
KAP Degradation by Calpain Is Associated with CK2
Phosphorylation and Provides a Novel Mechanism for
Cyclosporine A-Induced Proximal Tubule Injury
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Abstract

The use of cyclosporine A (CsA) is limited by its severe nephrotoxicity that includes reversible vasoconstrictor effects and
proximal tubule cell injury, the latter associated whith chronic kidney disease progression. The mechanisms of CsA-induced
tubular injury, mainly on the S3 segment, have not been completely elucidated. Kidney androgen-regulated protein (KAP) is
exclusively expressed in kidney proximal tubule cells, interacts with the CsA-binding protein cyclophilin B and its expression
diminishes in kidneys of CsA-treated mice. Since we reported that KAP protects against CsA toxicity in cultured proximal
tubule cells, we hypothesized that low KAP levels found in kidneys of CsA-treated mice might correlate with proximal tubule
cell injury. To test this hypothesis, we used KAP Tg mice developed in our laboratory and showed that these mice are more
resistant to CsA-induced tubular injury than control littermates. Furthermore, we found that calpain, which was activated by
CsA in cell cultures and kidney, is involved in KAP degradation and observed that phosphorylation of serine and threonine
residues found in KAP PEST sequences by protein kinase CK2 enhances KAP degradation by calpain. Moreover, we also
observed that CK2 inhibition protected against CsA-induced cytotoxicity. These findings point to a novel mechanism for
CsA-induced kidney toxicity that might be useful in developing therapeutic strategies aimed at preventing tubular cell
damage while maintaining the immunosuppressive effects of CsA.
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Introduction

Kidney androgen-regulated protein (KAP) is a highly specific,

tightly regulated protein of kidney proximal tubule cells [1]. We

studied KAP transcriptional regulation in mouse kidney and

reported a fine-tuned regulation of its mRNA by thyroid and

sexual steroid hormones, growth hormone (GH) and insulin-like

growth factor 1 (IGF-1) in proximal tubule segments [1–8]. The

absence of significant homologies with other proteins or with

known structural domains has greatly reduced the experimental

approaches to elucidate KAP function, which has remained elusive

since first described in 1979 [9]. Previously, using specific

antibodies raised against KAP-derived synthetic peptides, we

identified an apparent 20kDa molecular-weight protein that

paralleled KAP mRNA in terms of cell distribution and androgen

regulation [10]. We also found that KAP interacts with the

cyclosporine A (CsA) binding protein cyclophilin B (CypB) [10],

and observed that KAP protein levels are lowered in kidneys of

CsA-treated mice [10]. Moreover, KAP protected from CsA-

induced toxicity when transfected to the proximal tubule-derived

PCT3 cell line [10].

The great clinical benefits of CsA in the improvement of graft

survival rates in organ transplantation are associated with

significant undesirable nephrotoxic effects that include reversible

vasoconstriction and proximal tubule cell injury, the latter

associated with chronic kidney disease progression [11–13]. The

mechanisms underlying CsA-induced toxicity in proximal tubule

cells have not been completely elucidated. Morphologic evidence

suggests that early sublethal tubular damage is confined to the S3

segment of the proximal tubule [14]. Since KAP is exclusively

expressed in proximal tubules, we hypothesized that suboptimal

KAP levels after CsA treatment could relate to homeostatic and/

or metabolic alterations which, affecting proximal tubule cell

function, could lead to cell injury and death.
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The present report aimed to determine the putative protective

effect of KAP in vivo using a KAP transgenic mouse model that

overexpresses KAP in proximal tubule cells 15]. Moreover, we

focused on elucidating the mechanisms that promote CsA-

dependent KAP degradation, and hypothesized that post-transla-

tional mechanisms such as phosphorylation/dephosphorylation-

related events could contribute to control of physiological KAP

levels modulation of its degradation.

Results

KAP Tg mice are protected against CsA-induced tubular
damage

We aimed to ascertain whether raised KAP levels in Tg mice

would attenuate CsA-induced damage in proximal tubule cells. To

this end, various doses of CsA were tested to select that which

would produce tubular injury without clinical kidney damage in an

attempt to observe the early effects of CsA on proximal tubule

cells. Augmented SCr and BUN, together with interstitial tubular

fibrosis, would reflect a clinical situation where early effects of CsA

on tubular epithelia would be overdue. Early tubular injury can be

assessed by expression of the kidney injury marker KIM-1 and the

cell proliferation marker PCNA [16–18]. A 50 mg/kg/day dose

of CsA was found to fulfill the exclusive tubular damage criteria

when administered to animals fed either a standard diet for 28

days or a low salt diet for 21 days. SCr and BUN levels were

unaffected under these CsA treatment conditions (Table S1), while

KIM-1 and PCNA expression increased upon CsA administration

in both standard and low-salt diet regimens in control littermates

(Fig. 1A and 1B left panels). Quantitative results are represented in

Figures 1C and 1D. KAP Tg mice exposed to the same treatments

that caused tubular injury in littermates did not express KIM-1

(Fig. 1 right panels, and Fig. 1C) and no changes were observed in

PCNA levels (Fig. 1B left panels, and Fig. 1D), thereby indicating

that KAP protects proximal tubule cells from CsA-induced toxicity

in vivo. Since KIM-1 and PCNA expression levels were unaffected

by the type of diet in vehicle-treated mice (Fig. 1C and 1D), only a

single representative picture for vehicle-treated control mice (VH)

was included (Fig. 1A and 1B).

Results showed that in CsA-treated Tg mice, KAP levels in the

S3 segment remained similar to those observed in vehicle-treated

control littermates (Fig 2A and 2B). Quantification of the degree of

KAP overexpression under control conditions and following

different CsA treatments was made by using the ImageJ software,

as indicated in Methods (Fig 2B). Since KIM-1 and PCNA levels

were not increased in CsA-treated Tg mice (See Figure 1), we

postulate that maintenance of KAP levels in proximal tubule cells

prevents Tg mice from CsA-induced tubular damage.

