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Abstract

In a classical dogma, pathogens are sensed (via recognition of Pathogen Associated Molecular Patterns (PAMPs)) by innate
immune cells that in turn activate adaptive immune cells. However, recent data showed that TLRs (Toll Like Receptors), the
most characterized class of Pattern Recognition Receptors, are also expressed by adaptive immune B cells. B cells play an
important role in protective immunity essentially by differentiating into antibody-secreting cells (ASC). This differentiation
requires at least two signals: the recognition of an antigen by the B cell specific receptor (BCR) and a T cell co-stimulatory
signal provided mainly by CD154/CD40L acting on CD40. In order to better understand interactions of innate and adaptive B
cell stimulatory signals, we evaluated the outcome of combinations of TLRs, BCR and/or CD40 stimulation. For this purpose,
mouse spleen B cells were activated with synthetic TLR agonists, recombinant mouse CD40L and agonist anti-BCR
antibodies. As expected, TLR agonists induced mouse B cell proliferation and activation or differentiation into ASC.
Interestingly, addition of CD40 signal to TLR agonists stimulated either B cell proliferation and activation (TLR3, TLR4, and
TLR9) or differentiation into ASC (TLR1/2, TLR2/6, TLR4 and TLR7). Addition of a BCR signal to CD40L and either TLR3 or TLR9
agonists did not induce differentiation into ASC, which could be interpreted as an entrance into the memory pathway. In
conclusion, our results suggest that PAMPs synergize with signals from adaptive immunity to regulate B lymphocyte fate
during humoral immune response.
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Introduction

Immune response activation by pathogens involves various

receptors, known as pattern recognition receptors (PRRs) that

recognize pathogen-specific molecular patterns (PAMP for ‘‘Path-

ogen Associated Molecular Pattern’’) (reviewed in [1]). Among the

seven classes of PRRs, the best characterized class is Toll-Like

Receptors (TLRs), a family of type I transmembrane proteins

characterized by highly divergent leucine-rich extracellular domains

and highly conserved Toll-IL-1R cytoplasmic domains. To date, 11

mouse and human TLRs have been described allowing detection of

specific pathogen markers that included lipopolysaccharide (LPS),

double-standed RNA, peptidoglycan and hypomethylated DNA

(reviewed in [2]). Most TLRs (TLR 1, 2, 4, 5, 6, 10 and 11) are

expressed on the cell surface, whereas others TLRs (TLR 3, 7, 8 and

9) are present in endosomal compartments. Furthermore, TLRs are

expressed as homodimers or as heterodimers (TLR1+TLR2 or

TLR2+TLR6). Finally, TLRs are linked by adapter molecules

(MyD88 or TRIF) to intracellular signaling pathways that generally

lead to transcription of NF-kB and IRF target genes.

Pathogen recognition by PRRs activates innate immune cell,

including dendritic cells that can in turn activate the adaptive

immune response. Moreover, many reports described that TLR

expression on lymphocytes allowed direct activation of adaptive

immune responses by PAMPs, such as B cell activation and

differentiation into antibody secreting cells (ASC). It was described

years ago that activation of the TLR4 pathway by LPS triggers

mouse B cell proliferation, differentiation into ASC and isotype

switch [3]. More recently, using mice deficient for MyD88, Pasare

et al. [4] showed that direct TLR-signal is essential for B cell

activation and differentiation into ASC. These results were

opposed by Gavin et al. [5] who showed, by using mice deficient

in both MyD88 and TRIF, that direct-TLR signal was not

necessary for B cell activation and differentiation. Finally, Meyer-

Bahlburg et al. [6] showed that B-cell intrinsic TLR signals

amplified but were not required for humoral immunity. In the

same way, various in vitro assays using mouse B cells showed that

TLR1/2 or 2/6 [7–11], TLR3 [12], TLR4 [7–8,10], TLR7 [13–

14], TLR8 [15] and TLR9 [7–8,10] agonists induced B cell

proliferation, expression of activation markers and cytokine
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production while TLR2 [7–10], TLR4 [8,10], TLR7 [8,10] and

TLR9 [8,10] agonists induced B cell differentiation into ASC. Of

note, TLR5 expression on mouse B cells is still controversial and B

cell activation or differentiation by TLR5 agonists has never been

described [8,10]. Similarly, various reports have led to the

conclusion that mouse TLR8 is nonfunctional [16–17]. More

recently, TLR8 has been described as a negative regulator of

TLR7-induced immune response [18].

Beside these newly described innate stimuli, the current dogma

postulates that 2 signals are necessary to drive T-dependent naive

B cell proliferation and differentiation into ASC: recognition of an

antigen by the B cell-specific receptor (BCR) and a T cell co-

stimulatory signal in which CD40L (CD154) expressed on

activated T cells activates CD40 on B cells. Interaction of CD40

with CD154 is essential for antibody production and isotype switch,

and therefore for an optimal humoral immune response. Moreover,

various studies showed that dual stimulation of B cells through BCR

and CD40 leads to an enhancement of antibody and cytokine

production (reviewed in [19–20]). However, the effects and

mechanisms of interactions between innate immune receptors and

BCR or CD40 are not yet well defined. Some reports showed that

addition of CD40 signal to TLR7 or TLR9 agonists enhanced

cytokine production [21–22] as well as B cell differentiation into

ASC [22–23] in both human and mouse primary B cells. These

effects were increased after addition of a BCR signal. In contrast,

Knödel et al. [24] showed that although TLR4 agonists synergize

with CD40L to induce plasma cell differentiation, addition of BCR

signal results in suppression of B cell differentiation into ASC.

