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Abstract

Reliable detection of large deletions from cell-free fetal DNA (cffDNA) in maternal plasma is challenging, especially when
both parents have the same deletion owing to a lack of specific markers for fetal genotyping. In order to evaluate the
efficacy of a non-invasive prenatal diagnosis (NIPD) test to exclude a-thalassemia major that uses SNPs linked to the normal
paternal a-globin allele, we established a novel protocol to reliably detect paternal SNPs within the (22SEA) breakpoints
and performed evaluation of the diagnostic potential of the protocol in a total of 67 pregnancies, in whom plasma samples
were collected prior to invasive obstetrics procedures in southern China. A group of nine SNPs identified within the deletion
breakpoints were scanned to select the informative SNPs in each of the 67 couples DNA by multiplex PCR based mini-
sequencing technique. The paternally inherited SNP allele from cffDNA was detected by allele specific real-time PCR. A
protocol for reliable detection of paternal SNPs within the (22SEA) breakpoints was established and evaluation of the
diagnostic potential of the protocol was performed in a total of 67 pregnancies. In 97% of the couples one or more different
SNPs within the deletion breakpoint occurred between paternal and maternal alleles. Homozygosity for the (22SEA)
deletion was accurately excluded in 33 out of 67 (49.3%, 95% CI, 25.4–78.6%) pregnancies through the implementation of
the protocol. Protocol was completely concordant with the traditional reference methods, except for two cases that
exhibited uncertain results due to sample hemolysis. This method could be used as a routine NIPD test to exclude gross
fetal deletions in a-thalassemia major, and could further be employed to test for other diseases due to gene deletion.
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Introduction

a-Thalassaemia is the most common monogenic inheritance

disorder in tropical and subtropical areas in the world with a carrier

frequency reaching as high as 10–15% in Southeast Asia, the Indian

subcontinent, and Southern China [1],[2]. This inherited anemia

syndrome mainly results from gross deletions of the human a-globin

gene cluster mapped to chromosome 16p13.3, and thus is char-

acterized by a reduction or complete suppression of a-globin chain

synthesis [1],[3]. Deletion of the double a-globin gene is designated

as a0-thalassaemia, such as 22SEA, 22FIL and22THAI, which is

more prevalent in southeastern Asia including southern China. This

deletion can result in a fatal condition, hemoglobin (Hb) Bart’s

hydrops fetalis, when the deletion is homozygous [4]. When both

parents are a0-thalassaemia carriers, each pregnancy has a 25% risk

for Hb Bart’s hydrops. An affected fetus can be effectively detected

by prenatal diagnosis for at-risk couples by fetal sampling via

amniocentesis and chorionic villus sampling (CVS). However, such

traditional techniques are invasive and carry a small but significant

risk of miscarriages (0.5–1%) [5].

Fetal nucleated red blood cells [6]–[9], or cell-free fetal DNA

(cffDNA) [10]–[13], that exist in maternal circulation during

pregnancy offers a potential source of fetal material for non-invasive

prenatal diagnosis (NIPD) of the fetal genetic status. Reliable NIPD

tests using cffDNA has recently been used to detect paternally

inherited genetic traits, such as Y-linked disorders and rhesus D

[13]. A panel of highly sensitive technologies to detect paternally

inherited fetal point mutations [14], has been developed and NIPD

using cffDNA has been applied to a group of single gene disorders

including b-thalassemia [15]–[18], cystic fibrosis [19], and congen-

ital adrenal hyperplasia (CAH) [20], and has been used on the

targeted genes in couples who carry different mutations in

particular. It has been demonstrated that an alternative approach

for detection of different SNPs linked to the mutant allele in parents

with identical point mutations is potentially useful in non-invasive

diagnosis using cffDNA [21].
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It is technically challenging to reliably detect large fetal deletions

from cffDNA in maternal plasma when couples share the same

deletion due to the lack of specific markers for fetal genotyping. In

addition, the fragmented nature of cffDNA is not conducive to

efficient detection of large deletions using a PCR-based technique

[22]. Recently, Ho et al. reported a method for identification of

non-deleted paternally inherited fetal alleles in cell-free DNA

(cfDNA) using two microsatellite markers within deletion break-

points in NIPD for Hb Bart’s syndrome [22], [23]. The number of

polymorphic STRs in the region of interest is a disadvantage as it

is limited, and therefore the method is only applicable for one-

third of pregnancies [23]. Using a-thalassaemia as a diagnostic

target, we present a novel strategy for the noninvasive prenatal

diagnosis of a homozygous deletion using multiplex SNP dis-

crimination of fetal DNA from maternal plasma. In this study we

established a protocol for the reliable detection of a panel of

paternal SNPs within the (22SEA) breakpoints in cfDNA samples

and evaluated 67 pregnancies at risk for a-thalassemia major;

moreover, we demonstrated the feasibility and reliability of this

NIPD method.