CsA activates calpain and caspases in mouse kidney and
cultured proximal tubule cells

Since KAP levels appeared to be critical in CsA-induced

toxicity, we aimed to investigate the mechanisms involved in KAP

degradation. Previous analysis of the KAP primary sequence

reported a putative PEST sequence encompassing 83–102 residues

3]. More detailed analysis using the epestfind program (http://

emboss.bioinformatics.nl/cgi-bin/emboss/epestfind) revealed a

new PEST sequence between residues 53 and 89 with a PEST

score of 6.35 (Fig. 3A). PEST sequences have been associated with

proteins with a short half-life, and act as recognition signals for

degradation via proteosome or calpain. Calpain activation was

then analyzed by western blot assays in crude kidney extracts from

CsA-treated mice using endogenous a-fodrin as a reporter. Results

showed that, after CsA treatment, a-fodrin became cleaved in a

pattern characteristic of calpain and caspases activation (150/

145 kDa and 120 kDa fragments, respectively) (Fig. 3B) 19,20].

Since CsA activates calpain and caspases in mouse kidney and

KAP is degraded in response to this immunosuppressant (Fig 2),

we aimed to ascertain whether calpain and caspases contributed to

CsA-induced KAP degradation. To this end, we used the PCT3

proximal tubule cell line [8,10] and determined the effects of the

calpain inhibitor MDL28170 and the pan caspase inhibitor Z-vad-

FMK on KAP stability. As shown in Fig 3C, KAP levels were

significantly preserved in the presence of both inhibitors, thereby

suggesting that CsA-induced KAP degradation might be mediated

by calpain and caspases in this cell line.

Protein kinase CK2 is involved in KAP phosphorylation in
cultured cells

PEST sequences are frequently conditional signals, and the

protein is not recognized until it is ‘‘marked’’ for degradation [21].

Phosphorylation is one of the molecular mechanisms described for

activating this process [22]. In this respect, Prosite sequence

analysis predicted Thr60, Thr66 and Thr87 within the PEST

sequence as potential phosphorylation sites for protein kinase

CK2, fulfilling the minimal consensus sequence for this kinase

(Ser/Thr-X-X-Asp/Glu). Ser65 and Ser86 can also be considered

as potential CK2 sites according to the requirements fulfilled by

other CK2 phosphorylated proteins [23] (Fig. 3A). All these sites

were also predicted to be CK2 phosphorylation sites by the

NetPhosK 1.0 Server. These data suggest that CK2 phosphory-

lation of KAP could favor its degradation. Thus, we aimed to

ascertain whether KAP was phosphorylated in transiently-

transfected PCT3 cells metabolically labeled with [32P]orthophos-

phate. Labelled-immunoprecipitates showed radioactive phos-

phate incorporation into a protein (Fig. 4A, left panel) recognized

by specific anti-KAP antibodies (Fig. 4A, right panel). Mock-

transfected cells were negative, thereby demonstrating that KAP

phosphorylation was specific.

To determine whether CK2 was the kinase responsible for KAP

phosphorylation, KAP-WT transfected PCT3 cells were exposed

to the CK2 inhibitors apigenin and DRB for one hour prior to

exposure of the cells to [32P]orthophosphate and for the ensuing

three hours of metabolic labelling. Both inhibitors reduced KAP-

WT phosphorylation (Fig. 4B). In order to further demonstrate

CK2 involvement in KAP phosphorylation, we carried out CK2a
siRNA-based experiments using KAP-WT transfected PCT3 cells

and showed that KAP phosphorylation decreased around one-half

when CK2a expression was reduced to 50% (Fig. 4C).

The ability of CK2 to phosphorylate KAP was also demon-

strated in vitro using recombinant His-KAP-purified protein and

recombinant CK2a or the reconstituted holoenzyme CK2(a2/b2)

(Fig. 5A and B). Stoichiometry analysis, with increasing quantities

of His-KAP protein (0.1 to 0.5 mg) incubated with the holoenzyme

to maximum phosphorylation (30 min), showed that CK2

incorporated up to 2.9 mols of phosphate/mol of His-KAP,

therefore indicating the presence of at least three CK2

phosphorylation sites in KAP protein (Fig. 5C).

KAP is phosphorylated at residues located in the PEST
sequence

As mentioned above, our results indicate the presence of at least

three CK2 phosphorylation sites in the KAP protein. A panel of

mutants was generated and phosphorylation analyzed in 32P-

labeled PCT3 transfected cells to map KAP phosphorylation sites

within the PEST sequence. Site-directed mutagenesis was

performed using the KAP wild-type sequence (KAP-WT).

KAP Prevents CsA-Induced Proximal Tubule Injury
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Individual phosphorylation site mutants (Fig. 6A) and ST65/66AA

and ST86/87AA double-site mutants (Fig. 6B) were tested. S65A

and T66A each reduced KAP phosphorylation by around 30%,

while the ST65/66AA double mutant provoked 60% inhibition.

Similarly, individual S86A and T87A mutations each reduced

phosphorylation by 10%, while ST86/87AA mutations decreased

by aproximately 30%. The T60A mutant reduced KAP

phosphorylation by around 20%. These data indicated that two

phosphorylation domains, Thr60 and Ser65/Thr66, placed in the

most N-terminal PEST sequence, exhibited the strongest impact

on KAP phosphorylation. To confirm this point, mutants

including T60A and ST65/66AA mutations (KAP-DM) or

residues T60A, ST65/66AA and ST86/87AA, resulting in the

PEST-free sequence KAP-TM form, were tested. Phosphorylation

of KAP-DM and KAP-TM was as low as 20% and 10%,

respectively (Fig. 6C). The residual phosphorylation/radioactivity

observed in KAP-TM could be attributable to other CK2

phosphorylation sites located outside the PEST region. Immuno-

precipitation with anti-phospho-Thr antibodies of KAP-WT and

KAP-TM in transfected PCT3 cell extracts confirmed that the

Thr residues mutated in KAP-TM participate in KAP-WT

phosphorylation (Fig. 6D).

