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Abstract

Diffusion plays a key role in many biochemical reaction systems seen in nature. Scenarios where diffusion behavior is critical
can be seen in the cell and subcellular compartments where molecular crowding limits the interaction between particles.
We investigate the application of a computational method for modeling the diffusion of molecules and macromolecules in
three-dimensional solutions using agent based modeling. This method allows for realistic modeling of a system of particles
with different properties such as size, diffusion coefficients, and affinity as well as the environment properties such as
viscosity and geometry. Simulations using these movement probabilities yield behavior that mimics natural diffusion. Using
this modeling framework, we simulate the effects of molecular crowding on effective diffusion and have validated the
results of our model using Langevin dynamics simulations and note that they are in good agreement with previous
experimental data. Furthermore, we investigate an extension of this framework where single discrete cells can contain
multiple particles of varying size in an effort to highlight errors that can arise from discretization that lead to the unnatural
behavior of particles undergoing diffusion. Subsequently, we explore various algorithms that differ in how they handle the
movement of multiple particles per cell and suggest an algorithm that properly accommodates multiple particles of various
sizes per cell that can replicate the natural behavior of these particles diffusing. Finally, we use the present modeling
framework to investigate the effect of structural geometry on the directionality of diffusion in the cell cytoskeleton with the
observation that parallel orientation in the structural geometry of actin filaments of filopodia and the branched structure of
lamellipodia can give directionality to diffusion at the filopodia-lamellipodia interface.

Citation: Azimi M, Jamali Y, Mofrad MRK (2011) Accounting for Diffusion in Agent Based Models of Reaction-Diffusion Systems with Application to Cytoskeletal
Diffusion. PLoS ONE 6(9): e25306. doi:10.1371/journal.pone.0025306

Editor: Nic D. Leipzig, The University of Akron, United States of America

Received May 4, 2011; Accepted August 31, 2011; Published September 23, 2011

Copyright: � 2011 Azimi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: mofrad@berkeley.edu

Introduction

Diffusion is a key driver of many biological processes in living

systems where ions and molecules move down concentration

gradients as a result of their thermal motion within solutions. This

phenomenon can be modeled using various computational

techniques that consume varying degrees of computational

resources correlated with the degree of molecular detail provided

by the model. Of specific interest are modeling techniques that

account for diffusion and reaction of molecules in biological

systems.

Current methods for modeling reaction-diffusion systems

generally rely on ordinary differential equation (ODE) models in

which the system is assumed to be well-mixed and molecules of

interest exist in high numbers, satisfying the continuum assump-

tion [123]. These models ignore both the spatial detail and the

stochastic behavior observed in natural systems. Other techniques

with applications to modeling cellular pathways include partial

differential equation (PDE), chemical master equation (CME) and

reaction-diffusion master equation (RDME) models that are

capable of accounting for spatial varying levels of spatial detail

and stochasticity at the cost of increased computational time.

These techniques are well-suited for modeling a range of biological

phenomena (ODE/PDE methods are ideal for metabolic network

models, CME/RDME methods are ideal for gene expression

models), with each technique limited by spatial, stochastic and

computational cost constraints [1–5]. On the other end of the

modeling spectrum are more accurate Brownian dynamics (BD)

and Langevin dynamics (LD) models that explicitly account for the

diffusion and interaction of individual molecules with the ability to

track these individual molecules and assess the effects of spatial

and environmental properties that result in the emergence of

phenomena such as molecular crowding. These models have

additional computational costs associated with them, resulting in

limitations to the simulation time and length scales. Recently,

agent based models (ABM) have been applied to simulating

reaction-diffusion systems [629] and have the potential to bridge

the gap between spatiotemporally detailed but computationally

expensive BD/LD methods and the less detailed but computa-

tionally inexpensive ODE/PDE/CME/RDME methods.

