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Abstract

The SAR11 Alphaproteobacteria are the most abundant heterotrophs in the oceans and are believed to play a major role in
mineralizing marine dissolved organic carbon. Their genomes are among the smallest known for free-living heterotrophic
cells, raising questions about how they successfully utilize complex organic matter with a limited metabolic repertoire. Here
we show that conserved genes in SAR11 subgroup Ia (Candidatus Pelagibacter ubique) genomes encode pathways for the
oxidation of a variety of one-carbon compounds and methyl functional groups from methylated compounds. These
pathways were predicted to produce energy by tetrahydrofolate (THF)-mediated oxidation, but not to support the net
assimilation of biomass from C1 compounds. Measurements of cellular ATP content and the oxidation of 14C-labeled
compounds to 14CO2 indicated that methanol, formaldehyde, methylamine, and methyl groups from glycine betaine (GBT),
trimethylamine (TMA), trimethylamine N-oxide (TMAO), and dimethylsulfoniopropionate (DMSP) were oxidized by axenic
cultures of the SAR11 strain Ca. P. ubique HTCC1062. Analyses of metagenomic data showed that genes for C1 metabolism
occur at a high frequency in natural SAR11 populations. In short term incubations, natural communities of Sargasso Sea
microbial plankton expressed a potential for the oxidation of 14C-labeled formate, formaldehyde, methanol and TMAO that
was similar to cultured SAR11 cells and, like cultured SAR11 cells, incorporated a much larger percentage of pyruvate and
glucose (27–35%) than of C1 compounds (2–6%) into biomass. Collectively, these genomic, cellular and environmental data
show a surprising capacity for demethylation and C1 oxidation in SAR11 cultures and in natural microbial communities
dominated by SAR11, and support the conclusion that C1 oxidation might be a significant conduit by which dissolved
organic carbon is recycled to CO2 in the upper ocean.
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Introduction

C1 metabolism takes place through a network of interrelated

biochemical reactions that involves the transfer of one-carbon

units from one compound to another. C1 units can be donated in

the form of methyl (-CH3), methylene (-CH2-), methenyl (-CH = ),

formyl (-CHO) and formimino (-CH = NH) groups [1,2]. A few

specialized bacteria oxidize methyl groups and C1 compounds,

such as methanol, formaldehyde, formate and methylamine, to

derive energy and cellular carbon. The most well known of these

organisms are methylotrophs, which assimilate C1 carbon into

biomass via the ribulose monophosphate (RuMP) or serine cycle

pathways [3–7]. Less well known are organisms that have C1

oxidation pathways for energy production, but lack pathways for

the net synthesis of biomass from C1 precursors [8].

Marine dissolved organic carbon (DOC) includes a diverse

array of C1 and methylated compounds that are potential

substrates for C1 oxidation. The most common methylated

compounds in marine environments are osmolytes such as GBT,

TMAO, and DMSP [9–11]. Methanol is a major component of

oxygenated volatile organic chemicals in the oceans and

atmosphere [12,13]. Air measurements over the Pacific Ocean

indicate that sea surface methanol concentrations are about

100 nM and that central ocean regions are net sinks for methanol

deposited from the atmosphere [12–14]. Formaldehyde is

ubiquitous in seawater. Likely sources of seawater formaldehyde

are atmospheric deposition from industrial emissions and the

photo-oxidation of atmospheric hydrocarbons [15,16], and the

photo-oxidation of dissolved organic carbon in the ocean surface

[17]. The metabolism of methylated compounds in mammals also

produces formaldehyde [18]. Formaldehyde is a key reactive

intermediate in bacterial metabolism of C1 growth substrates like

methane or methanol [19-21], and it is also a central intermediate

of GBT methyl group oxidation [22]. Due to its nonspecific

reactivity with proteins and DNA, formaldehyde is toxic to cells,

and thus many studies have examined mechanisms by which

organisms can remove this potentially lethal compound [23,24].

Marine bacteria of the SAR11 clade are the most abundant

aerobic, free-living, heterotrophic bacteria in ocean surface waters

[25,26]. SAR11 was first discovered in the Sargasso Sea in 1990

[27] and is now considered to be one of the most successful

organisms on the planet. Candidatus Pelagibacter ubique strain
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HTCC1062, the first cultured SAR11 strain, has one of the most

compact genomes known for a free-living organism (1,308,759

base pairs), and has dispensed with many functions that are

common in other free-living bacteria, apparently in response to

selective pressure for small genome size [28]. The SAR11 clade is

divided into subclades that have distinct temporal and spatial

distributions in the environment that are believed to represent

ecotypes or species [29]. Most strains now being studied in

laboratories belong to the Group Ia subclade, which is common in

the ocean euphotic zone [29].

