentiated transgenic ES cells (day 0) and at time points

day 12, day 19 and day 26 during cardiomyocyte-specific

differentiation and maturation using 2 high throughput micro-

array platforms provided from Affymetrix and Febit. Fifty

miRNAs were identified as validly regulated from data generated

from both platforms during cardiomyocyte-specific differentiation

and maturation events. Although variation between platforms was

high, the cross-validation procedure yields more reliable data. This

provides a good basis for further research on the regulation of

pathways in cardiac differentiation and maturation. On the other

hand, our study demonstrates the necessity and efficiency of high

throughput cross platform validation to minimize invalid results

obtained by miRNA profiling with microarray platforms.

Materials and Methods

Cell culture
Mouse ES cells (D3, ATCC CRL 1934) were stably transfected

with the a-MHC–Pac–IRES–EGFP vector containing the EGFP

gene and the PuromycinR (Pac) cassette under control of the

Figure 5. Range of overlap depends on platform and pre-
processing method. Venn diagram of regulated miRNAs detected by
comparing differentiated Cor.AtH cardiomyocytes to undifferentiated ES
cells (day 0): (upper part) in comparison day 12 vs. day 0, (middle part)
in comparison day 19 vs. day 0, (lower part) in comparison day 26 vs.
day 0. Blue: Affymetrix data with RMA normalization, red: Affymetrix
data with VSN normalization, brown: Febit data with RMA normaliza-
tion, green: Febit data with VSN normalization.
doi:10.1371/journal.pone.0025809.g005
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cardiac a-myosin heavy chain (a-MHC) promoter as previously

described [22]. ES cells of a stably transfected clone (aPIG 44)

were cultured on mouse embroynic fibroblasts in high-glucose

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with

nonessential amino acids (0.1 mM), L-glutamine (2 mM), b-

mercaptoethanol (0.1 mM), LIF (ESGR) (500 U/ml), neomycin

(6 mg/mL), and batch-tested fetal calf serum (FCS) (15% v/v) (all

Invitrogen, Karlsruhe, Germany).

To start differentiation, ES cells were trypsinized (day 0) and

cultured in suspension on a horizontal shaker (GFL 3006, GFL,

Braunschweig, Germany) to form embryoid bodies (EBs). Briefly,

ES cells were transferred into Iscove’s modified Dulbecco’s

Medium (IMDM) with 20% batch-tested FCS, nonessential

amino acids (0.1 mM) and b-mercaptoethanol (0.1 mM) (Invitro-

gen, Karlsruhe, Germany) in a 10 cm bacterial Petri dish and

cultured at 90 rpm, 37uC, 5% CO2, and 95% humidity for 48 h.

At day 2, resulting EBs were transferred into 1000 mL spinner

flasks (Integra Cell Spin, IBS, Fernwald, Germany) and cultured

for additional 7 days at 37uC, 5% CO2, and 95% humidity.

Medium was exchanged at day 5, day 7, and day 9; and

Puromyicn (5 mg/mL) was added to select for cardiomyocytes at

day 9. At day 12, remaining cardiobodies (embryoid bodies

consisting of cardiomyocytes, Figure 1c) were trypsinized to

obtain a single cell suspension of cardiomyocytes (Cor.AtH
cardiomyocytes) (Figure 1d).

Figure 6. Evaluation of Array results for 6 selected miRNAs by RT-qPCR miRNA assays. RT-qPCR of selected miRNAs at day 0, day 12, day
19 and day 26 in comparison to Affymetrix and Febit array results are shown. Upper part: The log2 intensities of the samples analyzed by arrays (left
scale) and the quantitative cycles Cq detected by RT-qPCR miRNA assays (right scale) are illustrated. Lower part: Log2 fold change of the amount of
miRNA at the day indicated in comparison to day 0. Solid lines represent results from RT-qPCR miRNA assays; dashed lines represent results for
Affymetrix array measurements; dotted lines represent results for Febit array measurements; dashed-dotted lines represent the Cq values of the RT-
qPCR reference small nucleolar RNA snoRNA 202.
doi:10.1371/journal.pone.0025809.g006

