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Abstract

Malaria parasites induce complex cellular and clinical phenotypes, including anemia, cerebral malaria and death in a wide
range of mammalian hosts. Host genes and parasite ‘toxins’ have been implicated in malarial disease, but the contribution
of parasite genes remains to be fully defined. Here we assess disease in BALB/c mice and Wistar rats infected by the rodent
malaria parasite Plasmodium berghei with a gene knock out for merozoite surface protein (MSP) 7. MSP7 is not essential for
infection but in P. falciparum, it enhances erythrocyte invasion by 20%. In vivo, as compared to wild type, the P. berghei
Dmsp7 mutant is associated with an abrogation of death and a decrease from 3% to 2% in peak, circulating parasitemia. The
Dmsp7 mutant is also associated with less anemia and modest increase in the size of follicles in the spleen. Together these
data show that deletion of a single parasite invasion ligand modulates blood stage disease, as measured by death and
anemia. This work is the first to assess the contribution of a gene present in all plasmodial species in severe disease.
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Introduction

Malaria is one of the world’s major health problems. It results

from infection by parasites belonging to the genus Plasmodium.

Plasmodium falciparum causes the most virulent form of human

malaria and kills close to one million children annually. The

asexual blood stage parasite infects the red blood cell (RBC) and is

responsible for all of the symptoms and pathology associated with

malaria. Uncomplicated malaria consists of unspecific fever, chills,

and diffuse pain. Severe malaria includes multiple additional

pathologies including anemia, respiratory distress, lactic acidosis

and cerebral malaria [1,2] and greatly increases the risk of fatal

outcome.

Over the past decade there has been significant progress in the

identification of parasite ligands and host receptors involved in the

establishment of acute infection. Host genes associated with severe

disease have also been examined [3]. Further, parasite factors such

as the black pigment of malaria hemozoin as well as glypiated

lipids that anchor parasite proteins to membranes have been

implicated in causation of severe malaria [4,5]. However the

contribution of parasite genes to severe disease remains poorly

understood. This requires utilization of genetically modified

parasites as well as suitable host disease models. There is

recognition that animal models can provide useful insights into

pathologies of severe malaria including human disease [6,7,8] but

there is a paucity of validated disease models in which modified

parasites can be tested for the manifestation of disease in vivo.

Anemia has been studied in murine models, but the parasite

strains used are genetically not tractable [9,10]. Moreover, while it

is possible to delete genes in several species of Plasmodium, the

process is not as rapid as in model pathogenic bacteria and yeast

[11,12,13,14,15]. Thus it is necessary to prioritize genes to target

in the parasite as well as the disease models in which to test them.

Parasite encoded proteins that can remodel RBC have been

proposed to play a role in anemia, the most prevalent and

inflammatory pathology of malaria. Candidate proteins may reside

on the surface and in apical organelles of invading parasites and be

involved in entry, or bear a ‘host-targeting’ (HT) or plasmodial

export element (PEXEL) that are exported to the erythrocyte

[16,17]. Many are released into plasma either as part of their

physiological processing or upon rupture of the infected

erythrocyte, and especially at high concentration and may adhere

to uninfected erythrocytes and trigger their removal from

circulation. Alternatively, these parasite proteins may be trans-

ferred to the RBC surface upon abortive invasion [18]. Removal

of uninfected erythrocytes from circulation is a major contributing

factor in anemia [19,20]. Since anemia is caused by all Plasmodium

species, and is often associated with partial immunity, erythrocyte-

adhesive proteins that induce anemia are expected to be conserved

through the genus.