In this study, we observed a suite of genes for demethylation and

C1 oxidation in three SAR11 Ia genomes (Ca. P. ubique strains

HTCC1062, HTCC1002, and HTCC7211) for which no role in

SAR11 had yet been identified. Genomic and metagenomic data

were used to explore the potential for C1 metabolism in the three

SAR11 isolates and natural SAR11 populations, and experiments

with pure cultures of cells were used to confirm predictions.

Together, our data demonstrate that SAR11 cells are capable of

oxidizing a range of C1 compounds and methyl groups from

methylated compounds to produce energy.

Results and Discussion

Comparative Genome Analyses and Proposed Metabolic
Pathways

Genes in the HTCC1062 genome associated with C1 oxidation

are shown in Figure 1. The proposed metabolic pathways for these

genes are discussed in detail below (Fig. 2), although for clarity we

include only the HTCC1062 gene identifiers (e.g, ‘‘SAR11_’’) in

the text. Table S1 lists C1 metabolism genes by gene identifier,

COG number, organism, and function to reduce confusion caused

by the common practice of assigning different gene names to

homologous genes that have related functions. To evaluate the

conservation and diversity of C1 oxidation pathways in SAR11 we

examined the distribution of genes for C1 metabolism among

three SAR11 genomes of the Group Ia subclade, and these genes

were found in all three SAR11 Ia genomes (Table 1). A survey of

the global ocean survey (GOS) metagenomic data for SAR11

genes involved in C1 metabolism also supported the conclusion

that these genes occur frequently in SAR11 genomes. Averaged

across ocean sampling locations worldwide, the ratio of SAR11 C1

genes, relative to SAR11 recA, ranged from 0.2 to 2.1 (Fig. S1 and

Table S2).

Central to the process of C1 and methylated compound

oxidation in SAR11 Ia is the tetrahydrofolate (THF)-linked

oxidation pathway, which oxidizes C1 units to CO2, yielding

energy in the form of reduced nucleotides and ATP (Fig. 2). The

gene products of metF (SAR11_1264), folD (SAR11_0307) and fhs

(SAR11_1285) are predicted to catalyze early steps in the methyl-

THF linked oxidation pathway (Fig. 2A). The genes fdhF

(SAR11_0679), fdsB (SAR11_0680) and fdhD (SAR11_0681;

Fig. 1A) are predicted to encode subunits of formate dehydroge-

nase (FDH), which catalyzes the final step in the pathway, the

oxidation of formate to CO2 [30,31] (Fig. 2A). Gene mobA

(SAR11_0684) and moeA (SAR11_0685) are predicted to encode

proteins for the synthesis of a molybdenum cofactor, which is

required for the activity of most bacterial molybdoenzymes, such

as FDH [32-34].

Putative genes that encode C1 oxidation activities are found in

many bacterial phyla, archaea and eukaryotes. We used the

phylogenomic pipeline HAL [35] to study the distribution of C1

oxidation genes in the class Alphaproteobacteria and found evidence

for many of these genes throughout the genomes investigated (Fig.

S2). For example, homologs of fdhF and fdhD were observed in 77

and 58 of 127 genomes, respectively. However, outside of the

methylotrophs, which can grow using C1 compounds as a sole

carbon and energy source, C1 oxidation has received relatively

little attention. FDH genes have been reported in Rhizobium

japonicum and Agrobacterium tumefaciens [36-38]. Interestingly, several

non-methylotrophs, including A. tumefaciens, are capable of utilizing

methylamine as a nitrogen source, but not as a sole carbon source.

As with SAR11 Ia, these bacteria contain the proposed THF-

linked C1 oxidation pathway and lack specialized pathways for the

assimilation of C1 compounds [8,36]. These observations suggest

that, as we report below for SAR11 Ia strains, R. japonicum and A.

tumefaciens, and probably many other bacteria, may utilize C1 and

methylated compounds for energy production.