Materials and Methods

Sample collection
A total of 150 normal unrelated individuals and 150 aa/22SEA

carriers were recruited for characterization of SNPs within the

(22SEA) breakpoints in the a-globin gene cluster (Accession

NG_000006.1).To establish multiplex PCR-based mini-sequenc-

ing for simultaneous scanning of multiple SNPs, 40 standard

sequenced samples were used in the study. 10 mL maternal blood

samples were collected into two 5 mL EDTA blood collection

tubes. Maternal plasma samples from 67 pregnant women at risk

for a-thalassemia major were collected prior to invasive obstetrics

procedures (8.5–25 weeks of gestation, mean 19.12 weeks, before

chorionic villus sampling in the first trimester and before

amniocentesis in the second trimester) between June 2008 and

June 2010 in southern China. The patients’ age ranged from 20 to

41 years with a mean of 27 years and median of 26 years. Both of

the parents of each pregnancy carried an identical (22SEA)

deletion except for one case. The study was approved by the

Ethics Committee of Nanfang Hospital, an affiliate of Southern

Medical University, China. Detailed written informed consent was

obtained from all participants.

Blood processing and maternal plasma extraction
The buffy coat was collected from blood samples after

centrifugation at 1600 g for 10 min, whereas maternal plasma

was collected after an additional microcentrifugation at 16000 g

for 10 min. Buffy coat DNA was extracted using a standard

phenol-chloroform method. Four milliliters of maternal plasma

from each pregnancy were used for DNA extraction using the

QIAamp DNA blood Mini Kit (Qiagen, Crawley, UK) according

to the manufacturer’s instructions with minor modifica-

tions[19],[24]. In order to obtain efficient recovery of DNA

without decreasing its concentration, some slight modifications of

the elution protocols that were provided by the manufacturer were

made following the previous procedure [19]. The yield of cfDNA

from each maternal plasma sample could be increased when the

maternal plasma volume processed the 200-mL aliquots limitation

on manufacturers. In our procedure, 4 mL of each plasma from

pregnant women was extracted by use of five Qiagen minicolumns

by processing two 400-mL aliquots on each of them. The cfDNA

immobilized on the five columns was manually eluted one by one

with a total of 140 mL of autoclaved water and the isolated cfDNA

from one maternal plasma sample was in 70 mL final volumes.

The CVS samples and amniotic fluid samples were handled and

analyzed using the multiplex PCR-based mini-sequencing and the

a-thalassemia deletion Gap-PCR as previously described by Xiao

et al [25] in four clinical centers.

Diagnostic strategy
In a-thalassaemia with a cis double gene deletion, the presence of

the paternally inherited SNP allele in the maternal plasma would

suggest that fetus had inherited the paternal normal a-globin allele

and thus would not manifest hemoglobin Bart’s hydrops fetalis; the

diagnostic strategy is proposed as shown in Figure 1. The NIPD flow

chart for exclusion of a large fetal deletion (the 22SEA deletion)

from cfDNA in maternal plasma is illustrated in Figure 2. A total of

67 at-risk heterozygous couples with the (22SEA) deletion were

recruited for this study. Initially, peripheral blood samples were

collected from each of the at-risk couples, white blood cells from all

couples were then used to isolate genomic DNA, and maternal

plasma was used to isolate cfDNA; subsequently, quantitative real-

time PCR (Q-PCR) was performed to quantify total cfDNA and

cffDNA in the maternal plasma. Secondly, multiplex PCR-based

mini-sequencing was used to identify informative markers using

genomic DNA from both parents by screening for nine previously

known SNPs within the deletion breakpoints. Finally, an allele-

specific real-time PCR method was used to detect the normal

paternally inherited fetal allele using cfDNA in maternal plasma,

according to the detailed information on one or more specific SNPs

(generally two sites were selected) that differ in the maternal and

paternal genomes. The NIPD results from analyses on all families

with informative SNPs were compared with results obtained from

conventional invasive prenatal diagnosis (CIPD) in a blinded

manner. The CIPD results were uncovered only once the genotypes

obtained by NIPD were scored.