Figure 7. Venn diagram of the 50 platform and pre-processing
methods independent regulated miRNAs. The number of up/
down regulated miRNAs at different maturation stages (day 12, day 19
and day 26) compared to undifferentiated ES cells were denoted with
arrows up/down.
doi:10.1371/journal.pone.0025809.g007

miRNA Profiling in Cardiomyocyte Differentiation

PLoS ONE | www.plosone.org 9 October 2011 | Volume 6 | Issue 10 | e25809



miRNA Profiling in Cardiomyocyte Differentiation

PLoS ONE | www.plosone.org 10 October 2011 | Volume 6 | Issue 10 | e25809



66106 Cor.AtH cardiomyocytes each were then seeded onto

Fibronectin-coated 10 cm dishes (Becton Dickinson, Heidelberg,

Germany) in IMDM medium as described above and cultured at

37uC, 5% CO2, and 95% humidity with daily media changes. All

micorphotographs were taken using an Axiovert 100 M (Zeiss,

Jena, Germany) equipped with a FITC filter set (AF Analysen-

technik, Stuttgart, Germany).

Immunostaining
For immunostaining, Cor.AtH cardiomyocytes were seeded at

26105 cells/well on fibronectin-coated 24 well plates in IMDM

20% FCS and cultured as described above. At day 7 and day 14

after seeding (day 19 and day 26 after differentiation), cells were

washed twice with PBS, fixed with 4% PFA for 30 minutes,

permeabilized with 0.1% (w/v) Saponin in PBS for 30 minutes,

and blocked for 1 h with 5% (w/v) BSA in PBS (all at RT).

Between each of the following steps, cells were washed 36 using

PBS with 0.8% (w/v) BSA and 0.1% (w/v) Saponin (PBS*).

Immunostaining for a-Actinin was performed by incubating the

cells with a monoclonal anti-a-Actinin antibody (Sigma-Aldrich,

Munich, Germany) diluted 1:100 in PBS* at 4uC overnight,

followed by incubation with a Cy2 conjugated goat-anti-mouse

IgG anitbody (Sigma-Aldrich, Munich, Germany) diluted 1:200 in

PBS* for 1 h at 37uC.

Afterwards, the immunostaining for Connexin 43 was per-

formed by incubating the pre-stained cells with a rabbit-anti-

mouse Cx43 IgG antibody (Biotrend, Cologne, Germany) diluted

1:200 in PBS* at 4uC overnight, followed by an incubation with a

Cy3 conjugated goat-anti-rabbit IgG antibody (Dianova, Ham-

burg, Germany) diluted 1:200 in PBS* for 1 h at 37uC. Cells were

washed, and nuclei were stained with DAPI (1 mg/mL, Sigma-

Aldrich, Munich, Germany) diluted in PBS* for 5 minutes at RT.

After a final washing step, cells were covered with PBS and

analyzed using an Axiovert 100 M (Zeiss, Jena, Germany)

equipped with a Cy3 and a Cy2 filter set (AF Analysentechnik,

Stuttgart, Germany).

RNA isolation, quantification, and quality control
For day 0 RNA, ES cells were trypsinized at day -2, seeded onto

a gelatin-coated 6 cm TC dish (Becton Dickinson, Heidelberg,

Germany), and cultured for 48 h in DMEM 15% FCS as

described above. The timing of this last passage was in parallel

with the ES cell passage used to initiate differentiation.

For day 12 RNA, Cor.AtH cells were seeded onto a Fibronectin

coated 10 cm dish as described above and cultured for 6 h. The

Cor.AtH cardiomyocytes attached to the surface of the dish;

remaining dead cells from the selection procedure were washed off

before isolating day 12 RNA.

For all other days, RNA was prepared from the 10 cm dishes

after washing the plates 26with PBS. Total RNAs from cells after

timepoints indicated were extracted by using PeqGold RNApure

(Peqlab Biotechnology, Erlangen, Germany) according to the

manufacturer’s instructions. Quantity of total RNA was measured

using a NanoDrop ND-1000 Spectrophotometer (NanoDrop

Technologies, Wilmington, DE, USA). Optical density values at

260/280 were consistently above 1.9. The total RNA Quality was

assayed on an Agilent BioAnalyzer (Agilent Technologies, Santa

Clara, CA, USA). Only samples with intact, distinct ribosomal

peaks were chosen for further analysis.

