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Abstract

While it is accepted that biomembrane asymmetry is generated by proteins and phospholipids distribution, little is known
about how electric changes manifested in a monolayer influence functional properties of proteins localized on the opposite
leaflet. Herein we used single-molecule electrophysiology and investigated how asymmetric changes in the electrostatics of
an artificial lipid membrane monolayer, generated oppositely from where alamethicin - a model voltage-gated ion channel -
was added, altered peptide activity. We found that phlorizin, a membrane dipole potential lowering amphiphile,
augmented alamethicin activity and transport features, whereas the opposite occurred with RH-421, which enhances the
monolayer dipole potential. Further, the monolayer surface potential was decreased via adsorption of sodium dodecyl
sulfate, and demonstrated that vectorial modification of it also affected the alamethicin activity in a predictive manner. A
new paradigm is suggested according to which asymmetric changes in the monolayer dipole and surface potential extend
their effects spatially by altering the intramembrane potential, whose gradient is sensed by distantly located peptides.
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Introduction

A key challenge faced by systems biology is to gain an

understanding of the physical mechanisms that govern peptide

adsorption, insertion and activity into lipid membranes. Among

other factors, the membrane-water interfacial region was proven

to play an important role in membrane association of proteins and

peptides, due to the steep polarity gradient from apolar region

near the hydrocarbon core of the membrane to highly polar, in the

vicinity of the aqueous phase [1,2]. In relation to this, it is well

established that the membrane electrostatics has the potential of

modulating manifestations of a wide selection of membrane

proteins, including voltage-gated ion channels [3], enzymes [4],

ligand-gated channels [5], antimicrobial peptides [6] and G-

protein-coupled receptors [7]. In a broad description, the

membrane electrostatics contains three major contributions: the

transmembrane potential, stemming from a charge gradient across

the membrane, the surface potential, generated by the net charge

on the membrane surface, and the membrane dipole potential,

whose origin lies in the oriented dipoles of bound water molecules,

lipid headgroups, and lipid carbonyls located on the membrane

lipid molecules [8]. The membrane dipole-potential whose

magnitude is approximately 200 4 300 mV [8,9] and acts over

a zone of roughly 1.0 nm, generates an electric field of approx.

2436108 V/m and plays important roles in cellular physiology,

such as the translocation of hydrophobic ions through lipidic

bilayers [8], it modulates the activity of phospholipase A2 [10], it

alters the extent of the membrane fusion [11], as well as the

insertion and channel forming activity and single channel properties

of peptides and proteins (vide infra). In addition, changes in the

bilayer shape which accompany the partitioning of water soluble

peptides into lipid bilayers contribute to the free energy of insertion,

and involves mechanical contributions stemming from its elastic

properties (thickness, intrinsic lipid curvature, and the elastic

compression and bending moduli) [12]. The bilayer-induced

allosteric regulation of protein function has been remarkably well

described explained in studies involving various antimicrobial

peptides useful for ion channels representation [13–16].

One of the most remarkable structural features of living cells

biomembranes is their asymmetry with respect to the lipid

compositions in the two monolayers [17]. This is currently perceived

as a significant determinant of membrane properties through

differences in fluidity, alteration of membrane protein environment,

or changes in transmembrane electric field, of vital importance for

membrane properties and functions [18,19]. Lipid asymmetry was

proven to alter the electric field across the membrane and contribute

with a nonzero potential difference between the two opposing

monolayers even in the absence of ion charge gradients across the

membrane [20–22]. This in return is crucial for lipid flip-flop rate,

membrane-based signaling dynamics, the modulation of voltage-

gated proteins activity, enzymes, transport through ionic channels,

binding and translocation of various small molecules and peptides

across cell membranes [23–26].

To more effectively decipher mechanisms regarding the

regulation of membrane protein function by electrical and

mechanical properties of lipid membranes, it is usually useful to
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focus on particular frameworks able to simplify the in-vivo structural

and functional features of biomembranes, and yet provide relevant,

biological insight. Alamethicin is a 20-residue peptide from the

fungus Trichoderma viride, which forms voltage-activated oligomers

with well-defined conductance levels. Because these channels are

relatively simple in structure and function, they constitute suitable

model systems for understanding lipid membranes-peptide inter-

actions and ion channel properties [27]. An intriguing property of

alamethicin is its exponential voltage-dependent pore formation

propensity, and when applied to the cis side of a membrane, only

negative, trans applied potentials, lead to monomers insertion into

the membrane and channel activation [27–29]. In the absence of

voltage, membrane adsorbed alamethicin monomers adopt a

partially N-terminal inserted interfacial orientation with the C-

terminal part anchored to the interface by a number of peptide/

lipid hydrogen-bonds from the side-chains of Glu-18 and Gln-19,

and the terminal hydroxyl of Phl-20 to the phosphate, glyceryl and

acyl oxygens of the lipid and water in the interfacial region [29].

Within a widely accepted model, the voltage-dependent insertion of

cis-added alamethicin is caused by the interaction between the a-

helical dipole of alamethicin and the transmembrane potential,

leading to its insertion into the membrane where it undergoes

further oligomerization.