Screening for informative SNPs within deletion
breakpoints

Genomic DNA from the 67 couples was used to select informative

markers useful for further non-invasive testing. Informative SNP

markers were identified by multiplex PCR amplification using a

Perkin Elmer Gene Amp PCR system 9600 thermal cycler (Applied

Biosystems, Foster city, CA), followed by mini-sequencing based on a

fluorescent-labelled dideoxy single-base extension of an unlabeled

oligonucleotide primer or primers that hybridize upstream of the

SNP site. The analysis was performed using an ABI3730 Genetic

Analyzer and GeneMapper v3.7 software. The specific primer

sequences and PCR cycling conditions for the informative SNP

markers are listed in Table 1. For the multiplex PCR amplification,

50 ng of genomic DNA was used as the template. The final volume

was 20 mL, containing 10 pmol of primer mixture, 2 mL 106PCR

buffer (Mg2+ free, Invitrogen), 0.8 mL 50 mM MgCl2 (Invitrogen),

0.5 mL 10 mM dNTPs (Takara), and 1 U Platimum Taq DNA

polymerase (Invitrogen). After an initial incubation at 95uC for

15 min, the reaction was cycled for 30 s at 94uC, 30 s at 56uC, and

1 min at 68uC for 32 cycles, followed by a final extension for 30 min

at 68uC. Excess primers and dNTPs were removed by the addition of

5 U shrimp alkaline phosphatase (SAP) and 2 U Exol to 15 mL of

PCR product and incubation of the mixture at 37uC for 1 hour,

followed by 75uC for 15 min. Following the PCR reaction, 5 mL was

run as needed on a 1.5% agarose gel to check efficiency and

specificity. Sequence of the single base extension primers including

different polymeric T tails (Table 1). 2 mL of purified PCR product

from parental samples and 2 mL from the controls were used as the

template. The reaction was carried out in a final volume of 5 mL,

containing 2.5 mL of SNaPshot HMultiplex Ready Reaction Mix

NIPD of Homozygous a0-Thalassemia
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and 5 pmol of the specific unlabeled primers. The reaction was

cycled for 10 s at 96uC, 5 s at 50uC, and 30 s at 60uC for 25 cycles.

Excess nucleotides were removed by the addition of 1 mL (1 U/mL)

SAP and 1 U CIP, and incubation of the mixture at 37uC for 1 h

followed by 75uC for 15 min. Purified product from control DNA

was diluted 1:10 before being charged in the automated sequencer.

For the analysis, 0.5 mL of purified product from the parent’s

samples and 1 mL from the controls were mixed with 9 mL of Hi-Di

formamide and 0.5 mL of GeneScan 120 Liz size standard, followed

by incubation of the mixture at 95uC for 5 min and then

immediately frozen 5 min.

Quantification of circulating DNA in the plasma
Real-time Q-PCR was performed using primers and probe

specific to the GAPDH gene in all pregnancies to determine the

total amount of circulatory maternal plasma DNA. The male-

specific SRY gene was used to monitor the presence of cffDNA and

quantify cffDNA. This was achieved according to a method

previously described by Birch et al [26]. The amount of circulatory

maternal plasma DNA obtained from 67 pregnant women and

cffDNA from mothers bearing male fetuses was calculated using

real-time PCR threshold cycle values.

Specificity and sensitivity of allele-specific real-time PCR
To define the sensitivity and specificity of allele-specific real-

time PCR for detection of fetal DNA in the maternal plasma for

this study, we conducted a series of experiments performed on

artificial mixtures of mutant allele diluted into wild-type allele

samples. For each SNP, 100 ng genomic DNA was successively

diluted at 1:1, 1:10, 1:100, 1:1000, and 1:10000 in water and used

as a starting template for amplification. In addition, DNA samples

that affect the ratio of paternal versus maternal alleles were

prepared in PCR reaction tubes by mixing 22SEA/aa genomic

DNA with maternal allele spiked in varying dilutions of 1:1,1:2,

1:5, 1:10, 1:20, 1:50, 1:100, 1:500, 1:1000, 1:5000 and 1:10000 in

22SEA/aa genomic DNA with paternal allele diluents. The

experiment was repeated twice. We optimized the specificity of

each of the allele-specific assays for informative SNPs by assessing

several factors including buffers composition, temperature, and

length of PCR amplification cycles, together with the use of

various oligonucletide primers [16], [19]. We then used the

DCT, (Paternal-Maternal) approach to measure the quantitative

differences between the paternal allele and maternal allele [16].

We also used melting curve analysis to monitor the presence of the

paternal allele.

Figure 1. Strategy for the non-invasive prenatal exclusion of homozygous (22SEA) deletion in maternal plasma. Schematic drawing
showing the basic principle of our strategy for the non-invasive prenatal exclusion of homozygous (22SEA) deletion based on SNP typing linked to
the paternal-normal a-globin allele. The normal a-globin gene cluster and corresponding deleted region of (22SEA) allele are denoted by the colored
box with black line and the orange dotted line, respectively. The at-risk heterozygous couples sharing the same (22SEA) deletion are shown on the
top and the possible consequences of NIPD for the fetus are demonstrated by the bottom panel of this figure. The arrows indicate an informative SNP
identified within the deletion breakpoints that can be used to differentiate between the mother’s (with T allele, downward arrows) and the father’s
(with C allele, upward arrows) normal allele. If C allele is not detected in the cffDNA fraction of maternal plasma, the fetus may either be
heterozygous, those who inherit a normal maternal T allele and a deleted paternal allele, or homozygous for the (22SEA) allele, those who inherit
deleted alleles from both parents. In contrast, the presence of C allele in cffDNA denotes that the fetus inherits the normal paternal allele, and
therefore, we can exclude the possibility of Hb Bart’s syndrome for the fetus.
doi:10.1371/journal.pone.0024779.g001

NIPD of Homozygous a0-Thalassemia
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Figure 2. NIPD flow chart for exclusion of a large fetal deletion from cfDNA in maternal plasma.
doi:10.1371/journal.pone.0024779.g002

Table 1. The oligonucleotide sequences of Multiplex PCR amplification and extension primer sequences for the mini-sequencing
reaction.