B cells play an important role in protective immunity [25] as

producers of both antibodies and cytokines. Activation of naive B

cells results in expression of activation marker (such as CD69 and

CD86), production of cytokines (for example CCL22 [26]) and

proliferation. Among proliferating cells, some differentiate into

ASC and others into memory B cells. Some cells migrate to

germinal centers to finish their differentiation and produce highly

efficient neutralizing antibodies. To this end, the affinity

maturation of antibody response is required and involves

immunoglobulin class switch recombination (CSR) that directs

antibody production from IgM to IgG, IgA and IgE and somatic

hypermutation (SHM) that modifies the Ig variable region gene to

obtain BCR with high affinity for antigen. Both events are

controlled by the activation-induced cytidine deaminase (AID)

(Reviewed in [27]). CD138 (Syndecan-1), a proteoglycan that

recognizes extracellular matrix and growth factors, is present on

ASC and is often used as marker of plasma cells [28]. However, as

CD138 is also expressed on plasmablasts [29] prior to the fully

differentiated plasma cells, ASC are characterized not only by a

high expression of CD138 but also by a low expression of B220

molecule [30]. Differentiation to ASC correlates with the

expression of a number of transcription factors among which B

lymphocyte-induced maturation protein 1 (Blimp-1) has been

proposed to be the master regulator [31]. Conversely, the

transcription factor Pax5 is associated with the mature B cell

phenotype and downregulated in ASC [32].

Here, we systematically screened the effects of combined

activation of TLRs, CD40 or the BCR on B cell proliferation,

activation and differentiation into ASC. To this end, mouse spleen

B cells were activated by different TLR agonists alone or in the

presence of recombinant mouse CD40L and/or anti-BCR

antibodies to mimic antigen. As expected, mouse B cells stimulated

with TLR agonists were activated, proliferated and differentiated

into ASC. Nevertheless, differentiation to ASC was not observed

for TLR3 and TLR9 agonists. Addition of a CD40 signal to TLR-

stimulated B cells induced either increased B cell proliferation and

activation (TLR3, TLR4, and TLR9) or increased B cell

differentiation into ASC (TLR1/2, TLR2/6, TLR4 and TLR7).

Furthermore, differentiation into ASC was not increased by

addition of BCR signal after stimulation of CD40 and TLR3 or

TLR9.

Taken together, our results suggest that signals originating

directly from pathogens interact with signals from adaptive

immunity to regulate B lymphocyte fate during humoral immune

responses.

Results

TLR-3, -4 and -9 but not TLR -1/2, -2/6 and -7 agonists
synergize with CD40L to increase mouse spleen B cell
proliferation and activation

To evaluate the effect of dual B cell stimulation by both innate

and adaptive immune signals on cell proliferation/survival and

activation, mouse spleen B cells were cultured in the presence of

increasing concentration of TLR and CD40 agonists. [3H]thymi-

dine incorporation, cell surface expression of CD69 and CD86,

and CCL22 production (the first cytokine produced during B cell

activation [26]) were measured. TLR2/6 pathway was activated

by Pam2CSK4, TLR1/2 by Pam3CSK4, TLR3 by poly (I:C),

TLR4 by lipopolysaccharide (LPS), TLR7 by R848 and TLR9 by

unmethymated CpG oligodeoxynucleotides type C (ODN 2395

described to activate B and dendritic cells [33]). CD40 pathway

was activated by recombinant mouse CD40L (mCD40L).

As expected, our data indicated that, in the absence of

mCD40L, agonists of TLR 1/2, 2/6, 4 and 7 but not agonists of

TLR3 and TLR9 induced strong mouse B cell proliferation

(Figure 1). Although mCD40L alone induced only a slight

proliferative response (Figure 1, white bars), addition of

mCD40L to TLR3 (Figure 1C), TLR4 (Figure 1D) and TLR9

(Figure 1F) agonists induced an increase in mouse B cell

proliferative response. In contrast, mCD40L addition had no

significant effect on TLR1/2- (Figure 1A), - TLR2/6 (Figure 1B)

and TLR7- (Figure 1E) induced B cell proliferative response. The

specificity of mCD40L action was confirmed in CD40-deficient

splenic B cells (Figure S1A). Moreover, Polymixin B, an inhibitor

of LPS activity inhibited LPS-induced proliferative response with or

without mCD40L addition but had no effect on TLR3-induced

proliferation as well as on the increase of this proliferative response

in the presence of mCD40L (Figure S1B), showing the specificity

of each TLR agonist and ruling out the possibility of a mCD40L-

independent LPS-dependent B cell proliferation.

The proliferative response measured by thymidine uptake

quantifies not only the activity of dividing cells but also the

survival rate of proliferating cells. CD40L is known to promote

both proliferation and survival, although we didn’t attempt to

distinguish both effects in this study. In CFSE labeling exper-

iments, an increase in cell survival as well as in the numbers of

dividing cells was observed in the conditions in which an increase

of thymidine uptake was observed (Data not shown).