Previous results have documented extensively that by manipu-

lating controllably the sign of change and the magnitude of the

interfacial dipole field by amphiphiles like phloretin, phlorizin,

RH-421 and 6-ketocholestanol, added on both sides of the

membrane or on the side of peptide addition only, it is possible to

modulate the extent of the membrane penetration and transport

properties mediated by alamethicin [30], gramicidin [31,32],

surfactin [33], syringomycin E [34], melittin and magainin 2 [35],

analogues of the HP(2–20) antimicrobial peptide [36], the

mitochondrial amphipathic signal sequence p25 [37], and the

human immunodeficiency virus protease inhibitor saquinavir [38].

However, very little is known about how changes in the overall

transmembrane potential profile caused by asymmetric alteration

of the dipole and surface membrane potential of a trans membrane

monolayer, extend spatially and manifest functional roles in

modulating the kinetic and transport features of cis-added, model

ion channel-forming peptides.

In this work we sought to understand the effects of asymmetry in

the electrostatic features of a reconstituted lipid membrane, on

dynamic properties of alamethicin. We used amphiphiles like

phlorizin, styrylpyridinium dye RH-421 and sodium dodecyl

sulfate (SDS), that preferentially partition into a single membrane

leaflet, added vectorially to the membrane opposite to the side of

alamethicin insertion, to controllably alter the dipole and surface

potential, and provide a quantitative evaluation of the effects of

asymmetric bilayer electric potentials on peptide function.

Our work strongly suggests that the dipole and surface potential

asymmetry between the cis and trans leaflets of a reconstituted

membrane acts as a transbilayer driving force strongly modulating

alamethicin activity and ion transport properties. Additionally, we

demonstrated that electric and mechanic modulatory effects

induced by the anionic detergent SDS on alamethicin activity

are un-coupled, whereby the canceling out of the electric

contribution induced by SDS through symmetric addition on

both sides of the membrane, left its mechanical effect on peptide

activity still active. Data presented here lend support to the

paradigm according to which asymmetric changes in the

monolayer dipole and surface potential may play additional

functional roles in regulating membrane protein function, and

extend their effects spatially by altering the intramembrane

potential, whose gradient is sensed by distantly located peptides.

Materials and Methods

Electrophysiology on alamethicin oligomers was performed on

the folded bilayer membranes system, obtained with Montal-

Mueller technique, as we described previously [16,30]. In short, a

lipid bilayer was formed from L- a-phosphatidylcholine (Sigma-

Aldrich, Germany) in pentane, on an aperture of 100 mm diameter

in the Teflon septum that had been pretreated with 10% (v/v)

hexadecane (Sigma-Aldrich, Germany) in highly purified n-

pentane (Sigma-Aldrich, Germany), which separates the cis and

trans bilayer chambers of 1 mL in volume. Both chambers

contained 0.5 M KCl (for the experiments with RH-421 and

phlorizin) or 0.1 M KCl (for the experiments with SDS) salt

solutions buffered at a pH value of 6.5 in 10 mM HEPES buffer

(Fluka, Germany). Experiments with SDS were carried out in

0.1 M KCl in order to ensure the proper solubilization of the

detergent molecules, since higher salt concentrations more

effectively screens out the electrostatic interactions among them

and facilitate their hydrophobic clustering. All experiments were

performed at a room temperature of 25uC. Alamethicin

monomers (Sigma-Aldrich, Germany) were added from a stock

solution made in ethanol, only to the cis chamber which was

connected to the ground. Mechanical stirring was initiated in this

chamber for several minutes to ensure proper concentration

homogenization. Spontaneous peptide insertion was usually

obtained under stirring at holding potentials of 28042100 mV.

When employed, styrylpyridinium dye RH-421 (Sigma-Aldrich,

Germany) or phlorizin (Fluka, Germany) were added to the trans

side of the membrane, from stock solutions made in ethanol, kept

under dark at 4uC. The anionic detergent sodium dodecyl sulfate

(Sigma-Aldrich, Germany) was added from a stock solution of

5 mM made in distilled water. Most importantly, before adding

any amphiphile to the bilayer chamber containing the dissolved

peptide, we waited long enough (tens of minutes under stirring), to

allow peptide molecules to reach the stationary state with respect

to their partitioning to the lipid membrane. Therefore, we sought

to avoid a mis-interpretation of a subsequent alteration in

alamethicin activity following any agent addition, which might

have occurred simply as a result of re-homogenization of peptide

monomers within the membrane. Furthermore, to make sure that

under our working conditions the time-lag between adding

alamethicin and amphiphiles was long enough to avoid this

problem, control experiments were run during which we

monitored whether the activity of alamethicin oligomers changed

upon simply stirring of the solution in the trans side. Only in those

instances where the activity of alamethicin remained largely

unchanged following such ‘ghost-stirring’ in the trans chamber,

did we proceed with amphiphiles addition.