Marker
ID SNP ID

Marker position
on NG_000006.1a Multiplex PCR Sequence (59to 39)

Amplicon
(bp) ASPE Primer Sequence (59to 39)

Product
length (bp)

1 rs2858935 g.26719G.C F-primer: CCTCCTGGCAGAGCAGTAACTT 255 (T)17-TCCACACAGACGGGAACCCG 38

R-primer: CCGCCCTGGCCTCCTTAT

2 rs75368786 g.27606C.A F-primer: CCGTGGTGCTGACCGAAAAA 315 (T)28-TGGCCTTGGTCTGTGCCTGT 49

R-primer: TGGTTGGAAGCCCGATTCA

3 rs2541675 g.29599A.G F-primer: AGGCACCTCCTGGCAACTT 362 (T)33-CGGTCTGGGAGAAAGTTGGC 54

R-primer: GGCCAAGTGAGAGGAAGGTC

4 rs2974771 g.31921T.C F-primer: CTACAACTACTGCCACAGGCTCT 136 (T)31-AAAATACCATCATACTGTAGATACC 57

R-primer: GAATGGCGCAGAGCTGAAT

5 rs2541669 g.33004C.T F-primer: GTCACAGTGAACCACGACCTCT 235 (T)38-ATGACTTGGGGCTTAGCCAG 59

R-primer: CTTTCCCTCTGGCGATAGTCA

6 rs2238369 g.35483T.C F-primer: GGAATCCATGCTGGGAAGTT 217 (T)23-GGTGGAGAGGACCCTGTCAC 44

R-primer: GTGGAGAGGGGAGGGAACT

7 rs11639532 g.36023G.A F-primer: ACGGGGGAAGCATTGCTAA 539 (T)26-GGGGAAGCATTGCTAAGCT 46

8 rs2858942 g.36517A.C R-primer: GGTGTGGACGAGGCATTCA9 (T)32-GCCCTCAGACTAACCCTGGTC 54

9 rs3760046 g.38757T.C F-primer: CGCTGGACCCTAGAGTGCTT 314 (T)38-AGAGGTCCTCCCACATATGGG 60

R-primer: CCGCACCCCTGATTTCATCT

aGenBank accession number.
Abbreviations: SNP, single nucleotide polymorphism; bp, base pair.
doi:10.1371/journal.pone.0024779.t001
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Detection of paternally inherited fetal SNP allele in
maternal plasma

Allele specific real-time PCR was performed to detect the

paternally inherited normal allele in the presence of an excess of the

corresponding maternal sequence. As all informative SNP artificial

experiments are functional, the analysis to detect paternally

inherited fetal allele by allele specific real-time PCR in the maternal

plasma was performed on a Thermocycler sequence detector

(Stratagene Mx3005; La Jolla, CA, USA). For AS-PCR analysis,

10 mL of DNA isolated from maternal plasma was used in the PCR.

Maternal plasma DNA was amplified in a final reaction volume of

25 mL containing 10 mM wild type primer or mutant primer

0.25 mL, 10 mM common primer 0.25 mL (Table S1), and 12.5 mL

SYBRH Green Real-time PCR Master Mix (Applied Biosystems,

Foster city, CA). The assay protocol started with an amplification

procedure consisting of a denaturation step of 30 sec at 95uC, 55

amplification cycles of 10 s at 95uC, 10 s at annealing temperature

for each SNP marker (Table S1), and 20 s at 72uC; and this

procedure was followed by a melting analysis procedure consisting

of a denaturation step of 1 min at 95uC, and a stepwise temperature

increase from 60uC to 95uC at 0.5uC/step with 5 s detection for

each step. The fluorescence from SYBR channel was recorded at

each step during the annealing and the melting analysis procedure.

Statistical analysis
Statistical analyses were conducted using SPSS 14.0 (Lead

Technologies. Inc., Chicago, IL, USA). P,0.05 values were

considered statistically significant.

Results

Allele frequencies of 16 SNP markers obtained from 450

chromosomes in Southern Chinese are listed in Table 2. Nine SNPs

with minor allele frequency (MAF) .0.15 were considered to be

informative and were used in our protocol. Three SNP markers

(rs2514675, rs2974771 and rs2858942) were highly informative

(MAF.0.45). The locations of the nine SNPs are in the common

region between the 59 and 39 end breakpoints of three a-thalassaemia

double-gene deletions as shown in Figure S1 and Table S2.