B cell activation induced by TLR agonists and mCD40L was

evaluated by monitoring CD69 and CD86 surface expression as

well as CCL22 production. As expected, all TLR agonists tested

taken alone increased activation marker expression (CD69;

Figure 2A or CD86; Figure 2B). Only a fraction of B cells

increased CD69 expression (from 10% in non treated cells to 85%

in fully activated cells) whereas all B cells increased CD86

expression. Production of CCL22, was increased after activation

by TLR3 and TLR4 agonists alone (Figure 2C). As seen for the

proliferative response, co-treatment with mCD40L increased

CD69 (Figure 2A) and CD86 (Figure 2B) expression as well

Mouse B Cell Activation by TLR Agonists and CD40L
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as in CCL22 production (Figure 2C) in response to TLR3 and

TLR4 agonists and to a lower extent to TLR9 agonist, but no or

little to TLR1/2, TLR2/6 and TLR7 agonists. As for proliferative

response, mCD40L alone only slightly increased activation marker

expression and CCL22 production (Figure 2).

In conclusion, our data demonstrate that the CD40 pathway

synergizes with TLR3, 4 and 9 pathways, but not with TLR1, 2, 6

and 7 for B cell proliferative response and activation (Table 1).

TLR -1/2, -2/6, - 4 and -7 but not TLR-3 and -9 agonists
synergize with CD40L to increase mouse spleen B cell
differentiation in plasma cells

We next examined the potential synergy of TLRs and CD40

pathways on antibody production, B cell differentiation into ASC

and affinity maturation of antibody response.

Mouse spleen B cells were co-stimulated with TLR agonists and

mCD40L. Differentiation into ACS was monitored by following

mRNA expression of Blimp-1, the master regulator of ASC

differentiation [31]. As shown in figure 3A, TLR1/2, TLR2/6,

TLR4 and TLR7 agonists induced an increase of Blimp-1 mRNA

expression that is enhanced by addition of mCD40L, indicating

the triggering of the gene programme for ASC differentiation.

Incubation of splenic B cells with mCD40L alone (Figure 3A) did

not increase Blimp-1 mRNA expression. The specificity of

mCD40L action was confirmed in CD40-deficient B cells (Figure
S2A). Similarly, Blimp-1 mRNA expression induced by TLR2 and

TLR4 agonist was inhibited by an antagonist anti-TLR2 antibody

(Figure S2B) and by polymixin B (Figure S2C) respectively,

showing that these TLR pathways are implied in Blimp-1 mRNA

expression induction.

As shown in Figure 3A, TLR3 agonist as well as TLR9 Type C

agonist (ODN 2395), described to activate B and dendritic cells

[33] or TLR9 Type B agonist (ODN 1668, Figure S2D),

described to activate B cells [34] did not induce any increase in

Blimp1 mRNA expression. Addition of mCD40L to these agonists

did not modify Blimp-1 mRNA expression. As it was proposed

that full-blown naive human B cell activation requires three

synergically acting stimuli, TLR engagement, interaction of CD40

with CD40L and recognition of antigen by the B cell specific

receptor (BCR) [35–36], an anti-IgM antibody was added to

engage the BCR in the presence of TLR3 and TLR9 agonists and

mCD40L. As shown in figure 3B, the addition of a BCR signal

did not increase Blimp-1 expression in B cell cultures stimulated

with combinations of mCD40L with TLR3 and TLR9 agonists

(Figure 3B). On the contrary, stimulation with anti-IgM always

decreased Blimp-1 mRNA expression, even with CD40L – TLR4

combinations that induced Blimp-1 when applied alone.

To characterize more precisely the B cell subset expressing

Blimp-1 mRNA, mouse spleen B cells were cultured as described

above and then enriched for CD138+ cells. These cells were tested

for B220 expression by flow cytometry and for Blimp-1, Pax5 and

AID mRNA expression by qRT-PCR. The CD138+ B cell

population contains all plasma cell subsets, including the ASC that

are characterized by low expression of the B220 molecule [30]. To

evaluate the number of ASC, we quantified B220low cells in the

CD138+ population. As showed in figure 4A, all TLR agonists

except TLR3 induced a significant increase in CD138+B220low

cells, corresponding to ASC subpopulation (Figure S4). Addition

of a CD40 signal further increased the number of ASC after

activation of TLR1/2, TLR2/6 and TLR7 pathways. These

Figure 1. Proliferative response of mouse splenic B cells induced by TLR agonists in association with mCD40L. Purified B cells were
stimulated with TLR1/2 agonist (Pam3CSK4) (A), TLR2/6 agonist (Pam2CSK4) (B), TLR3 agonist (Poly (I:C)) (C), TLR4 agonist (LPS) (D), TLR7 agonist
(R848) (E), TLR9 type C agonist (ODN 2395) (F) at the indicated concentrations and in association with increasing concentrations of mCD40L for 72 h.
Proliferation was evaluated by measuring [3H]-thymidine uptake. Data are expressed as mean Stimulation Index (see material and methods) 6 SD of
three independent experiments. The mean of cpm in non activated B cells is 309634. For C, D and F, although addition of mCD40L at all the
concentrations induced significant changes, statistics are only shown for the concentrations used in further experiments (bold letters). *p,0.05,
**p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0025542.g001
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results were corroborated by an increase of Blimp-1 mRNA

expression, characteristic of ASC (Figure S3A), and/or a

decrease of PAX-5 mRNA characteristic of mature B cells

(Figure S3B) in the same conditions.