The electrical connection between the bilayer chamber and the

amplifier was made via Ag/AgCl electrodes. Currents from the

bilayer chamber, which was housed in a Faraday cage (Warner

Instruments, USA) and mechanically isolated with a vibration-free

platform (BenchMate 2210, Warner Instruments, USA), were

detected and amplified with an EPC 8 patch-clamp amplifier

(Heka, Germany) set to the voltage-clamp mode. Data acquisition

of the amplified electrical signals was performed with a NI 6251,

16-bit acquisition board (National Instruments, USA) at a

sampling frequency of 20 kHz within the LabVIEW 8.20

environment. Data were than fed into a PC-compatible computer

for further numerical analysis and graphing, done mainly with the

help of the Origin 6.0 (OriginLab Corporation, USA) and pClamp

6.03 (Axon Instruments, USA) software.

To construct the I–V diagrams of currents mediated by various

substates of the alamethicin oligomer in the absence or presence of

Modulation of Peptide Activity by Electrostatics
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various amphiphiles, we quantified electrical currents correspond-

ing to such substates from original current recordings, without

resorting to amplitude histogram analysis, due to the thermal noise

which in certain instances precluded the separation between the

first substate of alamethicin from its closed state. Usually, more

than 20 readings of the electrical current corresponding to a

certain open state at a given holding potential were employed.

Results and Discussion

In the first part of this study we undertook a comparative,

quantitative analysis of the effects of RH-421 and phlorizin on

alamethicin oligomer activity and its electric conductance, when

both dipole-potential modifiers amphiphiles were added asym-

metrically, opposite to the membrane side of alamethicin addition.

As shown in Fig. 1, panel a, the trans side addition of 8 mM RH-

421, known to increase the dipole potential of the monolayer

where it inserts to, leads to a reduction in alamethicin activity as

compared to control conditions (no amphiphile added) (Fig. 1,

panel b). As stated before, alamethicin was added to the grounded,

cis side of the membrane.

To probe further the effect of asymmetrically added dipolar

compounds modifiers on alamethicin activity, phlorizin, an

amphiphile known to decrease the monolayer dipole potential,

was injected on the trans side of the membrane, at an aqueous

concentration of 500 mM. Fig. 1, panel c, illustrates the

augmentation of the cis side added alamethicin oligomerization,

caused by phlorizin interaction with the trans monolayer.

To explain this, we neglected the contribution of small, negative

surface potentials which are present even in the case of zwitterionic

phospholipids membranes [39], and took into consideration only

the dipole and transmembrane potential electrostatic profile of the

membrane, shown diagrammatically in Fig. 1, beneath current

traces. On both monolayers, hydrated lipid headgroups behave as

Figure 1. Representative current recordings which illustrate the alamethicin activity in lipid membranes under control conditions
(no amphiphile added, panel b), and presence on the trans side of the membrane of either RH 421 [8 mM] (panel a), or phlorizin
[500 mM] (panel c). The applied potential was 260 mV. The closed state of alamethicin oligomers is denoted by the dotted line, and downward
spikes designate the electrical current mediated by alamethicin pores in their various conductive state. Beneath it is shown an over-simplified
geometric view of changes ensued on the overall membrane potential profile, by the increase (panel a, dotted line) or decrease (panel c, dotted line)
of the trans-monolayer dipole potential (Dyd) of the trans lipid monolayer only, as compared to control conditions (panels a, b, and c, solid line).
When the dipolar electric field - initially similar for both the cis and trans monolayers (Econtrol) - is altered in the trans monolayer only, as a
consequence of RH-421 (ERH-421 . Econtrol) or phlorizin (Ephlorizin , Econtrol) adsorption, a corresponding change in the intramembrane potential across
the hydrophobic region of the membrane will follow. As a result, the net potential difference sensed by the cis-side adsorbed alamethicin over the
hydrophobic region while crossing the membrane, will equal that seen under control conditions at a given trans-applied potential, from which a
given value must be subtracted (denoted by DURH-421; panel a, dashed line) or added to (denoted by DUphlorizin; panel c, dashed line). Based on the
presented simplified geometric and electric considerations, this value (DU) should match the change brought about by either amphiphile adsorption
on the trans-monolayer dipole potential (Dyd). The solid arrows assigned to Palamethicin indicate the orientation of alamethicin monomers dipole
moment, while in the transmembrane orientation.
doi:10.1371/journal.pone.0025276.g001
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an array of inward-pointing dipoles giving rise to an interfacial

dipolar structure viewed for our purpose as a continuum phase,

whose electric field vector points outwardly and generates the

interfacial dipole potential, positive towards the membrane

interior. In the absence of surface charges at the hydrophobic-

interfacial layer interface, the normal component of the dielectric

displacement is continuous, and so is the electric potential.

Therefore, when the trans side of the bilayer membrane is

subjected to a negative potential with respect to the grounded cis

side, the lumped transmembrane potential profile varies across the

membrane as shown in Fig. 1, panel b.