On the basis of these criteria, we selected merozoite surface

protein 7 (MSP7), which in P. falciparum, forms a complex with
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MSP1 and MSP6 [21]. This complex has been proposed as a

vaccine target. Antibodies to MSP7 are detected in human

immune serum [22]. P. falciparum msp7 can be deleted with a

consequent 20% reduction in merozoite invasion of erythrocytes

[23]. In P. falciparum, msp7 is the prototypic representative of six

related genes, in a tandem array on chromosome 13. This family is

expanded in P. vivax to 11 genes [24]. The murine malaria

parasites P. berghei and P. yoelii have only three msp7-like genes at

the corresponding genomic location. It has been suggested that P.

yoelii MSP7 proteins are a target of host immune responses [25]. In

P. berghei, deletion of the middle gene (designated as msp7) was

shown to delay initial parasite growth in vivo, although no

difference in growth rate was observed later during infection

[26]. This result emphasizes the possibility that MSP7 may play a

relatively minor role in erythrocyte invasion in a susceptible host,

and led us to consider testing its contribution to P. berghei-induced

disease.

Methods

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health.

Northwestern (A3283-01) and the University of Notre Dame

(A3093-01) are credited through the Animal Welfare Assurance.

All procedures involving animals were reviewed and approved by

the Northwestern University (Protocol #2006-0935) and the

University of Notre Dame (Protocol #11-070) IACUC commit-

tees. All efforts were made to minimize suffering of the animals.

Disruption of msp7 in P. berghei and confirmation of
Dmsp7

Plasmid pDHDMSP7 [26] was used to transfect P. berghei

ANKA schizonts as previously described [27]. The resultant gene

knockout parasites – Dmsp7 were cloned and confirmed by

Southern blotting to have the same deletion as in the original line

created previously [26] (Figures S1A–S1C).

Growth of wild type versus Dmsp7 mutant parasites
To reexamine the effect of msp7 disruption on parasite growth in

vivo, challenge inocula (1000 infected RBCs) from P. berghei ANKA

wild type (WT) and Dmsp7 lines were injected intravenously (i.v.)

into groups of BALB/c mice that were 6–8 weeks old. Forty-eight

hours post-infection (p.i.) and every other following day for the

next 10 days, Giemsa-stained thin blood films were made and

examined for each mouse. Parasitemia is expressed as a

percentage of RBC that are infected, based on counting of at

least 2000 RBCs.

Generation of semi-immune mice for study of chronic
infections

Two separate cohorts of 6–8 week old BALB/c mice (WT and

Dmsp7 groups) were infected intraperitoneally (i.p.) with 104

infected RBCs and then treated at day 6 p.i. with chloroquine (10

mg/kg) and pyrimethamine (10 mg/kg), both administered i.p.

daily for 5 days as previously described [28]. During subsequent

rounds of infection mice were rested for 2 weeks prior to re-

challenge with 104 cells of either wild type or Dmsp7 P. berghei

ANKA, then monitored and drug treated before any of the mice in

the cohort reached 5% parasitemia. Mice underwent 4 or 5 cycles

of infection and drug cure before receiving a final challenge of 104

cells of their respective parasite line without treatment.

Infection in an aged mouse model
20 to 24 week (5–6 month)-old male BALB/c mice were

injected i.p with104 or i.v. with 103 P. berghei ANKA (Malaria

Research and Reference Reagent Resource Center [MR4]

Parasite # MRA-311). Forty-eight hours post-infection (p.i.) and

every other following day for the next 10 days, Giemsa-stained

thin blood films were made and examined for each mouse.

Parasitemia is expressed as a percentage of infected cells, based on

counting of at least 500 RBCs. Where indicated, hemoglobin (Hb)

was measured in a 96-well plate by absorbance at 540 nm using

2 ml of tail vein blood in 0.5 mL Drabkin’s Reagent (Sigma, St.

Louis, MO), and is expressed as percent of baseline.

Infection in an aged rat model
15 week-old Wistar rats were injected i.p. with 106 P. berghei

ANKA (Malaria Research and Reference Reagent Resource

Center [MR4] Parasite # MRA-311) infected RBCs, respectively.