We next investigated how AID, an enzyme required for CSR and

SHM, was induced at the mRNA level in CD138+ cells. In the

absence of mCD40L, AID mRNA levels was not or minimally

modified by treatment with TLR2/6, TLR3, TLR4 and TLR9

agonists and only slightly increased by treatment with TLR1/2 and

TLR7 agonists (Figure 4B). However, mCD40L increased AID

mRNA expression in CD138+ B cell-enriched population when

added in combination with TLR1/2, 2/6, and 7 agonists (Figure 4B).

Finally, we measured immunoglobulin production in B cell

culture supernatants after 6 days of culture with TLR agonists with

or without mCD40L. Despite poor B cell survival, IgM and IgG

production could be measured in culture supernatants. All TLR

agonists alone induced immunoglobulin production except TLR3

and TLR9 agonists for IgM production (Figure 5A) and TLR3,

TLR7 and TLR9 agonists for IgG production (Figure 5B).

Addition of mCD40L increased IgM production in B cell culture

supernatants after activation by TLR1/2, TLR7 and TLR9

agonists (Figure 5A) and IgG production after activation by

TLR1/2,TLR4 and to a lower extend TLR9 agonists (Figure 5B).

Taken together, these results showed that mCD40L stimulates

differentiation into ASC in vitro, induces AID mRNA expression

and promotes antibody production when combined with TLR1/2,

2/6, 4 and 7 agonists (with the exception of antibody production

induced by TLR2/6) (Table 1).

Figure 2. B cell activation induced by TLR agonists in
association with mCD40L. Purified B cells were cultured with
TLR1/2 agonist Pam3CSK4 (250 ng/mL), TLR2/6 agonist Pam2CSK4
(50 ng/mL), TLR3 agonist poly (I:C) (10 mg/mL), TLR4 agonist LPS (10 mg/
mL), TLR7 agonist R848 (1 mg/mL) or TLR9 agonist ODN 2395 (200 nM)
alone (light gray bars) or in the presence of 0.6 mg/mL mCD40L (dark
gray bars). After 24 h, expression of activation markers CD69 (A) or
CD86 (B) were measured by flow cytometry. Results are expressed as
mean relative fluorescence intensity. Mean values 6 SD of three
independent experiments are shown. (C) CCL22/MDC levels were
measured in cell culture supernatants by ELISA after 48 h. Results are
expressed in pg/mL and represent means 6 SD of three independent
experiments. *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0025542.g002

Table 1. Summary of B cell activation and/or differentiation
induced by TLR agonist in association with mCD40L.

None 1/2 2/6 3 4 7 9

Total B cells Prolif Ns ns ns ++ +++ ns +++

CD69 + ++ ns +++ +++ ++ +++

CD86 Ns ns ns +++ +++ ns +

CCL22 Ns ns ns +++ +++ ns ns

Total BLIMP-1 Ns + ++ ns + + ns

Enriched
CD138+

CD138high

B220low
Ns +++ +++ ns ns +++ ns

AID Ns + ++ ns ns + ns

Total B cells IgM ++ +++ ns + ns +++ +++

IgG Ns +++ ns ns +++ ns +

Results represent the difference between the treatment with TLR agonists alone
in comparison with the co-treatment TLR agonists plus mCD40L. P,0.001 +++,
P,0.01 ++, P,0.05 +, P.0.05 ns.
doi:10.1371/journal.pone.0025542.t001
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Discussion

According to the classical dogma, full-blown naive B cell

activation requires two independent signals: one provided by

recognition of antigen by the specific B cell receptor and another

provided by T-cell co-stimulation via interaction between CD40L

(expressed on activated T cells) and CD40 expressed on B cells.

More recently, the finding that B cells express TLRs and can be

activated by TLR agonists prompted the modification of this

model with a third signal provided directly by pathogens [35] via

Figure 3. Blimp-1 mRNA expression in splenic B cells induced by TLR agonists in association with mCD40L. Purified B cells were
cultured with the indicated TLR agonists (at the concentrations of figure 2) alone (light gray bars) or in the presence of 0.6 mg/mL of mCD40L (dark
gray bar) (A) or with 10 mg/mL of TLR3 agonist poly (I:C), 10 mg/mL of TLR4 agonist LPS or 200 nM of TLR9 agonist ODN 2395 with or without 0.6 mg/
mL of mCD40L and 1 mg/mL anti-IgM antibody, as indicated (B). After 72 h, total RNA was isolated and expression of Blimp-1 transcripts was
evaluated by quantitative real-time PCR. Values were normalized to the mean of expression of three housekeeping genes: GAPDH, b-actin, HPRT.
Results are expressed as the fold induction of gene transcription as compared to purified B cells cultured in medium. Data of one representative
experiment out of three is shown. *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0025542.g003
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binding of PAMPs on PRRs. However, the importance of TLR