Agent Based Models
Agent based modeling is a robust computational technique used

to simulate the spatiotemporal actions and interactions of real-

world entities, referred to as ‘‘agents’’ in an effort to extract their

combined effect on the system as a whole. Both space and time are

discretized in an agent based model, giving these autonomous
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agents the ability to move and interact with other agents and their

environment at each time step over a given duration. Simple

behavioral rules govern the movement and interaction of each

individual entity in an effort to re-create or predict more complex

behavior of multiple entities. Such a model attempts to simulate

the emergence of complex phenomena that may not be apparent

when simply considering individual entities. Agent based modeling

has seen applications in a broad range of fields ranging from

artificial intelligence and gaming to modeling emergent social

behavior such as the spread of disease and outcomes of financial

markets [10214]. In their simplest form, these agent based models

consist of a mesh of ‘‘cells’’ that make up the discretized space that

agents occupy. The agents occupy these cells and are typically only

aware of other agents within their ‘‘neighborhood’’; in the simplest

form a neighborhood consists of adjacent cells. Agents are given

the ability to move into adjacent cells and to interact with other

agents with some probability in conjunction with governing rules

that define what movement and interactions are possible.

In a physical system we can attribute the diffusion of a particle

in solvent to the instantaneous imbalance of the combined forces

exerted by collisions of the particle with the much smaller solvent

molecules surrounding it which are moving due to random

thermal motion. In an agent based model the same movement of

this particle due to collisions with much smaller solvent molecules

can be implicitly modeled by correlating the diffusion coefficient of

the particle in the specific solvent to some movement probability

for that particle. Furthermore, in a physical system, steric effects

prevent two particles from coming closer than a certain distance

from one another or occupying the same position. This type of

behavior can also be replicated with an agent based model using

governing rules that limit the number of particles per discretized

space. As a result of these simplifications, the process of modeling

particles diffusing throughout a space does not require computa-

tionally intensive method for simultaneously calculating velocities

of particles and the effects of repulsive and attractive forces of these

particles on other particles within the system (as seen in BD/LD

models). Rather, we can describe diffusion and interaction in terms

of natural language based on simple observations such as: different

particles move throughout space in a random manner, these movements are

related to particle size, and two particles tend to disfavor occupying the same

space. These descriptions based on natural language can be

translated into simple logic rules that govern the behavior of the

system. Although ABMs seem ideal for modeling reaction-

diffusion systems, existing ABM frameworks do not consider the

accuracy of particle movement algorithms. Furthermore, particle

movement probabilities are oftentimes selected arbitrarily by the

modeler without validating that the molecules’ movement

behavior represents realistic diffusion rates. Subsequently, agent

based modeling of biochemical systems can benefit from validated

movement algorithms and movement probability selection criteria.

We have outlined an approach for establishing the logic rules

that govern particle diffusion along with methods for translating

key parameters such as diffusion coefficients that have continuous

and deterministic values into probabilities that can be used as

inputs to a discrete and stochastic agent based model. Addition-

ally, we validate these methods with single-particle and multi-

particle simulations where normal diffusion is modeled. Further-

more, we investigate the effects of molecular crowding and high

concentrations of macromolecules in the simulation volume as is

seen in the cell cytoplasm along with their effect on effective

diffusion coefficients, comparing our results with Brownian

dynamics simulations. We then investigate the effect of allowing

multiple particles to reside in a discrete cell of finite volume and

quantify and discuss advantages and disadvantages of various

approaches of enforcing finite cell volumes. Finally, we apply the

ABM framework to investigate the role of geometry on the

directionality of diffusion and show how specific geometries can

promote diffusion in a particular direction while other geometries

hinder the movement of macromolecules in a particular direction

as seen in the filopodia and lamellipodia regions of the cell

cytoplasm with regard to the diffusion of G-actin.

Results and Discussion

Relating Diffusion Coefficients to ABM Movement
Probabilities

Given a lattice with discretization length of DL, and dimen-

sionality of NDimension (either 1, 2 or 3), the relationship between

diffusion coefficient (D) and movement probability (T) for a fixed

timestep of Dt is shown in Eq. (1) (see Methods for derivation).

D~
T

NDimension

(DL)2

Dt

Dt?0,DL?0

ð1Þ

The relationship established in Eq. (1) allows us to take diffusion

coefficient values that are meaningful in a continuous and

deterministic framework and apply them to a discrete and

stochastic agent based model via movement probabilities. The

relationship between mean square displacement and time can be

used to validate the relationship derived in Eq. (1) for simulating

diffusion via ABM. This means that movement probability

associated with the diffusion coefficient being modeled should

result in displacement behavior and rate that would be seen in a

physical system. The mean square displacement Sr2T of a particle

diffusing due to Brownian motion is proportional to the time

elapsed through the following relationship [15]:

Sr2T~qDta ð2Þ

Where q is the numerical constant which depends on dimension-

ality, q = 2, 4 or 6 for dimensionalities of 1, 2 or 3 respectively and

D is the diffusion coefficient and t is time. The exponent a is the

anomalous diffusion exponent where a= 1 for normal diffusion

while all other values of a represent anomalous diffusion. This

means that for normal diffusion, there is a linear relationship

between the mean square displacement of a particle and time. If

we were to plot the calculated mean square displacement versus

time in our simulation, the linearity of this plot would demonstrate

whether simulated diffusion is normal or anomalous and the slope

of this plot would be related to our diffusion coefficient as

described by Eq. (2).

To validate our model for the diffusion of a single particle, we

simulated a macromolecule with a Stokes radius of r = 5 nm

(diameter = 10 nm) that was free to diffuse in a solvent in three

dimensional space with a diffusion coefficient of D = 100 mm2/s.

We ran our model for 500,000 time steps with a minimum

sampling size of 300 independent runs which resulted in a linear

relationship between mean square displacement and time

(a = 0.9992, R2 = 0.9999) which implies that the model successfully

reproduces normal diffusion behavior. Furthermore, when mod-

eling multiple particles with different diffusion coefficients in very

low concentration (crowding effects are negligible), it was observed

that using Eq. (1) to derive movement probabilities for each

particle type produced the same linear relationship between the
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measured mean square displacement and time (normal diffusion

was observed) with different slopes for each particle type that

corresponded to the diffusion coefficients being modeled. The

deviation from linearity in this case was on the same order as that

of the single particle and is most attributed to the stochastic nature

of the model and the sampling size used. Additionally, it should be

noted that as Dt and DL become larger (more coarse grained

models) the error in the simulation also increases as a result of the

approximations made in Eq. (1). However, this discretization error

is typically negligible when compared to the variations resulting

from the stochasticity of the model and more importantly, such a

change in discretization will result in the loss of detailed spatial and

temporal information.

Crowding effects on Diffusion and Multiparticle
Occupation of Cells

The relationship between crowding due to increased concen-

tration and the effective diffusion at low time scales is shown in Eq.

(3) (see Methods for derivation).

D(C)~(1{C:VelementNA):D(0) ð3Þ

Where D(C) is the effective diffusion coefficient as a function of

concentration and D(0) is the diffusion coefficient of a particle in a

low concentration system and C, Velement and NA represent

concentration of crowding molecule, volume of a discrete element

and Avagadro’s number respectively and the product of these

three terms is equivalent to the probability of finding any discrete

cell to be occupied by a molecule (Pocc = CVelement NA). In order to

determine how higher concentrations affect particle diffusion we

performed Langevin dynamics simulations utilizing the shifted

force form of the Lennard-Jones potential energy function that

assessed the effective diffusion coefficient of a particle as the

concentration of particles in the system was increased. The

analytical relationship shown in Eq. (3) is in agreement with the

computational result from Langevin dynamics simulations shown

in Fig. 1 (circle points). These results can be compared with the

result of the two different diffusion algorithms, all-neighbor

attempt and single-neighbor attempt, used in the agent based

model as shown in Fig. 1 (square and triangular points respec-

tively). The single-neighbor attempt algorithm results are in

agreement with both the Langevin dynamics simulation as well as

the analytical relationship, showing that as concentration of

particles in the system increases, the effective diffusion coefficient

decreases linearly. The all-neighbor attempt algorithm that

searches for neighboring vacant cells results in unnaturally higher

effective diffusion coefficients.

The higher effective diffusion coefficient of the all-neighbor

attempt algorithm can be attributed to the algorithm simulating

‘‘intelligent particles’’ that search for vacancies rather than the

behavior of ‘‘non-intelligent particles’’ that diffuse randomly due to

Brownian motion. The behavior exhibited by the single-neighbor

Figure 1. Comparison of algorithms for diffusion in crowded environments. Effective diffusion coefficient at low time scales versus
normalized free particle concentration (volume density) for two agent based model algorithms and a Langevin dynamics simulation for comparison.
The graph shows the single-neighbor attempt algorithm to best represent diffusion at higher concentrations as the effective diffusion of this
algorithm decreases linearly with increased concentration as does the Langevin dynamics model. As the graph shows, the single-neighbor attempt
and Langevin dynamics simulation exhibit the same negative linear slope with a slight difference in offsets resulting from the different definition of
particle volume between the two modeling techniques. Higher concentration data points for Langevin dynamics have been omitted as the volume
definition of particles leads to volume overlap at this concentration.
doi:10.1371/journal.pone.0025306.g001
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attempt algorithm is considered best suited for modeling the

diffusion of passive ‘‘non-intelligent’’ molecules and macro-

molecules such as proteins involved in reaction-diffusion systems.