Parasite levels were monitored every 2 days by Giemsa-stained

thin blood film and expressed as a percentage, counting more than

500 RBCs. Where indicated, hemoglobin (Hb) was measured in a

96-well plate by absorbance at 540 nm using 2 ml of tail vein blood

in 0.5 mL Drabkin’s Reagent (Sigma, St. Louis, MO), and is

expressed as percent of baseline. Two independent mutants of

msp7 were tested, one generated previously [26] and the second as

described above.

Multi-Analyte Analysis
Whole blood was obtained by terminal cardiac puncture in the

presence of an anticoagulant and then centrifuged to obtain

plasma. A Luminex-based bead array (RodentMAP version 2.0;

Rules Based Medicine, Inc., Austin, TX, USA) was used to

simultaneously assess the level of 59 unique analytes. Plasma from

rats at days 8 and 10 p.i. were analyzed.

Histopathological analysis
Lung, liver and spleen were harvested from infected (with wild

type or Dmsp7 P. berghei) and uninfected Wistar rats. Harvested

organs were washed with PBS to remove blood, placed into

fixative (10% neutral buffered formalin) for 15 minutes, and then

cut into smaller portions. Cut portions were transferred to and

fully immersed in fixative at 4uC for 1 hour, and then left at 4uC
overnight in fresh fixative. Samples were then processed, paraffin

embedded, and thin sections (3–4 mm) produced with a micro-

tome, and stained with Hematoxylin and Eosin at AML Labs Inc.

(Baltimore, MD, USA). Spleen follicle size was determined by

using a squared grid over images of spleens and calculating the

number of grid squares (1 cm2) covering the follicle.

Statistical Analysis
All graphs show the standard error of the mean (SEM).

Differences in parasitemia, follicle size, and anemia were measured

statistically using the Student’s t-test.

Results

Effect of msp7 deletion in acute and chronic infection by
P. berghei in mice

Prior studies suggested that in acute infection in mice, Dmsp7

mutants display small differences in parasitemia compared to their

wild type counterparts [26]. We made a second Dmsp7 mutant

parasite line, which was confirmed to have msp7 missing by

integration PCR and Southern blot analysis (Figure S1A–S1C). A

slower increase of parasitemia was observed in animals infected

Malaria Invasion Gene Affects Death and Anemia
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with the Dmsp7 mutant parasite over the first 8 to 10 days p.i.

This average difference in parasitemia was markedly reduced by

day 12 p.i. when animals in both groups displayed 30–45%

parasitemia (Figure 1A). In prior studies Tewari et al., [26]

reported 17% parasitemia on day 10, which was higher than the

10% reported here. However at day 12, Tewari reported 30%

parasitemia, which corresponds well (within statistical signifi-

cance) to the data in our current studies. The reasons for the

discrepancies on day 10 are unclear. Possible explanations could

be that, the mice in the present study may be slightly younger or

older and that there were small differences in the absolute

number injected parasites or the reticulocytes on Day 10. But

over all the data confirm earlier studies [26] showing that deletion

of msp7 gene does not have a major effect on acute infection in 6–

8 week old mice. We were next interested to assess the mutants in

murine models of chronic infection. Evans et al. [28] proposed a

semi-immune mouse model where the animals are subjected to

repeated cycles of infection and cure. In this model we found that

after three cycles, mice injected with the Dmsp7 parasite showed

significantly lower parasitemias relative to wild type-infected mice

in the fourth cycle (Figure 1B). Upon the fifth challenge, both

cohorts controlled infection almost equally well with an average

parasitemia under 5% (Figure 1B). These data suggest that the

rise of parasitemia of the Dmsp7 mutant may be controlled more

rapidly upon re-infection relative to the wild type parasite, even

though the effect of MSP7 deletion is less evident in acute

infection. However, since each cycle of infection and cure takes a

month, by the fourth cycle (when the mutant parasite is

attenuated), the animal is aged approximately 5–6 months. Thus

age-dependent differences in mouse response to infection, may

have also contributed to the relatively attenuated phenotype of

msp7 mutants seen in Figure 1B.