By the virtue of the same physical arguments, when the dipole

potential profile is altered in either monolayer, a corresponding

change in the intramembrane potential will ensue. In this

framework, we posit that trans-side injection of RH-421 leads to

a reduction of the intramembrane potential difference across the

hydrophobic region of the membrane (Fig. 1, panel a). As a result,

the net electric field sensed by the cis side adsorbed alamethicin

monomers, at a given negative holding potential established in the

trans compartment, will decrease. The immediate effect would be

an increased energy barrier along the alamethicin transition path

towards the membrane-inserted state, whereby the magnitude of

the cis-to-trans oriented external electric field determines the

propensity of the initially interfacially oriented peptide helix

dipole, to cross the membrane to the inserted position. Similarly,

to explain the augmenting effect on alamethicin activity at a

constant applied holding potential by the trans-adsorbed phlorizin,

we propose as a major factor the net increase of the electric field

within the membrane core caused by the asymmetric decrease of

the dipole potential in the trans-monolayer (Fig. 1, panel c).

In Fig. 2 we present a quantitative view of the modulatory effect

exerted on alamethicin activity by the two amphihiles (RH-421 and

phlorizin), added asymmetrically to the trans side of a membrane,

through estimations made on the standard deviation of the electrical

current fluctuations, as well as the probability of appearance of high-

conducting substates on alamethicin oligomers.

Numerical estimations revealed that at an applied potential of

260 mV, trans-injection of RH-421 reduced the probability of

appearance of higher conductance states with ,54%, whereas

phlorizin augmented with it with ,74%.

RH-421 and phlorizin not only entailed changes in the

membrane activity of alamethicin oligomers, but also caused

alterations of transport properties of alamethicin distinct conduc-

tive substates. Single-channel recordings on alamethicin oligomers

made at various holding potentials, in the absence and presence of

RH-421 and phlorizin, revealed a consistent alteration of currents

mediated by the first three substates of the alamethicin oligomer

when either amphiphile got adsorbed to the trans monolayer. As

shown in Fig. 3, phlorizin led to an increase of ionic charge

transfer through alamethicin, whereas RH-421 caused the

opposite.

From the linear fitting of I-V diagrams shown in Fig. 3, we

calculated the conductance values of the first, second and third

substates of the alamethicin oligomers during control experiments,

which equal 0.0961023 nS, 0.3761023 nS and 1.046761023 nS,

respectively (mean 6 s.e.m). From similar evaluations, we inferred

that the trans-added RH-421 (8 mM) reduced the first, second

and third substates conductance values to 0.0861023 nS, 0.356

1023 nS and 1.016561023 nS (mean 6 s.e.m), whereas phlorizin

(500 mM) enhanced them to 0.16561024 nS, 0.46261023 nS

and 1.086561023 nS (mean 6 s.e.m), respectively. The simplest

physical explanation we propose for such changes relies on the

Goldman-Hodgkin-Katz formalism [40] in conjunction with con-

clusions inferred previously regarding the effects of RH-421 and

phlorizin on the transmembrane potential profile. That is,

adsorption of either RH-421 or phlorizin to the trans monolayer

under a clamped negative transmembrane potential, and subse-

quent increase or decrease in the trans-monolayer dipole potential,

leads to an overall change of the potential profile across the

membrane. In the framework of the Goldman-Hodgkin-Katz

formalism and with relevance to our data, it is worth recalling that

the net value of the electric current is not only proportional to the

difference of exponential potential values maintained across the

membrane, but also inversely proportional to the exponential of the

integral value of the potential profile, calculated across the

permeating pathway. In a simplified view (e.g., we neglect the

contribution of polarization charges induced at the membrane/

aqueous pore boundary caused by diffusing ions through alamethi-

cin, etc.) we propose that the trans-added, RH-421 adsorption leads

to an alteration of the membrane potential profile, which in the end

is equivalent to an increase in the energy barrier anions and cations

must surpass in order to permeate through alamethicin. This in turn

leads to a decrease in the net electric current recorded at various

holding potentials [9]. By following a similar reasoning, it can be

argued that the opposite happens when phlorizin interacts with the

trans monolayer.

As pointed out before (see Fig. 1), simple electrostatics and

geometric reasoning supports the observation that the degree of

trans-monolayer dipole potential alteration induced by either RH-

421 or phlorizin, equals the change one may have to impose on

the transmembrane potential in the absence of amphiphile adsorption, to

arrive at a similar electric potential profile over the hydrophobic

region of the bilayer, and consequently comparable changes in

alamethicin activity. Based on this, we further used the computed

changes in the membrane activity of alamethicin oligomers in the

absence and presence of RH-421 [8 mM] and phlorizin [500 mM],

to make quantitative estimations of absolute values to which the

trans dipole potential changed, as a result of their membrane

asymmetric adsorption.

As we illustrate in Fig. 4, and with the simplifying assumption that

such amphiphile chemical potential is relatively un-influenced by

the applied transmembrane potential [41,42], we posit that the

dipole potential increase brought about by the RH-421 adsorption

on the trans-monolayer at any given transmembrane potential is

equivalent to a decrease with DURH-421,4 mV of the applied

holding potential and no amphiphile added (control conditions), in

order to arrive at a similar alamethicin activity. Similarly, at any

given holding potential and by comparison with control experi-

ments, the trans-monolayer dipole potential-decrease mediated by

phlorizin adsorption increases the alamethicin activity to an extent

as seen under control experiments, whereby the applied transmem-

brane potential would increase with roughly DUphlorizin,3 mV.