All three SAR11 Ia genomes possess an alcohol dehydrogenase

(ADH) gene (SAR11_1287; Fig. 1B) that was initially annotated as

methanol dehydrogenase. We propose that this enzyme catalyzes

the oxidation of short chain alcohols, including methanol, to the

corresponding aldehydes (Fig. 2B). In the case of methanol, the

oxidation product is formaldehyde, which can be converted to

CO2 by the methyl-THF linked oxidation pathway described

above. This gene encodes a member of the iron-containing alcohol

dehydrogenase (Fe-ADH, PF00465) protein family found in many

microorganisms. Oxidation of methanol rarely is observed in non-

methylotrophic bacteria that lack the classical pyrroloquinoline-

quinone (PQQ)-containing methanol dehydrogenase. Methanol

dehydrogenase activity has been confirmed in ADH proteins from

some Firmicutes and Archaea [39-41]. A phylogenetic tree of the

Fe-ADH proteins from three SAR11 Ia strains (Fig. 3, light green)

and closely related homologs from other organisms shows that the

proteins with demonstrated methanol dehydrogenase activity

(arrows) are more highly diverged than their close relatives, and

that the SAR11 Fe-ADH proteins branch nearby (Fig. 3). As we

report below (Tables 2 and 3), physiological evidence from ATP

assays supports the conclusion that the SAR11 Fe-ADH is not

specific for methanol oxidation, but can oxidize other short chain

primary alcohols as well. Similar conclusions were reported

previously for other bacterial ADH genes in the same family

[42-44]. Only short-chained, primary alcohols (methanol, ethanol,

and 1-propanol) stimulated ATP production in HTCC1062.

A predicted GBT degradation pathway operon was identified in

the SAR11 Ia genomes. In this pathway, the three N-methyl

groups of GBT are removed in sequence by three enzymes:

betaine-homocysteine methyltransferase (BHMT), dimethylglycine

dehydrogenase, and sarcosine dehydrogenase (encoded separately

by SAR11_1173, SAR11_1253, and SAR11_1221 in

HTCC1062). These methyl groups have different predicted fates.

The first methyl group is transferred to methionine by BHMT, an

enzyme that is common and well studied in mammals, but is rarely

found in prokaryotes [45,46]. The second and third methyl groups

are predicted to be transferred to THF in reactions that are

coupled to partial oxidation and then further oxidized to CO2 by

the THF-linked oxidation pathway described above (Fig. 2A, C). A

previous study showed that the uptake and metabolism of GBT by

bacteria-sized organisms in seawater was correlated with salinity

[47]. Consistent with that study, metagenomic analysis showed

relatively constant ratios of SAR11 GBT gene frequencies in

ocean populations, and absence of these genes in metagenomes

from fresh water (Table S2, ID GS20).

Genes for methylamine dehydrogenase are missing from SAR11

Ia genomes, but they contain genes necessary to encode an

alternative, glutamate-mediated pathway for methylamine oxida-

tion [48]. Latypova and colleagues showed that N-methylgluta-

mate synthase (NMGS) and N-methylglutamate dehydrogenase

(NMGD), encoded by mgsABC and mgdABCD in Methyloversatilis

SAR11 C1 Metabolism
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universalis, participate in methylamine oxidation [48]. When the M.

universalis NMGS protein sequences were blasted against the

predicted HTCC1062 proteome, it returned a glxBCD operon

(SAR11_1313-1315) as the top hit. This operon is annotated as a

glutamate synthase and shares gene order with the M. universalis

NMGS operon. We hypothesize that this operon may encode a

holoenzyme that has NMGS activity. NMGS catalyzes transfer of

a methyl group from methylamine to glutamate to produce N-

methyglutamate as a product.

We postulate that the next step in the pathway, oxidation of N-

methyglutamate to glutamate and 5, 10-methylene-THF, with the

reduction of FAD to FADH2, is catalyzed by the products of SAR11

genes that are annotated as heterotetrameric forms of sarcosine oxidase

(Fig. 2D). Two paralogous operons of four sarcosine oxidase genes,

soxBDAG (SAR11_1064-1067) and soxB2D2A2G2 (SAR11_1281-1284),

are located in separate locations of HTCC1062 genomes with the

same gene orders and conserved functional domains as those encoding

NMGD in M. universalis (Fig. 1C). Metagenome surveys showed that

these two sets of paralogs are highly represented in SAR11 populations

globally (Fig. S1). We postulate that one of these sets of paralogs

encodes the sarcosine oxidase holoenzyme, and the other encodes

NMGD; however, which operon encodes which function is unclear.