RT-qPCR
Gene expression assays. First strand cDNA was reverse

transcribed from 500 ng of total RNA using SuperscriptTMII Reverse

Transcriptase, Oligo (dT)12–18 and random hexamer primers

according to the manufacturer’s instructions (Invitrogen, Karlsruhe,

Germany). Glycerinaldehyde-3-phosphate dehydrogenase (GAPDH),

Krüppel like factor 4 (Klf4), Pou domain class 5 (Pou5f1/Oct4), and

SRY-containg gene 2 (Sox2) were quantified using Individual

TaqManH Gene Expression Assays (Applied Biosystems, Foster

City, CA, USA) on an ABI 7300 Real-Time PCR System. cDNA

(25 ng) was mixed with TaqManH Gene Expression Master Mix

(Applied Biosystems, Foster City, CA, USA) and the appropriate

TaqManH Gene Expression Assays (Applied Biosystems, Foster City,

CA, USA) for the gene of interest: (GAPDH - 4352932E, Klf4 -

Mm00516104_m1, Pou5f1/Oct4 - Mm0353917_g1, Sox2 -

Mm03053810_s1). To calculate relative gene expression we used

the comparative quantification cycle (Cq) method (22DDCq) [37]. All

reactions were performed in triplicate and relative gene expression was

normalized to the reference gene GAPDH. The results are expressed

as fold change over day 0 values.

Micro RNA assays. Validation of expression of selected

miRNAs was performed using commercially available pre-

designed TaqMan RT-qPCR assays (Applied Biosystems, Foster

City, CA, USA) using the same RNA samples as used for the

microarray profiling. The TaqManH MicroRNA Reverse

Transcription Kit (Applied Biosystems, Foster City, CA, USA)

was used for the preparation of cDNA. Reverse transcription

reactions were performed in a volume of 20 mL at 16uC for

30 minutes, at 42uC for 30 minutes, and then terminated at 85uC
for 5 minutes. Each reaction contained 20 ng of total RNA, and

multiple (heptaplex) stem-loop miRNA-specific primers from the

TaqMan MicroRNA Assays (each 12.5 nM), 2 mM dNTPs,

100 U MultiScribeTM Reverse Transcriptase, 16Reverse Transcrip-

tion buffer, and 5 U RNase Inhibitor. For qPCR of individual

TaqMan MicroRNA Assays we used 0.75 mLTaqMan MicroRNA

Assay Primer, 1.2 mL cDNA (10-fold diluted), 7.5 mL TaqMan 26
universal PCR master mix without UNG, and 5.55 mL nuclease-free

water. All TaqMan MicroRNA Assays were run on an Applied

Biosystems 7300 Real-Time PCR System with the following

conditions: an initial step of 10 minutes at 95uC, followed by 40

cycles of 15 s at 95uC and 1 minute at 60uC. The assays used were:

hsa-miR-208, hsa-miR-1, mmu-miR-292-3p, mmu-miR-295#,

mmu-miR-501#, mmu-miR-715, and the small nucleolar RNA

snoRNA202 as reference. To calculate relative miRNA expression

we used the comparative quantification cycle (Cq) method (22DDCq)

[37]. All reactions were performed in triplicate, and relative miRNA

expression was normalized to expression of the reference small

nucleolar RNA snoRNA202. Results are expressed as fold change

over day 0 values. To illustrate the abundance of the miRNAs the Cq

values before normalization are also presented.

Affymetrix miRNA labelling, array hybridization and data
pre-processing

Total RNA containing low molecular weight RNA was labelled

using the Flashtag RNA labeling kit (Genisphere, Hatfield, PA,

USA) according to the manufacturer’s instructions. Briefly, for

each sample, 2 mg total RNA were subjected a tailing reaction

(2.5 mM MnCl2, ATP, Poly A Polymerase - incubation for

15 minutes at 37u) followed by ligation of the biotinylated signal

Figure 8. Heatmap of expression values of the 50 platform and pre-processing methods independent regulated miRNAs from
Affymetrix platform (upper part) and Febit platform (lower part).
doi:10.1371/journal.pone.0025809.g008
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molecule to the target RNA sample (16 Flash Tag ligation mix

biotin, T4 DNA ligase - incubation for 30 minutes at RT) and

adding of stop solution.

Each sample was hybridized to a GeneChipH miRNA Array

(Affymetrix, Santa Clara, CA, USA) at 48uC and 60 rpm for

16 hours then washed and stained on Fluidics Station 450 (Fluidics

script FS450_0003) and finally scanned on a GeneChipH Scanner

3000 7G (Affymetrix). The image data were analyzed with the

miRNA QC Tool software for quality control (www.affymetrix.

com/products_services/arrays/specific/mi_rna.affx#1_4). For

each time point two independent experiments were performed

under identical conditions. The expression values were summa-

rized and normalized respectively with robust multi-array average

(RMA) [38] and variance stabilization method (VSN) [39] using

RMA and VSN packages in Bioconductor 2.5 under R 2.10 [40].