Furthermore, this phenomenon is critical for modeling macromo-

lecular crowding and its direct effects on intracellular diffusion as

well as reaction kinetics in intracellular environments. Alternatively,

the all-neighbor attempt algorithm would be better suited for

intelligent agents that can sense the environment around them using

means other than collisions. The implementation of a single-

neighbor movement algorithm is a very computationally efficient

way of providing detailed spatial information for diffusing particles

while enforcing steric repulsion and simulating molecular crowding.

It should be noted that both the agent based and Langevin

dynamics methods in this comparison neglect conservation of

momentum and energy as well as hydrodynamic interactions

between particles. Nevertheless, ABM simulations using the single-

neighbor attempt show a linear relationship between the natural log

of the effective anomalous diffusion coefficient and concentration as

shown in Fig. 2, which is in good agreement with experimental data

despite neglecting hydrodynamic interactions [16]. Other methods

such as stochastic rotation dynamics (SRD) are momentum and

energy conserving and account for hydrodynamic interactions

between particles in meso-scale simulations, but have not yet to date

been applied to modeling reaction-diffusion systems [17].

The issue of crowding effects becomes more complex when

considering systems with particles of varying size. In the simplest

case where the model allows for only a single particle per cell,

discretization errors can arise from small molecules saturating the

available vacancies and reducing the effective diffusion coefficient,

when in reality the volume density of the system has not been

changed significantly. This error arises from discretization and the

simplification that the smallest particles occupy the same volume

as that of the largest particles. This issue can be overcome by

introducing an additional layer of complexity in the agent based

model where multiple particles are allowed to occupy a single cell.

In this framework each particle is given a volume value, typically a

fraction of the discretized cell’s volume which it occupies, ranging

from 0 to 1. As this framework is adopted, multiple particles are

allowed to diffuse into a single cell and steric repulsion between

particles is no longer intrinsically observed as it was with single

particles per cell, raising concerns about individual cells’ volume

limits being exceeded at high concentrations of particles.

The most intuitive method for ensuring that the number of

particles per cell does not exceed the cell’s volume is to simply

enforce that the movement of any particle into a destination cell

will not surpass that cell’s volume limit. Although this method is

seemingly straightforward and adds minimal computational cost

(see flowchart, Fig. 3.a), it results in the emergence of artificially

high diffusion for particles of smaller size and artificially lower

diffusion for larger particles (see Fig. 4). In addition, as Fig. 4

depicts, the effective diffusion of particles obeying the volume

limit (VL) method is subject to artificial limitations resulting in

the stair-step behavior. For example, in a concentrated

environment where the cell’s fraction volume cannot exceed 1,

no cell can contain more than a single particle of volume fraction

greater than 0.5. This means that when a three dimensional

discretized space of 1000 elements has 1000 particles of size 0.51

fractional volume or larger (Fig. 4b), no particles in the system

will diffuse since any movement will result in the volume limit

being exceeded.

Figure 2. Natural log of anomalous diffusion of the Single-Neighbor attempt is in agreement with experimental data. Natural log of
effective anomalous diffusion coefficient versus normalized free particle concentration (volume density) for two agent based model algorithms. The
linear relationship between natural log of the anomalous diffusion coefficient and concentration in the single-neighbor attempt algorithm is in good
agreement with experimental data for protein self diffusion [16].
doi:10.1371/journal.pone.0025306.g002
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One method for rectifying the problem of artificially higher

diffusion for smaller particles in the volume limit method is by

adding a probability term based on cell capacity to the movement

logic. In the combined reduced probability and volume limit

method (RP + VL) shown in Fig. 4, as a cell’s occupied volume

increases, the probability of movement into that cell decreases.