signaling in shaping humoral response remains controversial [4–

6]. To evaluate the importance of TLRs in B cell response, authors

immunized mice that were deficient for the signaling of all

(MyD88/TRIF deficient mice [5]) or most (Myd88 deficient mice

[4]) TLRs with model antigens in the presence of various

adjuvants and evaluated antibodies production. In Myd88

deficient mice, Pasare et al. [4] used LPS that binds to TLR4

and have shown a central role for TLR signaling in B cell

response. In Myd88/TRIF deficient mice, Gavin et al. [5] have

used Alum that has been shown later to involve the NOD

(Nucleotide binding domain) Like Receptor (NLR) pathway [37–

38], another family of PRRs, and Freund Complete Adjuvant that

activated TLR2 and TLR4 pathway but also the NLR pathway

via the Muramyl Dipeptide [39] and have, obviously, shown a

poor implication of TLR in antibody production. Moreover, as

dendritic cells also express TLRs [2], the effect of TLR deficiency

on antibody production can be explained by an indirect effect on

DCs. In view of these contradictory results, we tested the direct

role of each TLR on B cell activation and antibody production in

a systematic in vitro assay. Furthermore, as a complete B cell

activation requires at least two signals, we dissociated the various

signals by activating mouse B cell with TLR agonists alone or

associated to the T cell co-stimulation signal CD40L.

As already described [7–13], we confirmed that all TLR

agonists (except those of TLR5 and TLR8 that are not expressed

or not functional or not activating on mouse B cells) induce

proliferation and activation of splenic B lymphocytes (Figure 1
and 2). Surprisingly, the TLR9 agonist type C ODN 2395

described to activate B cell and DC had little effect on B cell

proliferation and activation (Figure 1 and 2). More surprisingly,

we found that the TLR3 agonist poly (I:C) as well as the TLR9

agonist type C (ODN 2395) or type B (ODN 1668) did not induce

B cell differentiation into ASC and antibody production in vitro.

Interestingly, addition of a T cell co-stimulation signal via CD40L

to TLR agonists shows a dissociation between on the one hand,

induction of mouse B cell proliferation and activation and, on the

other hand, induction of B cell differentiation into ASC and

antibody production (Table 1). Indeed, with the exception of the

TLR4 agonist LPS that synergizes with mCD40L to increase both

proliferative response and differentiation into ASC, all other TLR

agonists synergize with mCD40L to increase either a proliferative

response associated with activation marker expression and

cytokine production (TLR3 and TLR9) or B cell differentiation

into ACS and antibody response maturation (TLR 1/2, 2/6 and

7) measured mainly by BLIMP-1 and AID mRNA expression.

The poor survival of plasma cells in vitro made it difficult to analyze

antibody production in cell culture supernatants and this can

explain the discrepancies between Blimp-1 (Figure 3A) and AID

(Figure 4B) mRNA levels and antibody production (Figure 5A
and 5B) when B cells were treated with TLR 2/6 and TLR7

agonists.

Our results offer an explanation for the polyclonal B cell

proliferation and Ig production observed during bacterial and viral

infection [40–44]. Indeed, in 2003, Zinkernagel’s group [44]

showed that hypergammaglobulinemia induced during viral

infection required not only a virus-induced signal but also a T

cell co-stimulation, probably via CD40L. More recently, Soulas

et al. [45], by using MyD88-deficient mice, showed that polyclonal

activation of autoreactive B cells required TLR signal as well as a

co-stimulation signal provided by T cells. However, our results

show that the pathogen via its PAMPs not only synergizes with

activated T cells to induce B cell proliferation and Ig production

but also control B cell response by inducing either a B cell

proliferation and activation that could induce memory B cell

differentiation or production of polyclonal antibodies by bystander

activation. The mechanism explaining this dissociated response is

still unclear. TLR 1, 2, 4 and 6 are expressed on the cell surface,

whereas TLR 3, 7 and 9 are present within the endosomal

compartments. However, this difference in localization cannot

fully account for differences in B cell response as in association

with mCD40L, TLR2 and TLR7 agonists both induce differen-

tiation into ASC. TLR signaling is initiated by four adapters:

Figure 4. B220 expression and AID mRNA expression in CD138-
enriched purified B cell population after activation by TLR
agonists in association with mCD40L. Purified B cells were cultured
with the indicated TLR agonists (at the concentrations of figure 2) alone
(light gray bars) or in the presence of 0.6 mg/mL mCD40L (dark gray
bar). After 72 h, the population was enriched for CD138 positive cells as
described in Material and Methods. (A) CD138-enriched purified B cells
were then co-stained with anti-B220 and anti-CD138 antibodies and the
expression of these markers was determined by flow cytometry. Results
are expressed as % of CD138+ B220low +/2SD of three independent
experiments. (B) Total RNA was isolated and expression of AID
transcripts was evaluated by quantitative real-time PCR. Results are
expressed as the fold induction of gene transcription as compared to
CD138-enriched purified B cells cultured in medium. *p,0.05,
**p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0025542.g004
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MyD88, TRIF (TIR domain-containing adapter inducing inter-

feron beta), TIRAP (TIR domain-containing adapter protein) and

TRAM (TRIF-related adapter molecule). MyD88 associates with

all TLRs except TLR3, whereas TRIF associates with TLR3 and

TLR4. TIRAP and TRAM appear to function as bridging

adapters for MyD88 and TRIF, respectively. TIRAP and TRAM

are essential for signaling by TLR4 and also required for TLR2

function. [46–47] Again, these differences in signaling adapters

alone cannot explain the various B cell responses that we observe.