Febit miRNA labelling, array hybridization and data
pre-processing

The same samples were analyzed with a Geniom Realtime

Analyzer (GRTA, Febit GmbH, Heidelberg, Germany) using the

Geniom Biochip miRNA mus musculus. Each array contains 8

replicates of 710 miRNAs and miRNA star sequences as annotated

in the Sanger miRBase 14.0. Sample labelling with biotin was

carried out by microfluidic-based enzymatic on-chip labelling of

miRNAs (MPEA) as described before [41]. Following hybridization

for 16 hours at 42uC the biochip was washed automatically and a

program for signal enhancement was processed with the GRTA.

The resulting detection pictures were evaluated using the Geniom

Wizard Software. For each array, the median signal intensity was

extracted from the raw data file such that for each miRNA eight

intensity values were calculated corresponding to each replicate

copy of miRBase on the array. Following background correction,

the eight replicate intensity values of each miRNA were

summarized by their median value. To normalize the data across

different arrays, quantile normalization and VSN were applied and

all further analyses were carried out using the normalized and

background subtracted intensity values.

Bioinformatic analyses of Affymetrix and Febit miRNA
microarray data

The overlapped miRNAs on both platforms were selected

according to annotations provided from the corresponding chip

manufacturer. The expression values of these overlapped miRNAs

were then used for further analysis. Present/absent calls were made

for both platforms. For Affymetrix detection, p-values were decided

by Wilcoxon-test and Affymetrix-test; probe-sets with a p-value

lower than 0.06 were called present. For Febit platform, a boolean

value p is computed for every probe. This value indicates whether

the respective miRNA is present or not. For a probe with intensity

value V, the information if the probe is present is computed as

follows: p~I
V{Bv

sdv

§3

� �
. Where Bn denotes the mean intensity

of blank controls and sdn indicates standard deviation of blank

controls. Assuming that blank controls are normally distributed, the

significance value for each probe would be 0.001.

Principle component analysis (PCA) was applied on normalized

data from each of the platforms. The first 2 components of PCA

were plotted using R [42]. Boxplots of the raw log2 intensities of

both platforms as well as VSN normalized data were made using

R function. Linear models were fitted for both datasets in order to

distinguish differentially expressed miRNAs between different time

points on the Affymetrix platform and the Febit platform,

respectively (Linear Models for Microarray Data (LIMMA)

Bioconductor package [43]). Comparisons were made between

undifferentiated samples (day 0) and each of the differentiated

samples (days 12, 19 and 26). The miRNAs, which showed

adjusted p-value lower than 0.05, were selected as significantly

differentially expressed. Venn diagrams and histograms for

differential expression analysis results were made using R

functions. Additionally, cluster analysis was made for the platform

independent regulated miRNAs by using R functions. Target

prediction of miRNAs was done using MIRror [44].

All array data are MIAME compliant. The raw data has been

deposited in Gene Expression Omnibus (GEO) - Accession

number: GSE24066.

Supporting Information

Table S1 Complete list of all mouse miRNAs on both platforms;

the miRNAs were categorized according to their present/absent call.
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Figure 9. Changes in expression of selected miRNAs during time course of cardiomyocyte-specific differentiation/maturation. Three
expression clusters of the 50 platform and pre-processing methods independent regulated miRNAs. (Cluster A) miRNAs which increased at day 12
and keep highly expressed afterwards, (Cluster B) miRNAs which incease continuously, (Cluster C) miRNAs which are down regulated during
differentiation. miRNA names are colored in red for according to literature cardiac-related miRNAs and blue for according to literature ES cell related
miRNAs. Y-axis represents log2 fold change over undifferentiated ES cells (day 0). miRNAs showing discrepancies in cluster membership dependent
on array platform are marked with (a) for the Affymetrix and (f) for the febit result.
doi:10.1371/journal.pone.0025809.g009

Figure 10. Embryonic marker genes are down regulated at day
12 of cardiomyocyte-specific differentiation. mRNA levels were
measured at indicated timepoints using RT-qPCR. Relative gene
expression of ES cell markers Klf4, Pou5F and Sox2 normalized to the
expression of the reference gene GAPDH is shown. The results are
expressed as fold change over day 0 values (undifferentiated ES cells).
The y-axis represents log2 fold change relative to day 0.
doi:10.1371/journal.pone.0025809.g010
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