This adds additional computational time due to the random

number generation required each time the cell’s volume is not

exceeded and a move is attempted (see flowchart, Fig. 3.b) but has

the added benefit that it better matches the true behavior of the

diffusion of multiple particles at physiologically relevant concen-

trations. However, as depicted in Fig. 4, this method of reduced

probability combined with the volume limit is only effective at

accurately modeling concentrated systems with smaller particles.

Finally, we can best match the actual diffusion behavior by

removing the volume limit and simply reducing the probability of

movement based on the fraction of a cell’s occupied volume (RP

method shown in Fig. 4). This method is the most computationally

intensive of the three as it requires a random number generation

for every attempted move, regardless of whether a cell is occupied

or empty (see flowchart, Fig. 3.c). This method is the suggested

method when investigating systems with molecular crowding as it

best conforms to the expected behavior of multiple particles in a

concentrated environment which can be attributed to the steric

repulsion that would prevent multiple particles from occupying the

same position in space at a particular time. The error at high

concentrations with larger particle sizes in the reduced probability

method (RP) models each cell as an elastic box capable of briefly

exceeding the cell’s maximum volume. However, as shown in

Fig. 4a, the error in this method is less than 5% at physiologically

relevant crowding volumes of 10% - 40% excluded volume

[18,19].

Geometry Effects on Diffusion
To demonstrate a biolgoical application of the proposed agent

based diffusion method, we have modeled the effect of structural

geometry on diffusion directionality. In this model, we show the

effect of quasi-random versus parallel structural geometries of

filaments similar to what is seen in the structure of cell actin

filaments in the form of lamellipodia versus filopodia [20,21].

Actin dynamics are thought to play a key role in cell motility

[22225]. Additionally, it has been shown that the flow of actin

monomers in the lamellipodia cannot be explained by diffusion

alone and may involve some form of active transport [26].

Moreover, due to the parallel orientation of actin filaments in the

filopodia, and their longer length as a result of inhibition of the

capping process, the actin monomers required for polymerization

of actin filaments of the filopodia must travel a greater distance to

where they are needed [21,27229]. In this model, we investigate

how the structural geometry and orientation of these filaments

affects the directionality of diffusion of the monomers.

The model environment consists of a simulation box of size

LX = 400nm, LY = 200nm, and LZ = 100nm with periodic boundary

conditions in the y-direction only. Fig. 5 shows an illustration of a

representative cross-sectional snapshot of the xy-plane of the

simulation box with the right half containing parallel filaments and

the left half containing a uniform density of filaments oriented at

6862 degrees from one another in three dimensional space (prior

to discretization) [20,25,30,31]. This configuration was chosen not

only to investigate geometry effects on diffusion but more

Figure 3. Algorithms for multi-particle per cell diffusion. Flowcharts showing the algorithm of three various methods for simulating steric
repulsion of multiple particles per cell. a) the Volume Limit (VL) method is the most computationally efficient, b) followed by the Reduced Probability
+ Volume Limit (RP + VL) method and c) the Reduced Probability (RP) method being the least computationally efficient. The degree of accuracy for
which each method models steric repulsion is illustrated in Fig. 4.
doi:10.1371/journal.pone.0025306.g003
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specifically to model actin dynamics at the lamellipodia and

filopodia interface.

Actin filaments were initially generated in a non-discretized 3D

environment with continuous filaments spaced a uniform distance

apart and oriented parallel to one another within the filopodia

region and conversely, filaments positioned randomly, with

uniform density and oriented 6862 degrees from each other in

the lamellipodia region. The continuous actin polymers were then

discretized into individual particles representing pairs of g-actin

monomers fixed in space that occupy the full volume of each cell.