The mean concentration of cfDNA obtained from maternal

plasma of 65 pregnancies was 611.63 genome-equivalents per

milliliter (GE/mL); the mean concentration of fetal DNA in 31

plasma samples from mothers bearing male fetuses was 47.35

GE/mL. The concentration of circulating DNA obtained from

maternal plasma of 65 pregnancies was within a certain range

87.8–1556 GE/mL (Table S3). On the basis of our experience

with AS-PCR, it is possible to detect certain types of genetic

alterations present at amount of 2 copies in a PCR tube (Panel A

in Figure 3). In practice, we used 50 genome-equivalents of cfDNA

as a lower cut-off value. The amount of input DNA (obtained from

4-mL maternal plasma samples) much exceeded 50 genome-

equivalents to permit accurate analysis. They would be sufficient

for the real-time AS-PCR assay to function reliably. In addition,

the majority of whole blood samples (97%) were processed directly

in four clinical centers and the plasma was sent frozen to our

center by commercial express courier service. Two samples (case

21 and 38) were sent as whole blood by commercial express

courier service. They were placed frozen gel packs directly on

tubes of blood, therefore resulted in hemolysis. Based on

previously reported results by Birch et al [26], these two cases

had to be excluded because the amount of cfDNA exceed 49940

genome equivalents/mL and was substantially higher than would

be expected in maternal samples during pregnancy (Table S3).

This method involved multiplex PCR-based mini-sequencing to

scan for informative SNPs followed by allele-specific real-time

PCR for NIPD results. The mini-sequencing assay demonstrated

Table 2. Allele frequencies of 16 SNP markers in 150 normal unrelated individuals and 150 heterozygote samples.

Marker ID SNP ID Marker position on NG_000006.1a Number of markers with allele Allele frequency of

Major Minor Major Minor b

Normal heterozygote Normal heterozygote

1 rs2858935 g.26719G.C 219 109 81 41 0.73 0.27

2 rs75368786 g.27606C.A 250 128 50 22 0.84 0.16

3 rs2541675 g.29599A.G 155 79 145 71 0.52 0.48

4 rs2974771 g.31921T.C 145 86 155 64 0.51 0.49

5 rs57397665 g.31990C.G c 145 86 155 64 0.51 0.49

6 novel g.32905C.T 293 149 7 1 0.98 0.02

7 rs2541669 g.33004C.T 224 96 76 54 0.71 0.29

8 rs2362746 g.34247G.T 280 146 20 4 0.95 0.05

9 novel g.34951G.A 295 149 5 1 0.99 0.01

10 rs2238369 g.35483T.C 215 98 85 52 0.70 0.30

11 rs223830 g.35511G.A 278 146 22 4 0.94 0.06

12 rs11639532 g.36023G.A 242 118 58 32 0.80 0.20

13 novel g.36340G.A 296 150 4 0 0.99 0.01

14 rs2858942 g.36517A.C 164 84 136 66 0.55 0.45

15 rs3760046 g.38757T.C 252 130 46 20 0.85 0.15

16 rs1203834 g.42405C.T 260 145 40 5 0.90 0.10

aGenBank accession number.
bThose markers that minor allele frequency exceeded 0.15 were selected for informative markers.
cg.31990C.G was completely linked to the g.31921T.C, therefore we selected one of them for further analysis.
doi:10.1371/journal.pone.0024779.t002

NIPD of Homozygous a0-Thalassemia
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feasibility and reliability in simultaneously genotyping nine SNPs,

and exhibited suitability for high-throughput SNP scanning of

genomic DNA samples by multiple PCR-based fragment analysis.

We validated the assay using a group of previously sequenced

DNA samples (20 unrelated normal individuals and 20 22SEA/

aa carriers). The SNP typing of each case was accurately defined

by the mini-sequencing assay at each nucleotide position analyzed,

exhibiting 100% concordance with the reference method. SNPs

were then assessed in 67 couples, and one or more different SNP(s)

within the deletion breakpoints between paternal and maternal

alleles was detected in 97% of the couples (65 cases). The SNPs

were informative and could be further used as candidate

polymorphic sites linked to the paternal-normal allele. Two cases

(family 15 and family 35) were non-discriminative as none of the

SNPs were informative (Table 3 and Table S5). Because the a-

globin genes are duplicate (a2 and a1) with a high degree of

homology (as illustrated in Figure S1), SNP ID rs2541669

(g.33004C.T) is located within the Z2 box of a2-globin gene,

which is homologous to the Z1 box of a1-globin gene; while SNP

ID rs2238369 (g.35483T.C) is located within the X1 box of a1-

globin gene, which is homologous to the X2 box of a2-globin

gene. The multiplex PCR of these two markers respectively yield

two amplicons with identical length. The mini-sequencing

amplicons of these two markers show the presence of two peaks

of amplification in heterozygous (22SEA) samples whereas all

SNPs tested should be hemizygous. However, such expected

detection results do not influence our ability to correctly type SNPs

for each of these two sites. As illustrated in panel A of Figure S2-

family 7A, g.33004 T from father was detected by both T peak

(red) and additional C peak (black), thus indicating a truly positive

T allele in this case. The g.35483 T is similar to g.33004 T, with

two peaks showing in mother.