Figure 1. Analysis of wild type and Dmsp7 mutant parasites in acute infection or semi-immune mouse models. (A) For acute infection,
all 6–8 week old mice were given inocula of 1000 infected RBCs of the respective parasite lines and monitored every other day by thin blood film. *Day 10
is based on data from 5 mice, while all other days are based on data from 10 mice (SEM shown). (B) Semi-immune mouse model showing the average
parasitemia of wild type and Dmsp7 P. berghei infected mice immediately before drug cure in cycles 4 and 5 of the infection-cure protocol (SEM shown).
doi:10.1371/journal.pone.0025477.g001
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To test the effect of age, mice 5–6 months old were injected i.p.

with 104 wild type and Dmsp7 mutants. As shown in Figure S2A,

infection with wild type parasites resulted in a rapidly rising

parasitemia and a high death rate with parasitemia reaching ,42%

at day 8. The msp7 mutants induced a slower rise in parasitemia

during the first ten days. Subsequently however, parasitemias

approached 75%. Further, time to death was significantly increased

in mice infected with msp7 mutants (Figure S2B) even though they

sustained higher parasitemias. Differences in hemoglobin levels

could be explained by parasitemia (Figure S2A) and thus death

cannot be ascribed to anemia per se. These data indicate that the

age of the mouse could have a profound influence on the survival of

animals infected with both wild type and msp7-deleted parasites.

Thus models of chronic infection initiated in animals at 6 to 8 weeks

of age but where partial immunity develops after a series of

intraperitoneal injections at ,5 months [28], may be compromised

by prominent age dependent effects. In these models it is difficult to

assess immunity obtained by antigen exposure alone.

To directly compare the effects of age on acute infection shown

in Figure 1, we injected 103 parasites i.v. into aged (5–6 month old)

mice (Figure S3A). Here the mutants show a delay in growth but

more prominently 50% of animals infected with wild type parasites

die by day 12 (Figure S3B), while the mutants achieve same levels

of death by day 21. In contrast in 6–8 week old mice, injected i.v.

with the same parasite dose, 50% death was seen at day 16, for

both wild type and mutant infections.

These data suggest that death in aged (5–6 month old) mice

infected with wild type parasites may not be due to parasitemia

alone, but may rather reflect additional pathogenic processes. We

found elevated levels of multiple inflammatory cytokines in plasma

taken from infections with wild type relative to mutant parasite

(Figure S4), despite the fact that parasite burdens were consistently

greater in animals infected with the mutants. However since

parasite burdens were significantly different between the two

groups, the extent to which these differences contribute to altered

cytokine responses are unclear.

Effects of deletion of msp7 on death and anemia induced
by P. berghei parasites in aged (15 week old) Wistar rat

To overcome high parasitemia- and age-dependent changes

during infection, we analyzed the effect of msp7 deletion in the

aged (15 week old) Wistar rat model. In this model, animals have

Figure 2. Aged rat model for anemia and death. (A) SMA model for aged rats, showing average percent of baseline Hb and average
parasitemia. (B) Number of rats that survived in the aged rat model. The data are from three experiments, N = 30 rats. (C) Comparison of percent
parasitemia (%P), percent hemoglobin drop (%Hb), and death (#Death) in naı̈ve rats infected with wild type parasites (black bars) and rats previously
infected with Dmsp7 parasites and then re-infected with wild type parasites (gradient bars).
doi:10.1371/journal.pone.0025477.g002
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previously been shown to mount an immune response to control P.

berghei infection at low parasitemia and to manifest anemia [28].

Hence the rats were challenged with 106 wild type parasites and

then monitored for parasitemia as well as circulating hemoglobin

level (Hb). As shown in Figure 2A, in wild type infections, all of the

animals showed a low, self-resolving parasitemia. The kinetics of

infection showed very little inter-individual variation. Peak

parasitemias averaging ,3.0% were seen largely around day 8

post-infection and were resolved by day 18. The drop in Hb levels

started after day 8 with a nadir of about 78% of baseline by day

14. In addition, we observed death in infected rats starting after

the first day of hemoglobin reduction (day 10). Of the 30 rats

infected with wild type P. berghei, 13 died between days 10 and 16

post-infection (Figure 2B).