Heterotetrameric sarcosine oxidases (a.k.a sarcosine dehydrogenase)

participate in the GBT degradation pathway by converting sarcosine to

glycine. In HTCC1062, SAR11_1304 is predicted to encode the

monomeric form of sarcosine oxidase, and is adjacent to two genes

annotated as an aminomethyltransferase (AMT) and a GBT

transporter (SAR11_1303 and SAR11_1302; Fig. 1E). The presence

of two paralogous sarcosine oxidase operons and an individual gene

encoding a monomeric sarcosine oxidase is noteworthy considering

that paralogs are rare in highly compact SAR11 genomes [28]. We

postulate that SAR11 Ia strains may use these genes for the reactions

described above and possibly for the demethylation of unknown

substrates in oxidation reactions that are likely to produce the

intermediate 5, 10-methylene-THF [49].

A different pathway for methylamine demethylation that

involves the intermediate gamma-glutamylmethylamide was also

postulated by Latypova and colleagues [48]. We found the

Figure 1. Demethylation and C1 oxidation regions of the strain HTCC1062 genome. (A) formate dehydrogenase; (B) methanol metabolism;
(C) methylamine oxidation; (D) glycine betaine oxidation; (E) aminomethyltransferases (Asterisk). fdhF, formate dehydrogenase, alpha subunit; fdsB, NAD-
dependent formate dehydrogenase, beta subunit; fdhD, formate dehydrogenase, chain D; mobA, molybdopterin-guanine dinucleotide biosynthesis protein A;
moeA, molybdopterin biosynthesis protein; fhs, formate-THF ligase; SAR11_1286, putative glutamine amidotransferase; Fe-ADH, iron-containing alcohol
dehydrogenase; ssdH, aldehyde dehydrogenase family; SAR11_1289, short chain dehydrogenase; soxB, sarcosine oxidase; soxD & soxD2, sarcosine oxidase
delta chain; soxA & soxA2, sarcosine oxidase alpha chain; soxG & soxG2, sarcosine oxidase gamma subunit; soxB2, sarcosine oxidase beta subunit; glxBCD,
glutamate synthase; glnT, Glutamine synthetase III (putative gamma-glutamylmethylamide synthetase); bhmT, betaine-homocysteine methyltransferase;
sardh, sarcosine dehydrogenase; dmgdh, dimethylglycine dehydrogenase; gcvT, glycine system cleavage T-protein; gcvH, glycine cleavage H-protein; gcvP,
glycine cleavage P-protein; dmdA, dimethylsulfoniopropionate-dependent demethylase; mhpC, hydrolase, alpha/beta hydrolase fold family; fadD, CoA
activator for DMSP beta oxidation; mmgC, acyl-CoA dehydrogenase for DMSP beta oxidation; metF, methylene-THF reductase; opuAB, glycine betaine
transport system permease protein; opuAA, glycine betaine transport ATP-binding protein; opuAC, substrate-binding region of ABC-type glycine betaine
transport system; SAR11_1265 & SAR11_1303, gcvT-like aminomethyltransferase protein; SAR11_1304, monomeric sarcosine oxidase. Colors correspond to
pathways in Figure 2.
doi:10.1371/journal.pone.0023973.g001
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homolog of gamma-glutamylmethylamide synthetase (GMAS)

from this pathway in HTCC1062, which was annotated as glnT,

a glutamine synthetase III (SAR11_1316, Fig. 1C) and shares the

conserved Gln-synt_C domain (Pfam PF00120.17) with GMAS.

However, the complete pathway has not been identified and the

enzyme was considered to be not essential for oxidation of

methylamine in M. universalis [48].

The three SAR11 Ia genomes include a family of paralogous

AMT genes (Fig. 1E). Phylogenetic analysis provided strong

support for placing the four AMT genes from HTCC1062 into

three functionally distinct subgroups (Fig. 4). SAR11_0666

encodes the glycine cleavage system T-protein (GcvT), part of

the glycine cleavage multi-enzyme complex (GCV), which is

present in most bacteria and mitochondria [50]. GCV catalyzes

the degradation of glycine to form 5, 10-methylene-THF, CO2

and NH3 [51] (Fig. 2F). SAR11_0246 encodes DmdA, a

member of the AMT protein family that catalyzes removal of

the first methyl group from DMSP to produce methylmercap-

topropionate (MMPA) in a pathway for DMSP catabolism

[52,53] (Fig. 2G). However, the enzyme that subsequently

demethylates MMPA to mercaptopropionate (MPA) has not

been identified.