Figure 3. The sensitivity and specificity of allele-specific real-time PCR method used for NIPD. Panel A shows one set of representative
data from analysis of g.31921 T.C marker by allele-specific real-time PCR, in which the SNP profiling of artificial model samples is exported by
amplification blot (left) and dissociation curve analysis (right). Our results showed superior sensitivity and specificity in all dilutions (see materials and
methods), indicated by the arrows for each test, with a sensitivity of detection of 2 copies of the target sequence. Panel B shows the quantitative
difference between the respective CT values (DCT) of maternal alleles (CT, maternal) and paternal alleles (CT, paternal) in analysis of g.31921T.C artificial
model samples (see Materials and Methods). These results indicated a clear discrimination of the paternal allele from the maternal allele on
experimental serial dilutions. Following the DCT,(paternal-maternal) analysis, the maternal allele cluster is above a DCT value of 6, while the paternal allele
cluster is at a value of less than 6, thus the arbitrarily assigned DCT cut-off value (gray dotted line) was used to distinguish between the presence of
maternal from paternal alleles in the present study. Panel C shows the NIPD results obtained from detection of 65 at-risk fetus using 9 SNP markers in
cfDNA as paternal-normal marker by allele-specific real-time PCR. Among 65 samples tested, correct appraisal of the presence (n = 33) or absence
(n = 30) of the paternal-normal allele. Two cases labeled uncertain due to sample hemolysis by mishandling in the process of blood transport.
doi:10.1371/journal.pone.0024779.g003

NIPD of Homozygous a0-Thalassemia
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Reference DNA samples and reliable genotyping samples of

recombinant mutant clones were obtained in order to develop the

allele specific real-time PCR assay technology. Because a mixture of

maternal and paternal alleles was present, a model to test the

discrimination capability between paternal and maternal alleles was

established by subtracting the respective CT values (DCT) of maternal

alleles (CT, Maternal) and paternal alleles (CT, Paternal) using a serial of

artificial model samples for each of the 9 SNPs. These assessments

permitted establishment of tentative cut-off DCT value that could

serve to distinguish between samples in which the paternal inherited

allele was absent and those samples in which it was present. Following

the DCT, (Paternal-Maternal) analysis, the presence of paternally inherited

alleles was at a DCT value of less than 6 (Table S4). This method

permitted a clear discrimination between maternal and paternal

allele, even with experimental conditions whereby the maternal allele

was diluted in paternal allele of the order expected in maternal

plasma samples (Figure 3). The results of the model allele specific real-

time PCR experiment demonstrated our optimized protocol could

detect one copy of paternal DNA in every 50 copies of maternal DNA

(Table S4). As illustrated in figure 3A, the data from the analysis of the

g.31921T.C marker by the allele-specific real-time PCR assay

showed unequivocal results. This assessment permitted the establish-

ment of a tentative cut off value that could serve to discriminate

between the presence and absence of the paternal-normal allele in the

clinical cfDNA samples (Figure 3B). Furthermore, based on this cut

off value we were able to correctly determine the paternal-normal

allele of cffDNA from all 65 cases, revealing the sensitivity and robust

accuracy of this technique (Figure 3C).

As shown in Table 3, a total of 65 cases were examined for the

paternal-normal allele and the presence of those normal allele was

detected in 2 out of 5 cases for one discriminative SNP, 2 out of 6

cases for two discriminative SNPs, 3 out of 7 cases for three

discriminative SNPs, 1 out of 5 cases for four discriminative SNPs,

14 out of 25 cases for five discriminative SNPs, 11 out of 15 cases

for six discriminative SNPs, and 0 out of 2 cases for seven

discriminative SNPs. Two uncertain results were obtained in 2

cases in this study due to sample hemolysis. Homozygosity for the

(22SEA) deletion was accurately ruled out in 33 out of 67 (49.3%,

95% CI 25.4–78.6%) pregnancies tested. The overall sensitivity for

the nine paternal SNP markers detected reached 100% and the

specificity was 93.8% (Table 3). NIPD of fetuses who were at-risk

for a-thalassemia major in two families using our protocol are

illustrated in Figure S2. Results for the paternal-normal allele in

the maternal plasma from 63 families obtained from analyses in

which our protocol was implemented were in concordance with

results obtained by conventional prenatal diagnosis (Table S5).