It should be noted that the total number of particles (g-actin

monomer pairs) in the lamellipodia and filopodia are equal to

avoid obstacle concentration effects. Agent based modeling was

used to investigate the effect of various actin filament densities on

the directionality of free actin diffusion. As Fig. 6 illustrates, free

particles diffuse more easily in the direction of the filopodia

(x.200 nm) as opposed to the direction of the lamellipodia

(x,200 nm). The simulation was run using characteristic values for

the g-actin monomer diameter and diffusion coefficient of

DL = 5nm and D = 5.65 mm2/s [21,32,33] in a three dimensional

Figure 4. Comparison of the validity of multi-particle per cell diffusion algorithms. In systems of high concentration a) 500 particles in a
system with 1000 cells, b) 1000 particles in a system with 1000 cells and c) 2000 particles in a system with 1000 cells, it can be seen that three
different methods for handling the movement of multiple particles per cell result in significantly different behavior. The volume limit method (VL) is
the most computationally efficient by simply limiting the movement of particles that would result in the fraction of occupied volume of a cell
exceeding 1. However, it is also the least accurate when dealing with crowded environments. The combined reduced probability and volume limit
method (RP + VL) is slightly less computationally efficient but is much more representative of crowded diffusion when the particles are of smaller
volume. The reduced probability method (RP) is the least computationally efficient of the three but best represents the crowded diffusion for most
particle sizes. Additionally, the system with 500 particles in 1000 cells deviates the least from actual when using the RP method while the more
crowded systems deviate more, confirming that the RP method can accurately model physiologically relevant concentrations.
doi:10.1371/journal.pone.0025306.g004
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space, NDimension = 3 with a movement probability of T = 1 given

that only one particle type is diffusing in the simulation and the

movement probability is maximized in order to maximize

computational efficiency. Subsequently, the time step of the

simulation can be determined to be Dt = 74 ms using the

relationship established in Eq. (1).

In order to show the time progression of concentration

differences between the filopodia region and lamellipodia region

at different fixed actin filament volume densities, we calculate the

ratio of the center of mass of diffusing particles in the filopodia

region to that of the lamellipodia. Eq. (4) shows the method used

for calculating the center of mass for each region where R

represents the center of mass and Ni represents the number of

freely diffusing actin monomers at position xi.

R~

P

i

xiNi

P

i

Ni

ð4Þ

Fig. 7 shows the ratio between the center of mass of particles

diffused in the filopodia to that of the lamellipodia as a function of

time for different fixed actin filament volume densities using

simulation parameters of DL = 5nm and D = 5.65 mm2/s in a three

dimensional space, NDimension = 3 with a movement probability of

T = 1 given that only one particle type is diffusing in the

simulation. The general trend seen from these results is that there

is an initial peak in the tendency of particles to diffuse into the

filopodia region (region with parallel filaments) for all fixed particle

densities greater than zero. Subsequently, this peak diminishes

over time (ratio decreases towards 1) as particles reach the x-

direction extremes and begin to distribute uniformly throughout

space.

In addition, it can be seen that as the density of fixed actin

filaments is increased, the tendency of particles to diffuse towards

the region of parallel filaments is only increased. This is most likely

a result of random filaments generating a longer path that must be

taken from the center of the simulation box to the left extreme

whereas the parallel filaments generate the shortest possible

distance that can be taken from the center of the simulation box to

the right extreme which is effectively a reduction of dimension-

ality. Finally, sensitivity analysis was performed on the effect of

varying bond angle between filaments in the lamellipodia.

Figure 5. Representative cross-sectional illustration of simula-
tion environment. Representatitve cross-sectional illustration of the
xy-plane of the three dimensional simulation box of size LX = 400 nm,
LY = 200 nm, and LZ = 100 nm with periodic boundary conditions in the
y-direction only. The parallel filaments in the right half of the box
(x.200 nm) represent the filopodia while filaments in the left half
(x,200 nm) represent the lamellipodia in the cell. The green particles
represent the freely diffusing actin monomers which are distributed in
three dimensional space near x = 200 nm.
doi:10.1371/journal.pone.0025306.g005

Figure 6. Density of diffusing actin monomers as a function of
time and position. Normalized free particle concentration as a
function of position for snapshots of time ranging from 1 to 2000 time
steps with a time step increment of 74 ms for a fixed actin filament
volume density of 0.25 averaged over ten runs. Initially at t = 1 the
distribution of particles is uniform whereas at each subsequent time
step shown, the filopodia region (x.200nm) is seen to have a higher
free particle concentration than the lamellipodia region (x,200nm).
doi:10.1371/journal.pone.0025306.g006

Figure 7. Directionality of actin monomer diffusion as a
function of time and concentration. Ratio between the center of
mass of particles diffused in the filopodia to that of the lamellipodia as a
function of time for different fixed actin filament volume densities.
There is a tendency for particles to diffuse towards the filopodia region
as a result of the geometry of filaments in each region. This
phenomenon is only amplified as the density of fixed actin filaments
is increased.
doi:10.1371/journal.pone.0025306.g007
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Simulations were performed with the original angle of 6862

degrees as well as 9062 and 4662 degrees with a filament volume

fraction density of 0.15. We observed the mean ratio of center of

mass of particles diffused towards the filopodia to that of those

diffused towards the lamellipodia at 68 degrees to fall within one

standard deviation of the mean for 90 and 46 degrees.