Finally, we showed that the addition of a BCR signal does not

reorient the activation phenotype induced by TLR3 and TLR9

associated with mCD40L towards differentiation into ASC

(Figure 3B) and even inhibits ASC differentiation induced by

TLR4 in vitro. This effect of BCR signaling has already been

described after activation of mouse B cell by TLR4 agonist

associated with an anti-CD40 antibody and has been interpreted

as the result of memory B cell differentiation [24]. Study of

memory response in vitro is not possible and should be evaluated in

latter in vivo experiments. Alternatively, BCR stimulation could

favor the proliferative response at the expense of a delay in the

differentiation process.

In conclusion, we show that pathogen-specific structures alone

or associated with T cell co-stimulation molecules directly trigger

and control B cell responses. According to the TLR pathway

involved and the activation of BCR signal, the response would be

directed either to memory B cells or to ASC differentiation

resulting in production of mainly polyclonal antibodies. Besides a

better understanding of mouse B cell biology, these observations

made have important implications in vaccination by specifically

designing optimally cooperative antigen/adjuvants combinations

that would specifically activate B cells while limiting the polyclonal

response often responsible for autoimmune diseases [48].

Materials and Methods

Ethics Statement
The research was conducted in accordance with the European

Community guidelines (Directive 86/609/EEC) on the protection

of animals used for scientific purposes. The IBMC animal house

facilities are approved by French veterinary service (#E67-482-2).

As no surgery or experimentation has been done on animals

before euthanasia, we did not need specific ethical approval. Mice

were euthanized according the European Community guidelines

before spleen removing.

Mice
BALB/c and C57BL/6 mice as well as C57BL/6 CD40

knockout mice were bred in IBMC animal house facilities.

Antibodies and reagents
Phycoerythrin (PE)-labeled anti-mouse CD69 (clone H1-2F3),

anti-mouse CD86-PE (clone GL1), anti-mouse CD138-PE (clone

281.2) and allophycocyanin (APC)-labeled anti-mouse B220 (clone

RA3-6B2) monoclonal antibodies (mAbs) were purchased from

PharMingen (BD Biosciences, San Diego, CA). F(ab9)2 fragment

of goat anti-Mouse IgM (referred as anti-IgM in the text) used in

cell culture experiments, goat anti-mouse IgG+IgM (H+L), goat

anti-mouse IgM conjugated to horseradish peroxidase, goat anti-

mouse IgG conjugated to horseradish peroxidase, and mouse IgM

and IgG were purchased from Jackson Immunoresearch (West-

Grove, PA). TLR agonists Pam2CSK4, Pam3CSK4, poly (I:C),

LPS from Escherichia coli (K12), R848 and CpG oligonucleotide

CpG2395 59- TCGTCGTTTTCGGCGCGCGCCG- 39 and

CpG1668 59- TCCATGACGTTCCTGATGCT- 39 were pur-

chased from Invivogen (San Diego, CA). Polymyxin B solution was

purchased from Sigma-Aldrich (Saint-Louis, MO). Recombinant

soluble hFc-mCD40L (referred as mCD40L in the text) was

produced in CHO cells (Sigma-Aldrich) as previously described for

Fc-EDA [49] using amino acids 115–260 of mouse CD40L.

B cell preparation and culture
Primary B cells were purified from spleens of 10- to 12- week-

old mice using a negative selection strategy. Briefly, spleen cells

were depleted from macrophages, granulocytes, CD4+ T cells and

CD8+ T cells by incubation during 20 minutes at 4uC with anti-

CD11b (clone Mac-1), anti-GR1 (clone 8C5), anti-CD4 (clone GK

1.5) and anti-CD8 (clone Lyt-2) mAbs purified in-house. After

Figure 5. Antibody production in purified B cell culture supernatant after activation by TLR agonists in association with mCD40L.
Purified B cells were cultured as described in figure 2 for 6 days. Cell culture supernatants were collected and amounts of IgM (A) and IgG (B) were
measured by ELISA as described in Material and Methods. Results are expressed in mg/mL for IgM and ng/mL for IgG and shown as the means+SD of
three independent experiments. *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0025542.g005
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incubation, magnetic beads coupled to anti-rat Ig (dynal, Oslo,

Norway) were added during 20 minutes at 4uC. The bead-bound

cells were separated by a magnet and discarded. The remaining

cells referred as purified B cells (containing more than 90% B cells

as determined by flow cytometry analysis) were used in all

experiments. Purified B cells were cultured (3.105/well) in 96-well

U-bottom plates in a final volume of 200 mL or (1.15.106/well) in

24-well plates in a final volume of 1150 mL. Cultures were

performed in RPMI 1640 medium (Cambrex, Verviers, Belgium)

supplemented with 10% fetal calf serum (FCS; Lonza, Verviers,

Belgium), 10 mg/mL gentamicin (Cambrex), 10 mM HEPES

(Cambrex) and 0.05 mM 2-mercaptoethanol. Cells were incubat-

ed with mCD40L alone or in association with the various TLR

agonists at the concentrations indicated in the text. In some

experiments, an anti-IgM antibody (1 mg/mL) was added to the

culture simultaneously with TLR agonists and mCD40L. When

used, anti-TLR2 antibody (1 mg/mL) or polymyxin B (20 mg/mL)

were added 20 min before TLR agonists and mCD40L.