Discussion

In the present blind study of 67 high genetic risk couples we

have shown that PCR-based DNA detection of paternal SNPs

within the deletion breakpoints is a rapid and reliable technique

for non-invasive prenatal diagnosis of deletional a-thalassemia. A

group of informative SNP markers within the (22SEA) break-

points that differ in the maternal and paternal chromosomes

dependent on the natural variation in the Chinese population

studied have been identified. Furthermore, the SNP markers

designed in the present strategy are available for exclusion of the

paternal deleted chromosome of other two common deletion of

22THAI and 22FIL resulting in a-thalassemia in Southeast Asia

[23] (Figure S1), thereby potentially extended to include testing for

these deletions for NIPD applications. We demonstrated the

feasibility of our newly developed method as 97% of the couples

(65 cases) had one or more different SNP(s) within the breakpoints

of deletions between paternal and maternal alleles. 2 of the 67

cases were non-informative, due to the inheritance of identical

SNP markers in both parents. Therefore, it is possible to exclude

nearly 50% (33/67) of the at-risk subjects tested by exclusion of

the homozygous (22SEA) deletion based on detection of the

paternally inherited fetal normal allele. With a potential

application in one-half of pregnancies our SNP-based assay thus

generally overcomes the limitations of microsatellite markers,

although our assay cannot be used to differentiate homozygous

deletions from carriers in the remaining 50% of at-risk

pregnancies. In some cases, it is possible to detect fetal genetic

loci for disease-causing point mutations, as well as SNPs linked to

paternally inherited fetal mutant alleles involved in disorders such

as b-thalassemia [15]–[18],[21],[27], achondroplasia [28], and

myotonic dystrophy [29], although this is highly technically

challenging. However, there are very few NIPD applications that

can analyze single-gene disorders caused by large deletions

through a reliable approach using cffDNA in maternal plasma.

This novel approach has been successfully applied to the detection

of a-thalassemia in the present study, and could be expanded to

other autosomal genetic diseases due to gene deletions, such as

22q11.2 deletion syndrome and deletional b-thalassemia.

Table 3. Summary of the results of the informative SNP alleles by the analysis of cell free fetal DNA in the maternal plasma.

Number of informative polymorphisms No. of cases Correct detection of cases/Total No. of cases Sensitivity (%) Specificity (%)

Presence of paternal allele Absence of paternal allele

0 2 UIa UIa - -

1 5 2/2 3/3 100 100

2 6 2/2 4/4 100 100

3 7 3/3 4/4 100 100

4 5 1/1 4/4 100 100

5 25 14/14 9/11b 100 81.8

6 15 11/11 4/4 100 100

7 2 0 2/2 100 100

Total (excluding uninformative cases) 65 33/33 30/32 100 93.8

aTwo families are excluded due to lack of informative SNP markers. UI: uninformative.
bTwo cases are classified as uncertain, due to mishandling the samples.
doi:10.1371/journal.pone.0024779.t003
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In addition to the conventional extraction of cffDNA, the key

element of the molecular test involved in our approach is the two-

step protocol involving multiplex PCR-based mini-sequencing

and allele specific real-time PCR. By the use of the former

method, we have shown that it is possible to simultaneously detect

nine SNPs within breakpoints of the deletion tested using

genomic DNA from high-risk parental individuals. The results

obtained from our random samples indicated that two to seven

informative SNPs could be detected 89.55% of at-risk couples.

Thereby, the test is easy to process since only one SNP is needed

in the practical protocol of NIPD for detection of the paternally

inherited fetal allele in maternal plasma. The latter is used to

detect one informative SNP selected from the above several sites

for direct exportation of cfDNA sample NIPD results. Another

informative SNP sites can be used to provide double-check

information on NIPD for the same plasma sample previously

tested if it is necessary. Uncertain results were obtained in 2 cases

in this study due to sample hemolysis that could lead to

significantly increasing maternal DNA in the tested samples;

thereby the amount of maternal DNA in the PCR sample can

interfere with the assay. There were several factors observed to

affect the sensitivity and reproducibility of the assay system,

particularly PCR polymerase, hence AmpliTaq Gold LD

polymerase (Applied biosystem, No. 4367659) was selected to

guarantee consistent results and we were able to consistently

detect 2 copies of paternal alleles without interference from the

maternal sequences in the model PCR experiment (Figure 3A).

In our study, plasma samples were collected during 8.5–25

weeks of gestation (mean 19.12 weeks), representing a relatively

high level of cffDNA, in which the paternally inherited fetal SNPs,

masked by the background of maternal DNA, can be definitely

detected through allele-specific real-time PCR, indicating that the

sensitivity of the molecular test is able to meet the demands of

NIPD for clinical samples. Due to the limited quantities of cffDNA

isolated between 8 and 12 weeks of gestation in early pregnancy

we believe that it will be important to further enhance detection of

SNPs in the application of this technology. Our method could be

improved for non-invasive exclusion of fetal large deletions in

monogenic disorders by inclusion of an additional step of selective

enrichment of cell-free fetal DNA in maternal plasma by size

fractionation [30]. Moreover, we would enhance the accuracy of

our non-invasive prenatal exclusion of homozygous a-thalassaemia

by using SNPs that lie outside the (22SEA) deletion breakpoints as

controls in early pregnancy.