Subsequently, we conclude that the angle between bound

filaments in the lamellipodia doesn’t directly contribute to the

directionality of diffusion at the filopodia/lamellipodia interface.

Rather, the aggregation of multiple filament connections, which

form a web-like network, results in the impedance of diffusion in

any given direction, from which biased diffusion in the direction

parallel to the filopodia emerges.

Methods

Relating Diffusion Coefficients to ABM Movement
Probabilities

Fick’s second law relates the effect of diffusion on the

concentration field of particles over time [34]. We can express

this relationship in terms of the probability of discretized cells

being occupied rather than concentration, Eq. (5), by considering

the relationship between concentration and the probability of a

cell being occupied by an agent, Eq. (6).

LPocc

Lt
~D

L2Pocc

Lx2
ð5Þ

C~
Nparticles

NcellVelementNA

~
Pocc

VelementNA

ð6Þ

Note that the variables Pocc, D, t, and x in Eq. (5) represent

probability of finding an occupied cell, diffusion coefficient, time,

and position respectively while the variables C, Nparticles, Ncell, Velement,

NA, and Pocc in Eq. (6) represent concentration, number of particles,

number of cells, volume of each element, Avagadro’s number and

the probability of finding an occupied cell respectively.

The diffusion term in Eq. (5) is a factor dependent on

temperature of the solvent, size and shape of the particle, and

viscosity of the solvent that quantifies the ratio of Brownian forces

to drag forces. Factors such as force and velocity are not explicitly

calculated in a simple agent based model and the coarse

discretization of space that limits the direction of movement

would make such calculations meaningless. Rather, in an agent

based model, diffusion can be simulated by assigning a probability

of movement to each particle agent. The relation between

movement probability and a physically meaningful diffusion

coefficient is derived below.

We consider a one-dimensional lattice with discretized segments

of length DL as shown in Fig. 8 to derive the relationship between

a physical diffusion coefficient and a movement probability to be

used in our agent based model. We can define the probability of

finding a single particle at position Xn at time t+Dt as:

Pn,tzDt~Pn,t{Pn,tTR{Pn,tTLzPn{DL,tTRzPnzDL,tTL ð7Þ

Where Pn,t, Pn-DL,t and Pn+DL,t represent the probability of finding

the particle at position Xn, Xn-DL and Xn+ DL respectively at time t;

TR and TL represent the probability of the particle moving to the

right or left respectively. Note that unless otherwise noted, all

probability terms represent the probability of the respective cell

being occupied. Eq. (7) states that the probability of a particle

being found at Xn at time t+Dt can be determined based on the

probability that the particle was initially in that position and

remained there (first term) less the probability that the particle

started in that position and moved to either the right or left cells

(second and third term) plus the probability that the particle was

initially to the left or right of that cell and moved to the right or left

respectively (fourth and fifth term).

Taylor expansion of the terms in Eq. (7) as Dt,DL?0 gives the

following relationship:

LPn,t

Lt
~

2T

2

(DL)2

Dt

L2Pn,t

Lx2
ð8Þ

This assumes that movement probability in both directions are

equal (TL+TR = 2T). Note that the T/2 factor would translate to T/

4 and T/6 for two-dimensional and three-dimensional cases

respectively. Eq. (8) relates how the transition probability affects

the spatial distribution of particles with time, similar to Eq. (5). Thus

we can relate diffusion (D) to movement probability (T), using

discretization length (DL) and time (Dt) along with the dimension-

ality of the environment (Ndimension, either 1, 2 or 3) as previously

shown in Eq. (1) for diffusion of a particle on a discrete cubic lattice.