Further, we calculated the extent to which the altered

transmembrane electric field caused by trans-side injection of

RH-421 or phlorizin alters the relative energetics between inter-

facial and transmembrane orientation of alamethicin. We first

proposed the following the simplifying assumptions according to

which: (i) in its interfacial orientation, alamethicin lies mostly

parallel to the membrane surface, and the transmembrane electric

field created by a negative trans-potential induces a transition to a

perpendicular orientation of alamethicin, spanning the entire

hydrophobic region of the membrane (ii) upon trans-adsorption of

either amphiphile, the change brought on the spontaneous

curvature of the trans-monolayer, which is among the known

factors that modulate alamethicin insertion [43] does not influence

appreciably the alamethicin insertion. By multiplying the ala-

methicin dipole moment (mpeptide,75D) by the net change in the

electric field (dE) sensed in its inserted orientation over the

Modulation of Peptide Activity by Electrostatics
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hydrophobic thickness of a typical phospholipid membrane

(h,3 nm), in the presence of either RH-421 (dERH{421~
DURH{421

h
) or phlorizin (dEphlorizin~

DUphlorizin

h
) at their given

concentration (vide supra), we conclude that the energy difference

between the interfacial and transmembrane orientation of the

peptide (dW~NAmpeptidedE; NA is Avogadro’s constant) are

0.19 kJ mol21 (RH-421) and 0.14 kJ mol21 (phlorizin). As

suggested above, these numbers are relative indicators of energetic

contributions for alamethicin reorientation and incorporation into

the membrane, provided by trans-side adsorption of either RH-

421 [8 mM] or phlorizin [500 mM].

To investigate in further details how asymmetric alteration of

membrane electrostatics on one monolayer couples with alamethicin

activity, when the peptide inserts into the membrane from the

opposite side, we next used the sodium dodecyl sulfate (SDS)

amphiphile. Among others, SDS is widely used as solubilizing agents

of biological membranes. In addition, results from previous seminal

work endows such detergents with exquisite membrane-active roles,

able to modulate membrane protein function via changes brought

about in the energetic cost of bilayer deformations associated with

various protein and ion channels functioning [44,45].

Due to its charged moiety, SDS exhibits a rather slow

membrane flip-flop rate at room temperature (minutes to hours)

[46]. This ensures that during the time scale of our experiments

when SDS was added asymmetrically to one membrane

monolayer, no equilibration occurs between leaflets. Membrane

adsorption of SDS into a zwitterionic lipid membrane is favored

by the hydrophobic interactions of the hydrocarbon chains of the

lipids, and produces a negative surface charge due to the

negatively charged head groups which impede, via electrostatic

repulsion, the further insertion of SDS molecules [46].

In Fig. 5 we present representative traces which illustrate the

antagonistic, strong modulatory effect exerted by 25 mM SDS on

alamethicin activity and transport features, when the amphiphile is

injected on either side of the membrane.

In quantitative terms and as already described, such changes

seen in alamethicin activity and ion transport were further

Figure 2. Quantitative description of the modulatory effect by exerted RH-421 (panel a) and phlorizin (panel b) on alamethicin
activity, added asymmetrically to the trans side of a membrane, via estimations made on the standard deviation (denoted by s) of
the electrical current mediated by alamethicin oligomers at different holding potentials, before and after amphiphile adsorption,
as well as the probability of appearance of high-conducting substates on alamethicin aggregates, inferred from the normalized
amplitude histogram of current fluctuations seen in the absence (control) and presence of adsorbed amphiphiles at 260 mV. Due
to the inherent thermal noise, the first substate (1) on the alamethicin oligomer is poorly discernable from its closed state (0) on the amplitude
histogram. Therefore, the area of convoluted Gaussian component denoted by (0, 1) represents the probability of appearance of either ‘closed’ or first
substate on alamethicin’s reversible oligomerization. Areas assigned to peaks denoted by ‘2’ and ‘3’ provide a quantitative view of the probabilities to
which the second, and respectively third conductive substates appear during alamethicin’s reversible oligomerization.
doi:10.1371/journal.pone.0025276.g002

Modulation of Peptide Activity by Electrostatics

PLoS ONE | www.plosone.org 5 September 2011 | Volume 6 | Issue 9 | e25276



Figure 3. Magnified view of traces recorded at 260 mV showing the current amplitudes mediated by the first (O1), second (O2) and
third (O3) sub-conductance states of the alamethicin oligomer under control conditions (no amphiphile added, panel b), and
presence on the trans side of the membrane of either 8 mM RH 421 (panel a), or 500 mM phlorizin (panel c). Shown below are
representative I–V diagrams illustrating the ion current at various transmembrane potentials, mediated by the first (O1) (panel d), second (O2) (panel
e) and third (O3) (panel f) alamethicin substates in the absence (control) and presence of either RH 421 or phlorizin.
doi:10.1371/journal.pone.0025276.g003