Activation and proliferation assays
For measurement of membrane expression of activation

markers by flow cytometry, cells were harvested after 24 h of

culture and labeled with anti-CD69 and anti-CD86 mAb as

described below. For cytokine measurement, supernatants were

collected after 48 h and tested for CCL22/MDC production by

ELISA. To measure cell proliferation, [3H]-thymidine (1 mCi;

specific activity 6.7 Ci/mmol) was added after 64 h of culture, cells

were harvested 8 h later on a filter with an automatic cell-

harvesting device (Packard, Meriden, CT), and thymidine

incorporation was assessed by using a Matrix 9600 direct beta

counter (Packard; cpm range from 10 to 35,000). Data were

expressed as the stimulation index calculated as follows: the mean

counts per minute (cpm) of stimulated cells/the mean cpm of

unstimulated cells. Proliferation experiments were performed in

triplicate.

Markers of plasma cell differentiation, CSR and SHM
To evaluate Blimp-1 mRNA expression in B cell population,

purified B cells were harvested after 72 h of culture and

quantitative real-time PCR (qRT-PCR) was performed as

described below.

To measure IgM and IgG production by ELISA, cell culture

supernatants of purified B cells cultured in 24-well plates were

harvested at day 6.

In some experiments, enrichment in CD138+ cells was

performed. For this, purified B cells were stained after 72 h of

culture with PE-labeled anti-CD138 antibodies for 15 min at 4uC
and further incubated with magnetic microbeads coupled to anti-

PE antibodies, as indicated by the manufacturer (Miltenyi Biotech,

Bergisch, Gladbach, Germany). CD138+-labeled cells were then

selected upon cell loading on a MACS LS column (Miltenyi

Biotech). Enriched CD138+ cells were labeled with anti-CD138

and anti-B220 antibodies before flow cytometry analysis and qRT-

PCR was performed to quantify Blimp-1, Pax-5 and AID mRNAs.

Flow cytometry
Cells were washed in phosphate-buffered saline (PBS) contain-

ing 2% FCS and incubated at 4uC for 20 min with the various

antibodies used at a concentration recommended by the

manufacturer. After two washes in PBS-2% FCS, cells were

analyzed by flow cytometry with a FACSCaliburH and data were

processed with the CellQuest 3.3 software (Becton Dickinson, Pont

de Claix, France).

ELISA assays
Commercially available ELISA reagents were employed for the

determination of CCL22/MDC (QuantikineH, R&D Systems,

Minneapolis, MN). All procedures were performed following the

manufacturer’s instructions. Results were expressed as chemokine

concentration in pg/mL. The detection limit was 1.2 pg/mL.

To measure IgM and IgG in culture supernatants, 96-well plates

were coated with 1 mg/mL goat anti-mouse IgG+IgM (H+L)

antibody overnight at 37uC. The plates were washed and then

blocked with 0.9% BSA in PBS containing 0.05% (v/v) Tween-20

for 60 min at 37uC. Supernatants were diluted in RPMI 1640

medium and added to the plates along with purified mouse IgM or

IgG to establish a standard concentration curve. The plates were

incubated for 60 min at 37uC, then washed, and goat anti-mouse

IgM or IgG conjugated to horseradish peroxidase diluted 1/

20,000 and 1/10,000 respectively in PBS-Tween, were added and

incubated for 30 min at 37uC. The plates were then washed and

the reaction was revealed by addition of 0.04% (v/v) H2O2 and 3,

39, 5, 59-tetramethyl benzidine (3 mg/mL) as chromogen.

Absorbance was measured at 450 nm.

Quantitative real-time PCR
Approximately 3.106 purified B cells or 1.106 enriched CD138+

cells were homogenized with 1 ml of Tri Reagent (Sigma-Aldrich)

and total RNA was purified using RNeasyH Mini Kit (Qiagen,

Germantown, MD). cDNA was synthetized by extension of a mix

of oligo(dT) and random primers with ImProm-IITM reverse

transcriptase (Promega, Fitchburg, WI). The reaction mix was

diluted 1/10 for real time-PCR. Expression of individual

transcripts was normalized according to the mean of the

expression of three different housekeeping genes, namely b-actin,

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and hypo-

xanthine guanine phosphoribosyl transferase (HPRT). Primer

sequences were designed with the Primers3 software (http://

packages.debian.org/org/fr/sid/primer3). All amplification reac-

tions were performed in a total volume of 25 mL using a MxPro-

Mx3005P Thermocycler sequence detector (Stratagene, La Jolla,

CA) with Mesa Green qPCR MasterMix Plus for SYBR Assay

Low ROX (Eurogentec, Seraing, Belgium) according to the

manufacter’s instructions. Data were analysed using the software

toll rest-384-beta-9august2006.