Cyclosporine A-induced KAP degradation is affected by
PEST sequences integrity

Next, we wondered whether CsA-induced KAP degradation

would be influenced by KAP-phosphorylation. Dose-response CsA

treatment showed KAP-TM to be was more resistant than KAP-

WT (Fig. 7A). Time-course studies showed that in the absence of

CsA, KAP-WT and KAP-TM levels were similar and remained

stable for 9 h (Fig. 7B, left panel). By contrast, in the presence of a

10 mM CsA dose, KAP-WT decreased more rapidly than KAP-

Figure 1. KAP Tg mice are protected from CsA-induced tubular damage. Expression levels of KIM-1 (A) and PCNA (B) were assessed by
immunohistochemical staining in kidney sections of KAP Tg and control littermates treated with CsA, as indicated in Figure 1. Data shown are
representative of six animals per group. Magnification: 400x. Quantitative analysis of KIM-1 positive tubules (C) and of PCNA-positive cells (D) of
treatment conditions depicted in (A) and (B), respectively, are graphically represented. The number of PCNA-positive cells and KIM-1 positive tubules
in each section was determined by counting positively stained cells or tubules in 10 randomly chosen fields (x 200 magnification) per slide. Data
represent means 6 SD of six animals per group. The littermate-CsA group has more KIM-1 positive tubules, for both standard (p,0.0001) and low-salt
(p,0.0001) diets, compared to the littermate-VH, KAP Tg-VH and KAP Tg-CsA groups. Similarly, the littermate-CsA group has more PCNA positive
tubules, for both standard (p,0.0001) and low-salt (p,0.0002) diets, compared to the littermate-VH, KAP Tg-VH and KAP Tg-CsA groups (ANOVA,
with Tukey post-hoc test). *Significantly higher than KAP Tg-CsA.
doi:10.1371/journal.pone.0025746.g001
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TM (Fig. 7B, right panel). These results indicated that CsA-

mediated KAP degradation occurs in a dose- and time-dependent

manner and that the effects were increased in the presence of

intact PEST sequences in KAP.

Calpain-mediated KAP degradation is favored by PEST
sequences

As mentioned above, KAP phosphorylation sites for CK2 are

inserted in PEST sequences which act as recognition signals for

degradation by calpain. In an attempt to confirm calpain activation

in response to CsA in PCT3 cells, a specific substrate that becomes

fluorescent upon calpain-mediated degradation (t-Boc-LM-CMAC,

Molecular Probes) was used in these cells. CsA treatment promoted

calpain activation (Fig. 8A), which was specifically abrogated by the

selective calpain inhibitor MDL28170 (Fig 8B).

In intact cells, calpain exists in cytosol as an inactive enzyme

and translocates to membranes in response to increases in cellular

Ca2+ level [24]. Our results show, that in PCT3 cell extracts,

KAP-WT or KAP-TM were equally stable in the absence of Ca2+

(Fig. 8C, lanes 2 and 3). The presence of CaCl2 provoked strong

decay in KAP-WT (Fig. 8C, lane 4) that was dose-dependently

reversed by the concomitant presence of EDTA (Fig. 8C, lanes 5

and 6). Since effects were less prominent on KAP-TM, we

hypothesized that disruption of PEST motifs partially protected

KAP from degradation by an endogenous Ca2+-dependent

protease. The pattern of a-fodrin degradation confirmed endog-

enous calpain activation (Fig. 3B). Moreover, the calpain selective

inhibitor MDL 28170 prevented KAP and a-fodrin degradation in

the presence of 5 mM CaCl2 (Fig. 8C, lane 7).

To further assess whether KAP-WT and KAP-TM had

different calpain sensitivity, cell-free extracts from transiently-

transfected PCT3 cells were incubated with purified recombinant

m-calpain for different time periods (Fig. 8D). Under these

conditions, KAP-WT and KAP-TM were also degraded by m-

calpain, with KAP-TM being more resistant to proteolysis than

KAP-WT (Fig. 8D). The different sensitivity of KAP-TM and

Figure 2. KAP levels in KAP Tg and control littermates after CsA treatment. (A) KAP expression levels were assessed by
immunohistochemical staining in kidney sections of KAP Tg and control littermates using specific anti-KAP antibodies. Polyclonal antibodies
against KAP were raised by rabbit immunization with the NH2-CPKIPLAGNPVSPTS-CONH2 KAP peptide. Mice were treated with CsA (50 mg/kg/day)
for 28 days with standard diet or 21 days with a low-salt diet, as indicated in Fig 1. Vehicle-treated mice are marked as VH. Data shown are
representative of six animals per group. Magnification: 40x. (B) Quantification of KAP levels in Tg and littermates, under control conditions and
following different injuries, using the ImageJ software (ImageJ 1.44p, National Institutes of Health, Bethesda, Maryland, USA). Data represent means 6
SD of six animals per group. There are statistical significant differences for both standard (p,0.0001) and low salt (p,0.0001) diets, being littermate-
CsA KAP levels (*) lower than the others groups, and KAP Tg-VH KAP levels (**) higher than the other groups (ANOVA, with Tukey post-hoc test).
doi:10.1371/journal.pone.0025746.g002
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KAP-WT to proteolysis was also assessed in intact cultured PCT3

cells treated with CaCl2 and increasing doses of ionophor A23187

in the absence or presence of MDL 28170. KAP-WT was

degraded in the presence of ionophor A23187, in a dose-

dependent manner (Fig. 8E, lanes 1 to 5), which was blocked by

MDL 28170 (Fig. 8E, lanes 6 and 7). In these assays, KAP-TM

was more resistant to degradation than KAP-WT. In summary,

these findings shown in Figure 8 demonstrate that KAP is a target

for calpain and that the mutation of PEST sequences significantly

prevents KAP proteolysis mediated by this protease.