Figure 4. Illustrative diagrams showing changes in the membrane activity of alamethicin oligomers in the absence and presence of
trans-added RH-421 (panel a) and phlorizin (panel b), quantified through estimations made on the standard deviation (s) of the
electrical current mediated by alamethicin at different holding potentials, used to make quantitative estimations of absolute
values to which the trans dipole potential changes as a result of amphiphile asymmetric adsorption. Based on the rationale presented in
the text, we posit that the dipole potential increase brought about by the RH-421 [8 mM] adsorption on the trans-monolayer at any given
transmembrane potential is equivalent to a decrease with ,3.762 mV (mean 6 s.e.m) of the applied holding potential (denoted by DURH-421) and no
amphiphile added (control conditions), in order to arrive at a similar alamethicin activity. Similarly, and by comparison with control experiments, the
trans-monolayer dipole potential decrease mediated by phlorizin adsorption [500 mM] increases the alamethicin activity to an extent as seen under
control experiments, whereby the applied transmembrane potential would increase with roughly 2.860.8 mV (mean 6 s.e.m) (denoted by DUphlorizin).
doi:10.1371/journal.pone.0025276.g004

Modulation of Peptide Activity by Electrostatics
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described by the electric noisiness of alamethicin oligomers

(standard deviation of alamethicin-mediated currents) and prob-

ability of appearance of highly-conductive substates with SDS

injected asymmetrically on either side of the membrane (Fig. 6).

By the virtue of similar physical reasoning as presented above,

we propose that the asymmetric presence of a negative surface

charge on either trans or cis side of the membrane, generated by

SDS partitioning, leads to a negative drop in the surface potential

of the corresponding monolayer. Consequently, the intramem-

brane potential profile will be altered, so that trans-adsorption of

SDS will generate a steeper potential gradient across the

membrane hydrophobic core – which energetically favors the

insertion of the cis-added alamethicin – whereas the opposite

occurs when SDS adsorbs on the cis side of the membrane.

The elevated conductance values (0.096361023 nS for the first

substate and 0.276261023 nS for the second substate), and

respectively reduced conductance values of a single alamethicin

oligomer in its various conductive substates (0.066261023 nS for

the first substate and 0.2461023 nS for the second substate),

measured in the presence of either trans- or cis-adsorbed SDS, as

compared to control conditions (0.076261023 nS for the first

substate and 0.256561024 nS for the second substate) (mean 6

s.e.m) (Fig. 7, panels a and b), reflect in our view an augmented or

decreased net electrical force acting on migration ions through the

alamethicin pore, and the physical explanation can be tackled

within the Goldman-Hodgkin-Katz formalism (vide supra).

Within a similar formalism as described above, we calculated

the absolute values of the surface potential changes of the trans

and cis monolayer, induced by asymmetric SDS injection on either

sub-phase of the membrane, by the changes one may have to

impose on the transmembrane potential in the absence of SDS

adsorption, to arrive at an electric potential profile across the

hydrophobic region of the bilayer able to give rise to similar

changes in the alamethicin activity. We posit that at a

concentration of 25 mM, the trans-added SDS augments the

transmembrane potential difference, and implicitly that seen over

the hydrophobic core of the membrane, with a value equal to

the change brought on the trans-monolayer surface poten-

tial, DUSDS, trans,10 mV, and it decreases it with the value

DUSDS, cis,8 mV, when SDS is injected on the cis sub-phase only.

In the limit of low SDS bulk concentration, these numbers are in

good qualitative agreement with previously found values of the

membrane surface potential calculated for POPC membranes,

from experiments with isothermal titration calorimetry [46]. The

Figure 5. Representative current recordings mediated by alamethicin in lipid membranes under control conditions (panel b), and
presence of 25 mM SDS on either the trans (panel c) or cis side (panel a) of the membrane. The closed state of alamethicin is denoted by
the dotted line, whereas downward spikes represent electrical current through alamethicin oligomers at an applied potential of 255 mV. As it was
used before (vide supra, Fig. 1), we display schematically beneath a simplified, geometric view of changes ensued on the membrane potential profile
by the change of the membrane surface potential initiated by SDS adsorption on the cis (panel a, dotted line) or trans side (panel c, dotted line) of the
membrane, as compared to control conditions (panels a, b, and c, solid line). The membrane surface potential in the control state (ys) decreases as a
result of either cis (ys1) or trans-side (ys2) adsorption of SDS, whereas the membrane dipole potential remains un-affected. As a result, a change in the
intramembrane electric field (E) across the hydrophobic region of the membrane will follow, as shown. The net potential difference sensed by the cis-
side adsorbed alamethicin over the hydrophobic region of the membrane, will equal that seen under control conditions at a given trans-applied
potential, from which a given value must be subtracted (DUSDS, cis; panel a, dashed line) or added to (DUSDS, trans; panel c, dashed line). These values
(DUSDS) should match the change caused by either SDS adsorption on the surface potential of either monolayer (DYs).
doi:10.1371/journal.pone.0025276.g005
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small discrepancy seen with respect to the extent to which SDS

alters the surface potential of either monolayer is poorly explained

at the moment.

In terms of transition energy alteration of alamethicin from the

interfacial to inserted state, as it occurs with SDS adsorbed in either

trans or cis monolayer, via intermembrane changes of the electric

potential determined by decrease values of the membrane surface

potential, within the framework described above we calculated a

0.5 kJ mol21 relative change caused by trans-adsorbed SDS and a

0.4 kJ mol21 relative change by its cis-adsorption.