Crowding effects on Movement Probability
The computational model and analytical solutions described

thus far pertain to the diffusion of a single particle in a discretized

Figure 8. Illustration of movement probabilities in a single
dimension. Discretized one-dimensional space with square lattices of
length DL depicting how probabilities of particles existing in a cell at time t
combined with movement probabilities result in a change in the probability
of a particle occupying a cell at time t+Dt as outlined by Eq. 7. Note that the
circles in each cell do not represent individual particles; rather they
qualitatively represent probabilities of a particle residing in that cell.
doi:10.1371/journal.pone.0025306.g008

An Agent Based Model of Reaction-Diffusion Systems

PLoS ONE | www.plosone.org 8 September 2011 | Volume 6 | Issue 9 | e25306



space. In addition, it is necessary to validate the model behavior in

high particle concentrations to ensure that the model behaves in

accordance with physical phenomena. Using the same approach

used to determine movement probability for a single particle in

Eq. (1), we can analytically derive the effective diffusion coefficient

for a high concentration, multiple particle system in a stochastic

agent based model. Given the same one-dimensional discretized

environment from Fig. 8, we can modify Eq. (7) to now

incorporate the effect of multiple particles.

Pn,tzDt~Pn,t{Pn,tTRPvac
nzDL,t{Pn,tTLPvac

n{DL,tz

Pn{DL,tTRPvac
n,t zPnzDL,tTLPvac

n,t

ð9Þ

Where Pvac represents the probability of finding the given cell to be

vacant. Eq. (9) states that the probability of a particle being found

at Xn at time t+Dt can be determined based on the probability that

Figure 9. Model validation process. Method for modeling diffusion using physically observed diffusion coefficients (translated to movement
probabilities) as an input in an agent based model. Additional details regarding the movement algorithm (specifically the single-neighbor attempt)
are illustrated.
doi:10.1371/journal.pone.0025306.g009
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the particle was initially in that position and remained there less

the probability that the particle started in that position and moved

to either the right or left cells plus the probability that the particle

was initially to the left or right of that cell and moved to the right

or left respectively if cell Xn was vacant plus the probability of the

particle in cell Xn attempting to move to the right or left into an

occupied cell resulting in the particle remaining in cell Xn. Taylor

series expansion of the time and position varying terms along with

the relationship that Pvac = 1-Pocc gives the solution shown in Eq.

(10).

LPn,t

Lt
~(1{Pocc)

2T

2

(DL)2

Dt

L2Pn,t

Lx2
ð10Þ

Note that Eq. (10) is similar to the relationship derived for the

single particle concentration field and has the same relationship

relating movement probability to diffusion coefficient as the single

particle with an additional term related to the probability of cells

being occupied by particles. As shown in Eq. (6), this probability of

cells being occupied by particles is directly related to the

concentration of the system (C = Pocc/VelementNA).

Model Details
Our agent based model consists of a three-dimensional

discretized space that can be bounded or unbounded in which

various types of agents diffuse by moving between neighboring

cells of cubic shape with a given movement probability, which is

equal in all directions and corresponds to the particle’s respective

diffusion coefficient (Eq. (1)). In this model, we incorporate a von

Neumann neighborhood consisting of the six cells orthogonally

surrounding an agent in 3D space. Agents in this model can only

interact with other agents within their von Neumann neighbor-

hood and can only move in the direction of von Neumann

neighborhood cells.

At higher concentrations, two methods for particle movement

consisting of an all-neighbor attempt and a single-neighbor attempt

algorithm are assessed. These movement methods differ in that an

all-neighbor attempt is an intelligent agent movement procedure

in which all von-Neumann neighborhoods are searched at random

until an empty cell is found for the agent to move to while in the

single-neighbor attempt a von Neumann neighbor is selected at

random, disregarding whether it is occupied or vacant. If the cell is

occupied the movement is rejected and the agent remains in its

current cell while movement into a vacant cell is accepted with

some probability correlated to the diffusion coefficient. In this

second method, rejected movements represent a collision between

two particles resulting in both particles remaining in their

respective cells. Fig. 9 also shows the process for single-neighbor

attempt movements.

The model was developed using object oriented FORTRAN to

maximize computational efficiency. Agent based modeling benefits

significantly from object oriented programming since the concept

of an object is similar to the concept of an agent. Moreover, agent

based modeling is very computationally efficient for large systems

and long time scales when compared to modeling techniques such

as Langevin dynamics as shown in Fig. 10 at the cost of reduced

spatial and temporal detail. Additionally, the discrete nature of the

model makes it an ideal candidate for parallelization and

distributed computing, resulting in further computational efficien-

cy [35].
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