KAP degradation by calpain in vitro is enhanced by CK2
phosphorylation

To determine whether KAP phosphorylation by CK2 would

affect KAP degradation in vitro, and further demonstrate that

phosphorylation rather than residue substitution in itself affected

Figure 3. CsA activates calpain and caspases in kidney and cultured proximal tubule cells. (A) KAP protein analysis using the epestfind
program (http://emboss.bioinformatics.nl/cgi-bin/emboss/epestfind) identified a new putative PEST sequence (PEST 1) between residues 53 and 89.
This adds to the known putative PEST sequence (PEST 2) reported previously between residues 83 and 102. (B) Protease activation in mice treated
with olive oil (vehicle) or CsA at 80 mg/kg/day for 14 days was analyzed by Western blot assay in crude kidney extracts. Degradation of a-fodrin (240-
kDa) into the 150/145 kDa and 120 kDa fragments was determined to assess endogenous calpain and caspase activities, respectively. (C) KAP stability
was analyzed in PCT3 transfected cells treated for 3, 6 and 9 h with CsA 10 mM alone or in combination with either calpain or caspase inhibitors
(MDL28170 or Z-VAD-FMK, respectively). Actin levels were monitored as protein loading control (upper panel). Normalized densitometric values of
the western blot signals are shown in the lower panel of Fig 3C. The amount of KAP at time 0 h was taken as the 100% in each case. Values at
different times were referred to as a percentage of the total initial protein. *Significantly higher than the time-paired control (Student-t test, p,0,05).
doi:10.1371/journal.pone.0025746.g003
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KAP degradation, in vitro assays using recombinant His-KAP

protein and rat recombinant m-calpain were performed in the

presence of 5 mM CaCl2. His-KAP was incubated with CK2 in

phosphorylation buffer prior to the addition of calpain, and

degradation compared with results obtained with non-phosphor-

ylated His-KAP (Fig. 9A). Our results show that His-KAP

incubated with CK2 was degraded more extensively than the

non-phosphorylated one. In conclusion, these experiments show

the recombinant KAP protein to be a good substrate for calpain

and that phosphorylation by CK2 increases its degradation.

Recombinant His-KAP protein was incubated with m-calpain

in the presence of EDTA or the specific calpain inhibitor MDL

28170 to further confirm that direct KAP degradation in the

absence of CK2 phosphorylation was due to calpain (Fig. 9B). The

presence of EDTA in the assay buffer completely blocked His-

KAP degradation by m-calpain, thereby demonstrating absolute

Ca2+ dependence for efficient KAP degradation. The specific

calpain inhibitor MDL 28170 completely blocked substrate

degradation, even in the presence of the protease (Fig. 9B).

CK2 inhibitors prevent CsA toxicity in proximal tubule
cells

Once demonstrated that: i) KAP diminishes CsA-induced

toxicity, ii) KAP is phosphorylated by CK2 and iii) calpain-

Figure 4. Protein kinase CK2 is involved in KAP phosphorylation in cultured cells. (A) Transient transfected PCT3 cells with an empty
vector (mock) or containing the KAP-WT construct were metabolically labeled with [32P]orthophosphate. Cell lysates were immunoprecipitated with
the anti-HA antibody and the products resolved in an SDS-PAGE, transferred to a PVDF membrane and exposed to an X-ray film (left panel). Western
blot with specific anti-KAP-1 antibodies demonstrates that the phosphorylated protein was KAP (right panel). (B) KAP-WT transfected PCT3 cells were
exposed to the CK2 inhibitors apigenin and DRB for one hour before exposure of the cells to [32P]orthophosphate and for the ensuing three hours of
metabolic labeling. Densitometric autoradiographic values were referred to values of Western blot assays performed with an anti-KAP antibody (left
panel). The percentage of phosphorylation inhibition obtained in the presence of apigenin and DRB, in relation to the control situation, is graphically
represented (right panel). *Significantly lower than control (Student-t test, p,0,05). (C) PCT3 cells were co-transfected with KAP-WT and either non-
silencing control (siRNA con) or anti-CK2a siRNA. After 48h of transfection, the cells were exposed to [32P]orthophosphate, labeled for 3h and
processed as indicated in (A). *Significantly lower than siRNA control (Student-t test, p,0,05).
doi:10.1371/journal.pone.0025746.g004
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dependent degradation of KAP is favored by CK2 phosphory-

lation, we wondered what the effect of CK2 and calpain

inhibitors would be on cell viability upon CsA treatment. MDL

28170 calpain inhibitor, apigenin and DRB CK2 inhibitors, at

the pre-established non-toxic doses, were used on KAP

transfected PCT3 cells to determine their effect on CsA-induced

toxicity. As shown in Fig 10 (upper part), both CK2 inhibitors,

apigenin and DRB, protect cells from toxicity. Unexpectedly,

although MDL 28170 in itself is non-toxic, it became toxic in

combination with CsA (lower panel Fig 10). Consequently,

although this calpain inhibitor would preserve KAP degradation,

its use would not be recommended owing to its toxic effects when

combined with CsA.

Discussion
Since CsA constitutes a very potent therapeutic tool, better

understanding of the molecular mechanisms underlying undesir-

able kidney toxicity would be extremely important from a clinical

point of view. While renal vasoconstriction is a characteristic of

acute CsA toxicity and is largely reversible with dose reduction

[25], an irreversible decline in kidney function associated with

structural changes may also be observed after long-term CsA use

[26]. Although the molecular mechanisms of CsA toxicity have not

been completely elucidated, clinical and experimental studies have

provided accumulated evidences for a direct effect of CsA on

proximal tubule epithelial cells [27,28] that has been associated

with chronic renal failure [29]. Morphologic evidence suggests

Figure 5. KAP is a substrate for protein kinase CK2 in vitro. (A) Ability of CK2 to phosphorylate KAP in vitro using mouse recombinant His-KAP-
purified protein as substrate and recombinant purified CK2 as the kinase in the presence of [-32P]ATP (Amersham Biosciences). Products were
resolved in a 15% SDS-PAGE and visualized with Coomassie Blue staining. Phosphorylated His-KAP recombinant protein was detected by
autoradiography. (B) Time-course phosphorylation assay. 0.5 mg of His-KAP purified protein were incubated in the presence of 2 pmols of the
holoenzyme. Products were resolved in a 15% SDS-PAGE and visualized with Coomassie Blue staining. Phosphorylated His-KAP recombinant protein
was detected by autoradiography (left). Ratios between autoradiographic and Coomassie densitometric signals were graphically represented (right).
(C) Stoichiometry of the His-KAP phosphorylation. Increasing amounts of mouse recombinant His-KAP-purified protein were incubated for 30 min in
the presence of 2 pmols of the holoenzyme. CK2 was able to incorporate up to 2.9 mols of phosphate/mol of His-KAP, indicating that there are at
least three sites that can be phosphorylated by the kinase.
doi:10.1371/journal.pone.0025746.g005
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that early sublethal tubular damage is confined to the S3 segment