When animals were infected with msp7-deleted parasites the

average peak parasitemia was 2% as compared to 3% induced by

wild type infection (Figure 2A). Influx of reticulocytes was seen

after peak parasitemias were controlled, i.e. after day 10 (not

shown) and thus infection of reticulocytes was limited. The data

from two independently generated mutants were very similar,

confirming that the observed phenotypes were due to disruption of

the msp7 gene, and are combined here. The most striking

phenotype was death, which was observed in none of the msp7-

mutant infected rats even after up to 20 days of infection. This is in

contrast to a 43% mortality rate in wild type infections (Figure 2B).

In addition, the average drop in Hb levels seen in animals infected

with the mutants was significantly less than that observed in rats

infected with wild type parasites (14%, versus 22%, p,0.05,

Figure 2A). By day 24, hemoglobin levels in both wild type and

msp7 mutant-infected animals were restored to normal levels

(Figure 2A), consistent with the fact that in this model there is no

significant impairment of erythropoiesis [28].

We also examined the outcome of infection with wild type

parasites in animals that had previously recovered from infection

with the Dmsp7 parasites. No detectable parasitemia was observed

in these animals (Figure 2C), hemoglobin levels remain un-

changed, and no deaths were observed. These data, when taken in

conjunction with the results shown in Figure 2A and B suggest that

manifestation of both host death and anemia may be intimately

linked to both malarial infection and the presence of MSP7.

Effects of deletion of msp7 on histopathology of lungs,
liver and spleen in infected rats

To better understand the differential effects of wild type and

msp7 mutant infections on the host, we analyzed lungs, liver and

spleen on histological sections. Organs were removed at day 8

(peak parasitemia) and day 10 (immediately after the onset of

anemia). Although infection resulted in recruitment of immune

cells to the liver, there were no major qualitative or quantitative

differences in cell infiltrates observed in mutant or wild type

infections (data not shown). No differences were seen in the

general morphology of the lungs (data not shown). In contrast

there was a , two fold increase in spleen weight at day 8 in

mutant relative to wild type infection, but this difference was no

longer observed by day 10 (Figure 3A). Quantitative analysis of

H&E-stained spleen sections taken at day 8 from uninfected and

infected animals showed an increase in follicle size in animals

infected with mutant parasites relative to wild type (Figure 3B&C).

There may also be changes in the germinal centers and infiltration

of nucleated cells within the red pulp (RP) (Figure 3B), however

additional detailed studies, beyond the scope of the present

characterization, are needed to provide molecular and mechanistic

analyses of changes in the spleen. Nonetheless our data in Figure 3

support the notion that deletion of msp7 in the parasite induced

dynamic changes in the host spleen.

Effects of deletion of msp7 on circulating levels of
cytokines in rat plasma

To further characterize the effects of infection by wild type and

msp7 mutant parasites, we investigated whether there was a change

in 59 inflammatory cytokines (Figure S5) detected in plasma on

Day 8 (peak parasitemia). Blood plasma levels of IP-10 and MIP-1

beta appeared higher in infection with wild type parasites relative

to infection with the msp7 mutant (Figure 4), with MIP-1 beta

displaying a larger wild type to mutant ratio (2.5 fold difference,

Figure 4) The third analyte was myeloperoxidase, which is mostly

found in neutrophil granulocytes. MIP-1 beta and IP-10 are both

chemo-attractants for various immune cells including natural killer

cells, monocytes and T-cells. However, P values for these cytokines

were greater than 0.05 after we adjusted for the number of tests

realized and thus further analysis is needed to conclude on the

significance of these data to deletion of msp7. No significant

differences were seen in these analytes on day 10 (see Fig. S5).