In conclusion, this is the first large scale study reporting a

contribution of detecting paternally inherited normal alleles within

deletion breakpoints from a0-thalassemia patient maternal plasma

samples. Based on our results, which made use of a combination of

multiplex-PCR based mini-sequencing and allele-specific real-time

PCR, our strategy could be directly applicable for noninvasive

prenatal prediction of homozygous a-thalassaemia by maternal

plasma DNA analysis. The advantage of detecting these paternal

SNPs within deletion breakpoints in deletional Mendelian

disorders is that their presence could be used to exclude

pregnancies at risk for these disorders, thereby obviating the need

for an invasive prenatal diagnostic procedure. Furthermore, a

decrease of these risk-associated procedures could be achieved for

diagnosis of these common regional genetic disorders.

Supporting Information

Figure S1 Nine informative SNP markers are located
within the breakpoints of 22THAI, 22FIL and 22SEA.
The detailed locations of nine SNP markers are listed in Table S1

that accompanies the online version of this article. The a-globin

genes are embedded within two highly homologous 4 kb

duplication units. These regions are divided into homologous

subsegments (X, Y, and Z) by non-homologous elements.

(TIF)

Figure S2 Representative NIPD for a-thalassemia in
two families performed using our protocol. The relevant

results of the multiplex PCR-based mini-sequencing chromato-

grams are shown in the two windows (mother in top, father in

middle and fetus in bottom), which were obtained from screening

for nine informative SNPs within the deletion breakpoints by

single-step test, with the arrows indicating those SNPs that differ in

the maternal and paternal genomes. Each of nine SNP markers

were detected in the given position of amplicons in different size

(the scale in base pair on horizontal axis), from left to right, they

are g.26719C.G, g.27606C.A, g.29599A.G, g.31921T.C,

g.33004C.T, g.35483T.C, g.36023G.A, g.36517A.C and

g.38757T.C. Each fluorescent dye corresponds to a different

nucleotide where blue represents G, green represents A, black

represents C, and red represents T. The CVS and amniotic fluid

samples were analyzed using the multiplex PCR-based mini-

sequencing by four clinical centers. The NIPD results for two at-

risk fetus using two informative SNPs by allele-specific real-time

PCR are shown in panel B (the specific SNPs tested are indicated

on the top of figure). The allele-specific SNP profiling of DNA

samples are exported by amplification blot (left) or dissociation

curve analysis (right), in which the corresponding arrows indicate

each profiling of samples amplified from four different sources,

with the corresponding specific bases marked in bracket,

FDP = fetal DNA in plasma; MDP = maternal DNA in plasma;

PDB = paternal DNA in blood; MDB = maternal DNA in blood;

NAP = nonspecific amplification products from primer-dimers;

NTC = no template control. As shown in family 7 of the figure, for

g.29599A.G marker, CT, Maternal = 31.52, CT, Paternal = 35.41,

DCT,(paternal-maternal) = 3.84; for g.36517A.C marker, CT, Maternal =

30.96, CT, Paternal = 34.86, DCT,(paternal-maternal) = 3.90. The cffDNA

was identified as having inherited paternal-normal alleles (g.29599G

allele and g.36517C allele) in this family, and therefore, the NIPD

results above indicated an exclusion of homozygosity for a0-

thalassemia in this fetus. However, in family 47 of the figure, for

g.26719C.G marker, CT, Maternal = 34.53, CT, Paternal = 43.97,

DCT, (paternal-maternal) = 9.44; for g.31921T.C marker, CT, Maternal

= 34.94, CT, Paternal = 44.41, DCT, (paternal-maternal) = 9.47. The

inherited paternal-normal alleles, g.26719G and g.31921C, was

not found in the cffDNA in plasma from Family 47, thus indicating

the possibility of heterozygous or homozygous for the (22SEA)

deletion for this fetus. The comparative CIPD results for two

families using gap-PCR are shown in panel C. The gel

electrophoresis of PCR amplified fragments from normal allele

(1052 bp) and the (22SEA) allele (740 bp). MA = 100 bp DNA

Marker ladder (Takara), C = no DNA control, F = fetus (DNA from

CVS or amniocentesis), P = paternal, M = maternal, S = standard

control with wild-type, heterozygote and homozygote of the

(22SEA) deletion, from right to left. Genotypes of these two fetuses

were confirmatively diagnosed as having aa/aa in Family 7

(1052 bp) and 22SEA/22SEA in Family 47 (740 bp).

(PDF)

Table S1 Oligonucleotide sequences for Allele-Specific
Real-time PCR.
(DOC)

Table S2 The location of nine SNP markers within
(22SEA) deletion breakpoint regions.
(DOC)
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Table S3 The quantification results of maternal plasma
DNA by Real-time Quantitative-PCR.

(DOC)

Table S4 Allele specific real-time PCR analysis of nine
SNP markers using a serial of artificial model samples.

(DOC)

Table S5 Comparison between the analysis of circulat-
ing fetal DNA and invasive procedure (CVS or amnio-
centesis).

(DOC)
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