of the proximal tubule [14]; however the reason for this specificity

has not been unraveled. Results presented in this paper indicate

that CsA-induced downregulation of KAP, which occurs specif-

ically in the S3 segment, is associated with expression of kidney

injury marker KIM-1. Moreover, threshold maintenance of KAP

levels achieved in CsA-treated KAP Tg mice protects against the

tubular injury observed in control littermates. KIM-1 is more

sensitive and represents a much earlier kidney injury marker than

SCr, BUN and urinary NAG in multiple rat models of kidney

injury, thereby indicating that KIM-1 measurements may facilitate

sensitive, specific and accurate prediction of nephrotoxicity in

preclinical drug screening [18]. Significant KIM-1 overexpression

in chronic CsA nephropathy characterized by tubular injury in

rats has also been observed [30]. Our results suggest that KAP

exerts a protective effect in vivo, and that KAP degradation by CsA

might represent a novel mechanism that underlies CsA-induced

toxicity in the S3 segment of the proximal tubule. Understanding

KAP degradation mechanisms would be extremely useful for

developing new therapeutic strategies to prevent CsA toxicity in

the kidney while maintaining their immunosuppressive effects.

Previous analysis of the KAP primary sequence reported a

putative PEST sequence encompassing 83–102 residues [3]. A

more detailed analysis revealed a new PEST sequence between

residues 53 and 89 with a pest score of 6.35. PEST sequences are

rich in proline (P), glutamic acid (E), serine (S) and threonine (T)

residues, are associated with proteins with a short half-life, and act

as signals for degradation via proteosome or calpain. Some PEST

Figure 6. In cultured kidney cells KAP, is phosphorylated at residues located in the PEST sequence. (A) Residues Thr60, Ser65, Thr66,
Ser86 and Thr87 were mutated and KAP phosphorylation analyzed in 32P-labeled PCT3 cells overexpressing KAP mutants. Numbers in the lower panel
of Fig. A and in the following panels were calculated by densitometric analyses of phosphorylated protein and normalized by total KAP protein levels.
The ratio corresponding to KAP-WT protein was used as a reference in each case. * p,0,05 vs WT (Student-t test). (B) Individual domains that include
T60A, ST65/66AA and ST86/87AA were also tested. As depicted in Fig. B, all three constructs resulted in a reduction in KAP phosphorylation. * p,0,05
vs WT (Student-t test). (C) New mutants that include T60A and ST65/66AA (KAP-DM) and residues T60A, ST65/66AA and ST86/87AA (KAP-TM) were
also produced. The phosphorylation capacities of DM and TM constructs were assessed as explained in part A of this figure. * p,0,0001 vs WT
(Student-t test).(D) Immunoprecipitation of KAP-WT and KAP-TM in transfected PCT3 cell extracts using anti-phospho-Thr antibodies (##), and
further immunoblotting with anti-KAP specific antibodies showed that the Thr residues mutated in the KAP-TM form are phosphorylated in the WT
form. Immunoprecipitation of KAP-WT cell extracts using anti-CycE antibodies was used as a negative control (#).* p,0,0001 vs WT (Student-t test).
doi:10.1371/journal.pone.0025746.g006
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sequences appear to be constitutive proteolytic signals, as for

example, the carboxyl terminus of mouse ODC [22]. However,

many PEST sequences are conditional signals, and can be

activated in a number of ways [22]. Different molecular

mechanisms, such as ligand binding [31], exposure to light and

phosphorylation [22] have been described as activating this

process. The paradigm of PEST-containing protein regulated by

phosphorylation might be I| Ba. PEST-dependent I| Ba
degradation involves CK2 phosphorylation of serine/threonine

residues within the PEST domain of I| Ba that triggers calpain-

mediated degradation [32]. Thus, we wondered whether KAP

degradation occurred by a process similar to I| Ba. Our results

show that calpain is activated by CsA both in vitro and in vivo and

that calpain is involved in CsA-induced KAP cleavage. Calpains

are intracellular cysteine proteases that play crucial roles in basic

physiologic and pathologic processes [24]. Calpain has been

reported to mediate ischemic/hypoxic injury in brain [33], kidney

[34], liver [35] and myocardium [19]. Cytoprotection by calpain

inhibitors has been observed during hypoxia in rat renal proximal

tubules [36], cerebrocortical neurons [37] and rat hepatocytes

subjected to anoxia. Calpain inhibitors have also been found to be

effective in blocking cell death induced by a diverse group of

toxicants in rat and rabbit proximal tubules [38]. Calpains are

calcium-dependent proteases and, as for ischemic injury, levels of

intracellular calcium have proved to play an important role in CsA

toxicity [39,40]. Reduction in extracellular calcium levels in the

media or addition of calcium entry antagonists protected against

CsA-induced cell damage [41]. Moreover, expression of calbindin-

D28K, a cytosolic calcium binding protein, in cultured mouse

proximal tubular cells protects against CsA toxicity, most likely

through its buffering effects on intracellular calcium [42]. Since

the critical substrates of calpains during cell injury/death remain

unidentified, we postulate that KAP might be a potential target for

understanding the molecular mechanisms underlying injury in

proximal tubule cells.

The KAP PEST sequence presents residues Thr60, Thr66 and

Thr87 as potential phosphorylation sites for CK2. Ser65 and

Ser86 can also be considered potential CK2 sites according to the

requirements fulfilled by other CK2 phosphorylated proteins [23].