Discussion

We investigated two rodent models to study the effects of deletion

of a single gene on infection and disease. The semi-immune Balb/c

Figure 3. Mass and histological analysis of the rat spleen
during infection. (A) Comparison of spleen mass on days 8 and 10 of
infection. (B) H&E stained formalin-fixed paraffin embedded spleen
sections from uninfected rats and rats infected with P. berghei wild type
or Dmsp7 at day 8 p.i. Representative follicles and germinal centers are
shown. The greatest size increase is seen in infections with Dmsp7 (B3).
There is disappearance of the marginal zone (MZ) in both wild type and
mutant parasite-infected rats (B2&B3). There is infiltration (multiplica-
tion) of nucleated cells within the red pulp (RP) (B2&B3). (C)
Quantitative analysis of spleen follicle size from uninfected and infected
(wild type and Dmsp7) rats on day 8 post-infection. For each rat, the size
of follicles was analyzed in four different spleen sections. In total, 75 and
81 spleen follicles were analyzed for uninfected rats (n = 4) and rats
infected either with wild type (n = 3) or Dmsp7 mutant (n = 4) parasites,
respectively. Scales represent standard error of the means. T, trabecula;
RP, red pulp; GC, germinal center; CA, central artery; F, follicle; TV,
trabecular vein; MS, marginal sinus; MZ, marginal zone; PALS,
periarteriolar lymphoid sheaths. Original magnification, x100.
doi:10.1371/journal.pone.0025477.g003
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mouse model is complicated by the long period of preparation, such

that by the time the animals are semi-immune it is difficult to

separate effects of age from those of immunity. Both the aged rat

and mouse models have been shown to have an end point of death

that is likely not merely due to parasite load. Further, the observed

death is not a manifestation of other underlying malarial pathology,

such as cerebral malaria, since no neurobehavioral changes were

evident during infection [29]. In the aged mouse, the parasitemias

associated with both wild type and mutant parasite infection are

elevated and yet distinct (,42% and ,75% respectively) and thus it

is difficult to separate the contribution of relatively high parasite

burdens to host inflammation.

In the rat, we see a self-resolving infection that peaks at 3%

parasitemia for wild type and 2% parasitemia for mutant

infections. The aged/adult rat model is an accepted model for

malarial anemia, although on average the changes we detected in

hemoglobin levels are smaller than previously reported. Nonethe-

less we find that infection with the Dmsp7 mutant abrogates death

and results in a measureable reduction of anemia. Whether

deposition of MSP7 on the surface of uninfected erythrocytes

(either directly or indirectly) plays a mechanistic role in this process

has yet to be tested. The finding that the deletion of msp7 abrogates

host death was unexpected. The small reduction in hemoglobin

levels could have been expected, because malarial anemia is a

complex disease pathology and any single antigen may play a

small component role. Nonetheless our studies strongly support

the potential of the rat model to assess additional parasite proteins

that, like MSP7, are not essential for infection but may contribute

to anemia and death.

Although circulating parasitemias for both wild type and Dmsp7

mutants in rats were low, it should be noted that total body

parasite biomass has yet to be assessed. It is formally possible that

Dmsp7 mutants may differentially accumulate (this may or may not

be the same as classical sequestration) in tissues. This may not

necessarily have been seen in histological sections since these were

treated to remove circulating blood. Small differences in

peripheral parasitemia if sustained over a few days may result in

marked differences in cumulative parasite biomass and might

influence anemia. Further, where RBCs are being destroyed and

there is evident anemia, the absolute number of RBCs per ml of

blood also changes thus the absolute number of pRBCs in the

circulation may be an important determinant.

Our initial analysis of the host response suggests that deletion of

msp7 results in greater increase in follicle size and changes in

germinal centers in the spleen of wild type- infected animals. It

remains unclear whether plasma levels of inflammatory cytokines

are different in wild type and mutant infected animals. Since the

effects on anemia are relatively minor, it is clear that anemia is not

the cause of death. The relative increase in follicle size in spleens

from animals infected with the mutant parasite, suggest that

deletion of msp7 may alter the B cell response. Further analysis is

required to understand changes in immune cell migration to the

spleen as well as the immunological component of both

hemoglobin reduction and host death.