The relationship between the surface charge density caused by

SDS adsorption and the surface potential can be inferred by using

the Grahame equation, which relates the surface charge density of

SDS to the surface potential, and the Langmuir adsorption

isotherm of SDS to a surface with saturable binding sites, leading

to the Stern equation [40,46]. The most straightforward outcome

of this formalism, relevant to our work, is that membrane surface

potential of the membrane monolayer where SDS partitions to,

increases linearly as a function of the SDS bulk concentra-

tion within low concentration values of the amphiphile

([SDS],250 mM) [46]. We therefore expected a linear depen-

dence of membrane surface potential vs. bulk, trans-injected SDS

concentration and consequently predicted an exponential increase in

alamethicin activity, caused by resulting equidistant changes

ensuing on the intramembrane potential profile [47].

Gratifyingly, our data fitted nicely this prediction. Shown in

Fig. 7, panel c, are SDS concentration- and voltage-dependent

changes in alamethicin activity, when SDS was injected only on

the trans side of the membrane with equal amounts. It is visible

that at any given holding potential, the alamethicin activity

quantified by the logarithm of current fluctuation standard

deviation, increases linearly with the amphiphile concentration.

To provide further experimental support of our mechanistic

interpretation of SDS effect on alamethicin activity, another

prediction we tested referred to the reversible change in

alamethicin activity following amphiphile addition in a pre-

defined order during the same experiment (first to the trans side,

than to the cis side, or reverse). We expected that the change in the

intramembrane potential profile caused by asymmetric addition of

SDS, and implicitly alamethicin activity, would be reversed when

a similar amount of detergent is present on the opposite side of the

membrane.

Data shown in Fig. 8 fully support this assertion. It is seen that

the decrease in alamethicin activity caused by 25 mM SDS

injection to the cis side of the membrane - with ,22% at 255 mV

as compared to the control state (Fig. 8, panel a; SDS cis) - is

Figure 6. Quantitative description of the modulatory effect exerted on alamethicin activity by SDS [25 mM] added on the cis (panel
a) or trans-side (panel b) of the membrane, via estimations made on the standard deviation (denoted by s) of the electrical current
through alamethicin oligomers at different holding potentials, before and after SDS adsorption, as well as the probability of
appearance of various conducting substates on alamethicin aggregates, inferred from the normalized amplitude histogram of
current fluctuations seen in the absence (control) and presence of adsorbed amphiphiles at 255 mV. Areas assigned to peaks denoted
by ‘1’ and ‘2’ provide a quantitative view of the probabilities to which the first, and respectively second conductive substates appear during
alamethicin’s reversible oligomerization (vide supra, Fig. 2), before and after SDS injection.
doi:10.1371/journal.pone.0025276.g006
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partially recovered to ,89% of the initial activity, when a similar

amount of SDS is added to the trans side of the membrane (Fig. 8,

panel a; SDS cis/trans). When the experiment proceeded in the

reverse order, the trans-injection of 25 mM SDS caused an

increase with ,166% of alamethicin activity as compared to the

control state (Fig. 8, panel a; SDS trans), and the cis-addition of

SDS at the same concentration reversed the activity to only 87%,

as compared to the control state (Fig. 8, panel a; SDS trans/cis). In

Fig. 8, panel b, we present a quantitative analysis of this

phenomenon as it is observed at various applied potentials,

through estimations made on the standard deviation (s) of the

electrical current mediated by alamethicin oligomers, under

experimental conditions detailed above.

While the observed reversible changes in alamethicin activity

reflects that the alteration of the intramembrane potential gradient

caused by asymmetric addition of SDS is partially reversed when a

similar amount of detergent is present on both sides of the

membrane, the question still remains regarding the absence of full

recovery of alamethicin activity following symmetric addition of

SDS at a similar concentration. In addition, we performed similar

evaluations whereby changes in the conductance of the first

conductive state of the alamethicin oligomer were monitored

during the same experiments, and the partial recovery of the

alamethicin oligomer conductance in its first conductive state was

observed (data not shown).

Due to the fact that all experiments were performed well below

the CMC formation of SDS, a putative mechanism of action in

which alamethicin is sequestrated by SDS micelles or other

aggregates and therefore unavailable for interaction with the lipid

bilayers, as it was proposed in alternative systems involving

fluorinated amphiphiles and a-hemolysin proteins [48], is unlikely.

To rationalize our data, it should be reminded that upon their

insertion, SDS molecules impose a mechanical strain on the

bilayer (i.e., they increase in spontaneous curvature of monolayer

where they partition to) [49]. Previous data have established that

DOPE lipids, which are prone to form inverted hexagonal phases

and favor negative spontaneous curvature, shift the single-channel

probability distribution of alamethicin oligomers towards higher

conductance substates [50]. Equally interesting, in phosphatidyl-

ethanolamine and phosphatidylcholine binary lipid bilayers,

increasing the mole fraction of the former precludes alamethicin

binding to the lipids, and at the same time favors the

oligomerization of membrane residing alamethicin monomers

[51].