The primer sequences (forward/reverse) used were: mBlimp-1,

59-TTTTACTCAGCTCGCCCACCT-39/39-TTGGCAGGGC-

ACACCTTACA-59, mPax-5, 59-GCCCACAGTCCTACCCTA-

TTG-39/39-GAGGGTGGCTGTAGGGACTT-59 mAID, 59-G-

GGAGTCAAGAAAGTCACGC-39/39-CTGCCGTACTCTGG-

ATGGAG-59, mGAPDH, 59-TGACGTGCCGCCTGGAGAAA-

39/39-AGTGTAGCCCAAGATGCCCTTCAG-59, mb-actin, 59-

ATGAGCTGCCTGACGGCCAGGTCATC -39/39-TGGTAC-

CACCAGACAGCACTGTGTTG-59, mHPR, 59-CTTGCTG-

GTGAAAAGGACCTCT-39/39-AAGTACTCATTATAGTCA-

AGGGCAT-5.

Statistical analysis
Proliferation assay, activation markers expression, CCL22, IgG

and IgG production in the presence or not of mCD40L were

analyzed by two-way ANOVA with Bonferroni’s post test using

GraphPad Prism version 5.00 for Windows, GraphPad Software,

San Diego California USA, www.graphpad.com. For quantitative

real-time PCR analysis, the investigated transcripts are tested for

significance by a pair wise fixed reallocation randomisation test �.

P,0.001 ***, P,0.01 **, P,0.05 *, P.0.05 ns.
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Supporting Information

Figure S1 Proliferative response of mouse spleen B cells
induced by TLR agonists. (A) Purified B cells from C57/BL6

CD40 deficient or wt mice were cultured in the presence of

TLR1/2 agonist Pam3CSK4 (250 ng/mL), TLR2/6 agonist

Pam2CSK4 (50 ng/mL), TLR3 agonist poly (I:C) (10 mg/mL),

TLR4 agonist LPS (10 mg/mL), TLR7 agonist R848 (1 mg/mL) or

TLR9 agonist ODN 2395 (200 nM) alone or in the presence of

0.6 mg/mL mCD40L. (B) Purified B cells from BALB/c wt mice

were cultured in the presence of TLR3 agonist poly (I:C) (50 mg/

mL) and TLR4 agonist LPS (10 mg/mL) alone or in the presence

of 0.6 mg/mL mCD40L, with or without Polymixin (20 mg/mL).

Results are representative of at least two independent experiments.

(TIF)

Figure S2 Mouse spleen B cell expression of BLIMP-1
mRNA. (A) Total RNA was isolated from purified B cells from

C57/BL6 CD40 deficient or wt mice cultured for 72 h with

TLR1/2 agonist Pam3CSK4 (250 ng/mL), TLR2/6 agonist

Pam2CSK4 (50 ng/mL) and TLR7 agonist R848 (1 mg/mL)

alone or in the presence of 0.6 mg/mL mCD40L. (B) Total RNA

was isolated from purified B cells from BALB/c wt mice cultured

for 72 h with TLR1/2 agonist Pam3CSK4 (250 ng/mL) and

TLR2/6 agonist Pam2CSK4 (50 ng/mL) alone or in the presence

of 0.6 mg/mL mCD40L, with or without antagonistic anti-TLR2

antibody. (C) Total RNA was isolated from purified B cells from

BALB/c wt mice cultured for 72 h with TLR4 agonist LPS

(10 mg/mL) alone or in the presence of 0.6 mg/mL mCD40L, with

or without Polymixin (20 mg/mL). (D) Total RNA was isolated

from purified B cells from BALB/c wt mice cultured for 72 h with

TLR9 agonist type B (ODN1668) alone or in the presence of

0.6 mg/mL mCD40L. Results are representative of at least two

independent experiments.

(TIF)

Figure S3 CD138 enriched mouse spleen B cell expres-
sion of BLIMP-1 and PAX-5 mRNA. Purified B cells were

cultured with TLR2/6 agonist Pam2CSK4 (50 ng/mL), TLR1/2

agonist Pam3CSK4 (250 ng/mL), TLR3 agonist poly (I:C)

(10 mg/mL), TLR4 agonist LPS (10 mg/mL), TLR7 agonist

R848 (1 mg/mL) or TLR9 agonist ODN 2395 (200 nM) alone

or in the presence of 0.6 mg/mL mCD40L. After 72 h, population

was enriched in CD138 positive cells as described in Material and

Methods. Total RNA was isolated and expression of BLIMP-1 (A)

or PAX-5 (B) transcripts were evaluated by quantitative real-time

PCR. Results are expressed as the fold induction of gene

transcription as compared to the CD138-enriched purified B cells

cultured in medium. *p,0.05, **p,0.01, ***p,0,001 Results are

representative of at least three independent experiments.

(TIF)

Figure S4 Differentiation on mouse B spleen cells in
ASC. Purified B cells were cultured with TLR2/6 agonist

Pam2CSK4 (50 ng/mL), TLR1/2 agonist Pam3CSK4 (250 ng/

mL), TLR3 agonist poly (I:C) (10 mg/mL), TLR4 agonist LPS

(10 mg/mL), TLR7 agonist R848 (1 mg/mL) or TLR9 agonist

ODN 2395 (200 nM) alone or in the presence of 0.6 mg/mL

mCD40L. After 72 h, population was enriched in CD138 positive

cells as described in Material and Methods. CD138-enriched

purified B cells were then co-stained with anti-B220 and anti-

CD138 antibodies and the expression of these markers was

determined by flow cytometry.

(TIF)
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