CK2 is a ubiquitous, constitutively-active Ser/Thr protein kinase

with a great diversity of substrates involved in a wide range of

cellular functions [23,43]. Several short-life proteins containing

PEST sequences have been found phosphorylated by CK2 [44–

46]. Our results show that CK2 phosphorylated KAP in cultured

PCT3 cells and in vitro phosphorylation assays. Site-directed

mutagenesis of residues located in KAP PEST sequences reduced

KAP-TM mutant (T60A, ST65/66AA and ST86/87AA) phos-

phorylation levels to 10% of those found in KAP-WT. Moreover,

mutation of these residues strongly diminished the PEST score of

these sequences. We observed that KAP-TM was more resistant

than KAP-WT in the following experimental conditions: i) cell-

free extracts in the presence of calcium; ii) cell-free extracts

incubated with purified recombinant m-calpain; iii) intact cultured

cells incubated with calcium in the presence of the ionophore

A23187; and iv) intact cells treated with CsA. Taken together,

these results support the involvement of PEST sequences in KAP

recognition by calpain. It is noteworthy that in all the cases

mentioned above, KAP-TM was still partially degraded, which

suggests that residues other than those mutated in the KAP-TM

could contribute to calpain-mediated KAP degradation.

The implication of CK2 phosphorylation in KAP degradation

was reinforced by the fact that His-KAP incubated with CK2 was

degraded more extensively than the non-phosphorylated His-

KAP. Since the latter was also degraded when exposed to calpain,

Figure 7. Cyclosporine A-induced KAP degradation is affected by PEST sequence integrity. (A) PCT3 cells transfected with the KAP-WT or
the KAP-TM mutant vectors were treated with increasing doses of CsA (0, 1, 2.5, 5, 10 and 15 mM) for 20h. KAP protein levels in cell lysates were
analyzed by western blot using anti-HA antibodies. PVDF membranes were stained with Coomassie Blue as a loading control (not shown). Normalized
densitometric values of the western blot signals are shown in the right panel. Amount of KAP-WT and KAP-TM at time 0 h were taken as 100% in each
case. Values at different times were referred to as a percentage of the total initial protein. * p,0,05 and ** p,0,001 vs dose-paired KAP-WT
transfected cells (Student-t test).(B) Time-course study on KAP stability from a 1 to 9 h time period, using a single dose of CsA (10 mM) in PCT3 cells
transfected with the KAP-WT or the KAP-TM mutant vectors. KAP protein was analyzed as in (A).
doi:10.1371/journal.pone.0025746.g007
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Figure 8. Calpain-mediated KAP degradation is favored by PEST sequences. (A) PCT3 cells were treated with 10 mM CsA for 3, 6 and 9 h
and the fluorescence calpain substrate t-Boc-LM-CMAC (20 mM) was added for the last 45 min. Calpain activity was then analyzed by fluorescent
microscopy. (B) PCT3 cells were treated with CsA 10 mM for 6 h alone or in presence of the calpain inhibitor MDL28170 (10 mM). Calpain activity was
measured as above. (C) Transiently-transfected PCT3 cells with expression constructs containing the KAP-WT or the KAP-TM mutant were lysed and
protein extracts prepared. Extracts were incubated in assay buffer containing 5 mM CaCl2, 5 or 10 mM EDTA and/or 10 mM of MDL 28170. KAP and a-
fodrin proteins were detected by western blot using antibodies against the HA epitope or specific anti-a-fodrin antibodies. The right panel represents
the signal quantifications, taking as 100% the densitometric values detected at time 0. * p,0,01 and ** p,0,001 vs treatment-paired KAP-WT
transfected cells (Student-t test). (D) Transiently-transfected PCT3 cells with constructs expressing KAP-WT or KAP-TM were lysed 24h after
transfection and crude extracts incubated with the purified m-calpain enzyme for different times. Steady-state protein levels of recombinant KAP-WT
and KAP-TM or the endogenous a-fodrin were determined by Western blot assays. The activity of m-calpain was demonstrated by the efficient
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our results suggest that although KAP degradation by calpain is

enhanced by CK2 phosphorylation, this is not an absolute

requirement. The role of PEST sequences underlying calpain

substrate recognition is not fully understood. Mutations of PEST

regions either abrogate substrate sensitivity to calpain [31,47] or

have no effect at all [48,49]. Moreover, a significant fraction of

calpain substrates have no PEST region at all [49]. Calpains are

puzzling in that their requirement for calcium in vitro is

considerably greater than most estimates of cytosolic calcium levels

[49]. It was initially proposed that PEST regions could sequester

calcium because of their negative charge and thereby present

calpains not only with susceptible bonds but with the required co-

factor as well [50]. In this respect, CK2 phosphorylation within

PEST sequences could bring, through phosphate group addition to

targeted residues, extra negative charges that could enhance

calcium sequestration and thus foster calpain activation.

This work provides a novel mechanism for CsA-induced toxicity

in proximal tubule cells based on KAP degradation by calpain,

favored by CK2 phosphorylation of KAP PEST sequences. KAP-

mediated protection against CsA-induced injury in proximal tubule

cells, both in KAP Tg mice and in KAP transfected cells in culture,

indicates that mechanisms either promoting KAP expression or

preventing KAP degradation could represent specific therapeutic

approaches to protecting proximal tubule cells from CsA damage

and cardiovascular-related events. We previously reported that

KAP Tg mice show hypertension and renal alterations including

focal segmental glomerulosclerosis, proteinuria, glycosuria, and

fibrosis [15]. While this phenotype appears at 6 to 8 months of age,

likely due to sustained chronic KAP over-expression and increased

oxidative stress exposure, the younger KAP Tg mice used in the

present study did not show any sign of injury at 10–14 weeks of age,

as observed by KIM-1 expression (Fig 1). The fact that sub-optimal

KAP levels correlate with proximal tubule cell injury in CsA-treated

mice or that supra-optimal KAP levels promote augmented

oxidative stress and hypertension in Tg mice indicates the

importance of maintaining KAP levels under tight regulated

control. Besides the complex transcriptional regulatory mechanisms

that control KAP mRNA levels in the kidney, we propose herein

that KAP degradation by calpain after CK2 phosphorylation

represents a novel layer of fine-tuning control on KAP protein levels

and, therefore, a potent system to quickly respond to pathophys-

iologic demands. Furthermore, we propose that both KAP and

CK2 could represent new therapeutic targets to ameliorate CsA

toxicity in proximal tubule cells of the kidney.