Based on this, it is conceivable that the membrane activity of

alamethicin oligomers formed once aqueous alamethicin in the

aqueous phase is in equilibrium with peptide in the membrane,

would decrease as the spontaneous curvature of the bilayer is

made more positive. This mechanism would then explain the

residual smaller activity of alamethicin, with respect to the control

Figure 7. Representative I–V diagrams showing the ion current values at various transmembrane potentials, mediated by the first
(panel a) and second (panel b) sub-conductance states of alamethicin in the absence (control) and presence of SDS injected
asymmetrically on either cis or trans side of the membrane. In panel c are shown SDS concentration- and voltage-dependent changes
imposed in alamethicin activity, as quantified by the standard deviation (s) of the electrical current through alamethicin oligomers, when SDS was
injected only on the trans side of the membrane. It is apparent that at any given holding potential, the alamethicin activity quantified by the
logarithm of current fluctuation standard deviation, increases linearly with the amphiphile concentration. This is in accordance with the physical fact
that the membrane surface potential of the trans monolayer increases linearly as a function of the SDS bulk concentration within low concentration
values of the amphiphile; in turn, it is predicted a linear dependence of potential difference over the hydrophobic core of the membrane vs. the bulk,
trans-injected SDS concentration, and consequently an exponential increase in alamethicin activity.
doi:10.1371/journal.pone.0025276.g007
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case, under conditions of symmetrical partition of SDS amphi-

philes (Fig. 8).

Conclusions
In the view of recent literature, a great deal of effort is being

devoted to studying the regulation mechanisms of membrane

protein function by various amphiphiles, at concentrations that are

prone to affect the physical properties of lipid membrane. One of

the facets of this objective is to better understand the importance of

membrane asymmetry, usually maintained by lipids, in cellular

signalling and evolution of major diseases. Due to the fact that the

large majority of pharmaceuticals are amphiphiles, it stems natural

for pharmaceutical development to invest extensive knowledge

into studying the effects of amphiphiles on membrane protein

function. The mechanisms of membrane asymmetry and its

disruption either by lipid themselves or various amphiphiles are

thus beginning to unravel, and help to elucidate how important

biological functions are crucially influenced by the membrane

asymmetry.

In this article, we explored at the single-molecule level the role

of the induced asymmetry in the membrane dipole- and surface-

potential of an artificial bilayer on the intramembrane potential

gradient, for the activity and transport properties of a model

voltage-gated ion channel, alamethicin. We used amphipathic

agents that insert into either leaflets of a planar lipid membrane

and controllably alter the membrane dipole potential (RH-421

and phlorizin) or its surface potential (SDS), and to evaluated how

altering the potential profiles of the trans-monolayer, opposite to

that where alamethicin binds (the cis monolayer), affects formation

of alamethicin oligomers and ion transport through them.

Our results indicate that the binding of the cis-added peptide to

the membrane is greatly influenced by the sign of change of the

dipole potential in the trans-monolayer, whereby phlorizin, a

dipole-potential lowering agent, augments alamethicin activity,

whereas the opposite happens with RH-421, a membrane dipole

potential enhancing amphiphile. In a similar fashion, the ion

conductance of the oligomeric alamethicin in its various substates

is increased, and respectively decreased by the injection of

phlorizin or RH-421 on the trans sub-phase. We attributed these

changes to the overall change in the intramembrane potential

profile whose gradient across the membrane is intimately linked to

asymmetric changes in the membrane dipole potential, and is

capable of coupling over the lipid membrane thickness, via

electrostatic interactions, with the alamethicin peptide. The trans-

monolayer potential profile effect upon alamethicin functioning

was probed further, when the surface potential profile was

Figure 8. Representative current traces measured at 255 mV demonstrating the reversible change in alamethicin activity with
respect to control condition following SDS addition in a pre-defined order during the same experiment, first to the cis side only
(cis), and than to the trans side (cis/trans), or reverse (i.e., SDS added the trans side only (trans), and than to the cis side (trans/cis))
(panel a). This is suggestive of the paradigm according to which changes in the intramembrane potential profile caused by asymmetric addition of
SDS on either cis or trans side, are partially reversed when a similar amount of detergent is present on the opposite side of the membrane. In panel
(b) we present a quantitative analysis of this phenomenon, through estimating the standard deviation (s) of the electrical current mediated by
alamethicin oligomers at various holding potentials, under experimental conditions described above (see also text).
doi:10.1371/journal.pone.0025276.g008

Modulation of Peptide Activity by Electrostatics

PLoS ONE | www.plosone.org 10 September 2011 | Volume 6 | Issue 9 | e25276



independently altered via vectorial insertion of SDS. Our results

confirm that either cis-only or trans-only monolayer modification

of the membrane surface potential modulates at will and in a

predictive manner the membrane insertion and transport

properties of alamethicin, and this can be also accommodated

within the intermembrane potential profile and its dependence

upon asymmetric changes of the membrane surface potential

formalism. In addition, we demonstrated the utility of alamethicin

not only in probing, but also quantifying absolute membrane

dipole- and surface-potential changes induced by these amphi-

philes on an artificial lipid membrane. The presented approach is

suggestive of an alternative molecular tool for quantitative

explorations of the asymmetric, bilayer potential profile-mediated

influence of peptide and protein activity.
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