Figure 4. Analysis of rat plasma. Rats were infected and monitored for parasitemia and Hb levels until day 8 or 10 post-infection, at which point
they were exsanguinated and plasma was isolated. Interferon-gamma induced protein 10 (IP-10); macrophage inflammatory protein-beta (MIP-1beta)
and myeloperoxidase appear to be elevated on Day 8 in wild type-infected animals relative to mutant-infected animals. However, when we adjusted
for the number of tests realized, P-values for IP-10, MIP-1beta, and myeloperoxidase all were .0.05. N = 3 wild-type; N = 4 Dmsp7.
doi:10.1371/journal.pone.0025477.g004
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The msp7 gene is conserved across Plasmodium species. The

protein has been investigated as a vaccine candidate because it is

located at the surface of the invasive blood stage merozoite where

it is in a complex with merozoite surface proteins 1 and 6 in

P.falciparum [30]. Our data suggest that deletion of msp7 results in

an abrogation of death and a decrease from 3% to 2% in peak,

circulating parasitemia in the context of malarial infection. Thus

care should be taken when considering this and similar ligands for

a vaccine, since its role in disease is not yet fully understood. Our

data also indicate that rodent models may be utilized in testing the

disease potential of invasion ligands that are under investigation as

vaccine candidates.

Supporting Information

Figure S1 Analysis of P. berghei msp7 knock out by PCR
and Southern blotting. (A). Specifically designed primers

allowed for the distinction of msp7 knock-out and wild type lines

of P. berghei. (B) Successful integration of plasmid pDHDMSP7

results in unique PCR products for both wild type parasites with

the msp7gene and parasites with full integration of the targeting

plasmid into the endogenous gene (TOP). Two percent agarose gel

of PCR products obtained from reactions using genomic DNA

from wild type P. berghei ANKA or cloned putative Dmsp7 parasites

(BOTTOM). (C) Southern blot analysis of wild type and Dmsp7

parasites (both lines; Tewari [MSP7ko] and from this work

[DMSP7]), digested with EcoR1 and HindIII, and probed with an

msp7 probe.

(TIF)

Figure S2 Aged mouse model of death. (A) Average

parasitemia and Hb levels for acute mouse infections in 5– 6

month old mice. (B) Number of mice that survived in the aged

mouse model. Each graph is representative of two experiments,

N = 20 mice. Hb; hemoglobin

(TIF)

Figure S3 Acute infection established in mice by i.v.
injection of 1000 parasites. (A) Average parasitemia achieved

in acute mouse infections where 5–6 month old mice were injected

with 1000 parasites of either wild type (black) or mutant (grey)

strains. (B) Days at which 50% death is seen in 6–8 week and 5–6

month mouse models injected with 1000 parasites, i.v. Data

combines two experiments, with N = 10 animals in each.

(TIF)

Figure S4 Analysis of cytokines in mouse plasma. Mice

were infected and monitored for parasitemia until day 7 (wild-type)

or 11 (Dmsp7) post-infection, at which point they were exsangui-

nated and plasma isolated. Interferon-gamma (IFN-gamma);

interleukin 18 (IL-18); interferon-gamma induced protein 10 (IP-

10); monocyte chemoattractant protein 1 and 3 (MCP-1 and

MCP-3); macrophage inflammatory protein 2 (MIP-2). N = 5 wild-

type; N = 3 Dmsp7.

(TIF)

Figure S5 Raw data for rat cytokine analysis. The

complete 59 analyte panel of the version 2.0 Rodent MAP

profiling from Rules Based Medicine, Inc was tested in plasma

drawn on day 8 and day 10 of rats infected with wild type parasites

or Dmsp7 mutants.

(XLS)
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