Materials and Methods

Ethics statement
All studies were in compliance with the rules of the European

Union and the US Department of Health and Human Services

Guide for the Care and Use of Laboratory Animals. All

procedures were approved by the authors’ Institutional Review

Board on Animal Health: Comitè Ètic de Experimentació Animal

(CEEA) Hospital Universitari Vall d’Hebron. Permit Number FIS

PI08/1351.

DNA constructs
The pHA-KAP-HA mammalian expression vector contains the

KAP cDNA. Site-directed mutagenesis was performed by PCR

using the pHA-KAP-HA as template and overlapping primers

encoding the mutations, following the manufacturer’s instructions.

Mutations were verified by DNA sequencing.

KAP was also subcloned into pET-14b (Novagen) with a His6

tag in the N-terminal domain (pET-14b/KAP). Human CK2a
and CK2b subunits were cloned in pQE-30 vector 51]. KAP,

CK2a and CK2b proteins were expressed in Escherichia coli and

purified as described 52].

Cell culture, transfection and siRNA experiments
PKSV-PCT (PCT3 clone) were cultured and transfected as

described 7,8]. CK2a siRNA oligonucleotides were from Qiagen

and silencing performed as indicated. CK2a evels were detected

with anti-CK2a antibodies (Santa Cruz Biotechnologies).

Phosphorylation assays in cultured cells
pHA-KAP-HA transfected cells were labeled in vivo with

[32P]orthophosphate (Amersham Biosciencies) in the presence,

where indicated, of protein kinase CK2 inhibitors Apigenin and

DRB (5,6-dichlorobenzimidazole riboside) (Sigma). Lysate super-

natants, incubated with anti-HA high-affinity antibody (Roche

Molecular Biochemicals), were precipitated with slurry protein G-

Sepharose and proteins transferred to PVDF membranes. 32P-

labeled KAP-HA was detected by autoradiography. Membranes

were then incubated with anti-KAP antibodies and the blot was

developed using chemiluminescence (ECL Plus, Amersham Phar-

macia Biotech) and exposed to X-ray film (Kodak). Quantifications

were made with a BioRad GS800 Calibrated Densitometer and

ImageQuant software (Molecular Dynamics) and phosphorylation

normalized by dividing the radioactivity incorporated (into KAP-

HA) by the immunoreactive density of KAP-HA.

Alternatively, transfected cells were lysed in precipitation buffer

and immunoprecipitated with anti-pThr antibody or anti-CycE

antibody (negative control). Immunoblotting was performed with

anti-KAP. 1 mg of total cell lysate protein was also loaded onto the

gel and labeled as the INPUT.

KAP stability after CsA treatments
Eighteen hours post-transfection, PCT3 cells expressing KAP-WT

or KAP-TM were treated with increasing doses of CsA (Sandinmun,

Roche) (0, 1, 2.5, 5, 10 and 15 mM) for 20 h. Protein levels in extracts

were examined by Western blot with anti-HA antibody. KAP stability

was also analyzed in transfected cells incubated with 10 mM CsA at

different time points alone or in combination with either calpain or

caspase inhibitors (MDL28170 or Z-VAD-FMK, respectively).

In vitro degradation assay
Lysates from transfected cells were incubated with digestion

buffer, with or without 5 mM CaCl2, in the presence or not of

EDTA or MDL 28170. In another set of experiments, extracts

were incubated with purified recombinant m-calpain in digestion

degradation of the a-fodrin protein upon exposure to the enzyme. Quantification assessed by densitometric analysis is represented in the right-hand
panel of figure C. * p,0,01 vs time-paired KAP-WT transfected cells (Student-t test). (E) PCT3 cells transiently transfected with the KAP-WT and the
KAP-TM constructs were exposed to increasing doses of ionophor A23187 and 5 mM CaCl2, in the absence or presence of the specific calpain
inhibitor MDL 28170. Twenty-four hours post-transfection, and after 45 min of calpain activation treatment, cells were lysed and extracts analyzed by
western blot assays to determine steady-state KAP levels. The 150/145 a-fodrin proteolyzed fragments appear under conditions that prompted
activation of endogenous calpain in the cells. As above, densitometric analyses of western blots are represented in the lower panel of the figure. The
situation control in each case was taken as 100% of protein expression levels and used as a reference for the remaining treatments. * p,0,01 vs dose-
paired KAP-WT transfected cells (Student-t test).
doi:10.1371/journal.pone.0025746.g008
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buffer (containing CaCl2). Reactions stopped at various time

points were resolved by Western blot using anti-HA or anti-a-

fodrin antibodies. For in vitro KAP phosphorylation and degrada-

tion assays, recombinant His-KAP samples were incubated in

kinase buffer in absence or presence of the CK2 holoenzyme [53].

His-KAP was digested with recombinant m-calpain in digestion

buffer with CaCl2 alone or in the presence of EDTA or MDL

28170. Reactions were stopped by addition of SDS-PAGE loading

buffer and electrophoresed . Proteins were visualized by gel

Coomassie Brilliant Blue staining.

Calpain activity assays
pHA-KAP-HA transfected cells were washed with PBS, treated

with increasing doses of A23187 (Sigma) and 5mM CaCl2 in

Figure 9. KAP degradation by calpain in vitro is enhanced by CK2 phosphorylation. (A) CK2 phosphorylation promotes in vitro degradation
of KAP by calpain. 0.5 mg of mouse recombinant His-KAP-purified protein were incubated in the presence (lanes 5 to 8) or absence (lanes 1 to 4) of 2
pmols of CK2a2/b2 and ATP for 30 min. To each reaction, 0.18 U of m-calpain were added and incubated in assay buffer containing 5 mM CaCl2 for 0,
2, 5 and 10 min. Reactions were stopped by addition of loading buffer and products run in a 15% SDS-PAGE. Proteins were visualized by Coomassie
Blue staining and graphic representation after densitometric analysis shown in the lower panel of the figure. It represents the normalized signal
quantifications, taking as 100% the densitometric values detected at time 0. * p,0,05 and ** p,0,01 vs time-paired His-KAP incubated in the absence
of CK2a2/b2 (Student-t test). (B) Non-phosphorylated KAP degradation is due to calpain. 0.5 mg of mouse recombinant His-KAP-purified protein were
incubated with 0.18 U of m-calpain in assay buffer containing 5 mM CaCl2, at different times; in these same conditions, at the 10 min time, 10 mM
EDTA (lane 5) or 10 mM of MDL 28170 (lane 6) were also added. Degradation was visualized by Coomassie Blue in SDS-PAGE and quantification
assessed by densitometric analysis (lower panel). * p,0,001 vs untreated His-KAP (Student-t test).
doi:10.1371/journal.pone.0025746.g009
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absence or presence of MDL 28170 and lysed with RIPA buffer.

Protein extracts were analyzed by Western blot with anti-HA and

anti-a-fodrin antibodies.

To assay the direct effect of CsA on calpain activation, PCT3

cells were plated at 50-80% confluence on glass coverslips for 24h

and then treated with CsA 10 mM from 0 to 9h, in the presence of

t-Boc-LM-CMAC (20 mM, Molecular Probes) for the last 45min.

Samples were observed under a fluorescent microscope (excitation

329nm, emission 409nm). Calpain-catalyzed cleavage of Boc-LM-

CMAC creates a fluorescent product. The fluorescence intensity of

the samples correlates with calpain activity.

Animal experimental protocol
Ten to 14-week-old male KAP-Tg mice and their littermates

(15), were treated for 28 days with vehicle alone (n = 6) or CsA

50 mg/kg/day by subcutaneous injection (n = 6). Another group of

animals received a low-salt diet (0.01% sodium, Harlan, Tekland)

and, after one week, a daily subcutaneous injection of CsA 50 mg/

kg/day (n = 6) or vehicle alone (n = 6) for 21 days.

Mice were euthanized and kidneys obtained from each animal

for further analysis, in accordance with the requirements of the

Spanish Government and the European Community (Real

Decreto 1201/2005: B.O.E. no. 252. 21/10/2005).

Functional studies
Serum was collected by cardiac puncture at the time of

euthanasia. Serum creatinine (SCr) and serum blood urea nitrogen

(BUN) were determined at the Clinical Biochemistry Service of the

Veterinary Hospital of the Universitat Autònoma de Barcelona.

Immunohistochemical analysis
Tissue sections were analyzed by indirect immunoperoxidase

staining as previously described [15] with anti-KAP and anti-PCNA

monoclonal antibodies (Santa Cruz Biotechnology). Goat anti-KIM1

polyclonal antibody (R&D Systems) was detected using the LSAB

staining method (Dako LSAB+ System-HRP) following the manu-

facturer’s protocol. The number of PCNA- and KIM-1-positive

tubules in each section was determined by counting positively-stained

cells or tubules in 10 randomly chosen fields (x 200 magnification) per

slide. KAP levels in Tg mice and littermates, under control conditions

and following different injuries, were quantified using the ImageJ

software (ImageJ 1.44p, National Institute of Health, Bethesda,

Maryland, USA) [54,55]. Statistical analysis of the staining intensity

was made using an ANOVA one-way test for each diet , followed by a

least significant difference post-hoc test (STATGRAPHICS Plus

statistical package, Statistical Graphics Corp.).

Cell viability assay
CsA cytotoxicity was measured by LDH release assay using a

commercial kit (LDH kit, Roche,

Mannheim, Germany) according to the manufacturer’s instruc-

tions. The released LDH is expressed as the percentatge of total

LDH measured after lysis of the cells.

Western blot analysis
Kidneys were homogenized in lysis buffer (40 mM Tris-HCl,

4% CHAPS, 8 M Urea). Western blot analysis was performed

with anti-KAP polyclonal antibody [15], anti-actin monoclonal

antibody (Sigma) and anti-a-fodrin monoclonal antibody (Biomol

International). The protein content of cellular extracts was

quantified by the Bradford assay. Total cell extract protein was

run on SDS-PAGE gels, transferred onto PVDF membranes and

incubated with the corresponding antibodies. The membranes

were developed with the enhanced chemiluminescence method

(Pierce, Rockford, IL, USA).

Statistical Analyses
Statistical analysis of staining intensity in kidney tissue sections

was made using an ANOVA one-way test for each diet, followed

by a Tukey post-hoc test. Results from figures 3, 4, 5, 6, 7, 8, 9,

and 10 are expressed as mean 6 SEM (standard error of the

mean) of at least three independent experiments. Statistical

analyses were performed with commercially-available software

(Statgraphics Plus, Manugistics, Rockville, MD, USA).

Supporting Information

Table S1 Percent change of functional parameters in
each group in respect to vehicle.

(PDF)

Acknowledgments

We thank Dr. Javier Inserte and Dr. David Garcı́a Dorado, from the

Institut de Recerca Vall d’Hebron, for kindly providing recombinant m-

calpain, calpain inhibitor MDL 28170 and advice on calpain-mediated

degradation assays. We also thank Cristine O’Hara for English revision of

the manuscript.

Author Contributions

Conceived and designed the experiments: AM EI. Performed the

experiments: OT ES GP BB MAM TS. Analyzed the data: AM EI OT

ES. Contributed reagents/ materials/analysis tools: JLH MP. Wrote the

paper: AM.

Figure 10. CK2 inhibitors prevent CsA toxicity in proximal
tubule cells. The CK2 inhibitors apigenin and DRB (A) and the calpain
inhibitor MDL 28170 (B) were used, at the pre-established non-toxic
doses (50 mM for apigenin and DRB, and 5 or 10 mM for MDL 28170), on
KAP transfected PCT3 cells to determine their effects on CsA-induced
toxicity, measured by LDH release assays. The released LDH is expressed
as the percentatge of total LDH measured after lysis of the cells. The
data are then expressed taking the value of inhibitor or vehicle treated
cells as 100% and are the mean 6 S.E.M of three different experiments.
* p,0,05 vs CsA-treated pKAP control transfected PCT3 cells (Student-t
test).
doi:10.1371/journal.pone.0025746.g010
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