SAR11_1265 and SAR11_1303 are annotated as probable

AMTs with unknown substrates. Three genes (opuAB, opuAA, and

opuAC) are located near SAR11_1303 and encode putative

homologs of the GBT transport system permease protein, GBT

transport ATP-binding protein and substrate-binding region of

ABC-type GBT transport system (Fig. 1E). Therefore, we

postulate that SAR11_1303 may encode an AMT involved in

GBT metabolism. Notably, SAR11_1265 is adjacent to the

putative metF (SAR11_1264), encoding a homolog of methylene-

THF reductase. MetF in Methylobacterium chloromethanicum CM4

enables the oxidation of methyl-THF to methylene-THF [20].

SAR11_1265 is closely related to SAR11_0246 (dmdA) (Fig. 4), and

was observed at similar abundances in GOS metagenomic analysis

(Fig. S1), leading us to speculate that this gene might catalyze

removal of the second methyl group in the DMSP degradation

pathway. All of the four AMTs tended towards a 1:1 ratio with

single-copy gene recA (Fig. S1), suggesting that these genes may be

part of the SAR11 Ia core genome.

Another gene, SAR11_0621, was initially annotated as an

AMT, but later was identified as ygfZ, which encodes a folate-

binding protein. Studies on YgfZ in Escherichia coli and Arthrobacter

globiformis revealed THF-binding folds in the structure of this

protein, but otherwise little similarity to the GcvT family of AMT

proteins [54,55]. Recent studies indicated that YgfZ in E. coli has

methylase activity [56] or may be involved in the regulation of C1

metabolism [54]. There is currently no direct evidence for a role in

C1 metabolism for YgfZ in SAR11.

Some of the three SAR11 Ia genomes had additional genes

implicated in C1 metabolism (Table 1). Genes encoding

glutathione-dependent formaldehyde activating enzyme (GFA),

Figure 2. Proposed C1 and methylated compound oxidation pathways in SAR11 Group Ia. (A) THF-linked oxidation pathway; (B)
methanol oxidation pathway; (C) glycine betaine demethylation and oxidation; (D) methylamine oxidation pathways; (E) TMAO degradation pathway;
(F) glycine cleavage pathway; (G) DMSP demethylation. Note: ? - unidentified metabolic processes/enzymes; * - spontaneous reaction; { - two
paralogous operons.
doi:10.1371/journal.pone.0023973.g002
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glutathione-dependent formaldehyde dehydrogenase (GD-

FALDH) and S-formyl-glutathione hydrolase (FGH) are present

in HTCC7211, but not in HTCC1062 or HTCC1002. In

Paracoccus denitrificans, these proteins catalyze the well-studied

glutathione (GSH) dependent pathway that converts formaldehyde

to CO2 [7,57-59]. We note that some of the predicted C1

oxidation functions of these genes are redundant with genes for the

THF-linked oxidation pathway that are also present in the

HTCC7211 genome; however, unlike strain HTCC1062, strain

HTCC7211, an isolate from the oligotrophic Sargasso Sea, is

predicted to be able to oxidize formaldehyde by using GFA to

catalyze the first step in the pathway.

Methane monooxygenases, which catalyze the first reaction of

methane oxidation pathways, were not present in any SAR11

genome, indicating that these cells are unlikely to be methane

oxidizers. Karl and coworkers reported that methane is produced

from methylphosphonate in seawater by the activity of the

microbial C-P lyase pathway [60]. This pathway is present in

the genome of HTCC7211, but there are no known metabolic

pathways by which methyl groups from methylphosphonate can

be diverted into THF-linked C1 oxidation.

Direct Experimental Evidence for C1 Oxidation in SAR11
Strain HTCC1062

Genome analysis suggested that C1 metabolism evolved in

SAR11 Ia for energy production, rather than as a means to

accumulate biomass. Testing this hypothesis was challenging

because SAR11 Ia cells require a variety of unusual organic

growth factors and cannot be cultured on ‘‘sole’’ carbon sources, a

common paradigm in microbiology. Some required compounds,

notably glycine, can be oxidized to produce energy as well as being

needed for biomass production [61]. Thus, we were not surprised

when the addition of various C1 and methylated compounds did

not change growth rates or yields of cultures (data not shown). To

test for C1 oxidation activities predicted by genome analysis, we

turned to direct measurements of energy production and substrate

oxidation.

Measurements of cellular ATP content supported the conclu-

sion that HTCC1062 can produce energy from a wide variety of

C1 and methylated compounds (Table 3). ATP levels were

assayed in HTCC1062 cells that were first grown in the presence

of C1 and methylated compounds to be certain that pathways

involving C1 oxidation genes were induced. Concentrations of

compounds used for ATP assays and 14C experiments (below)

were determined in advance by growth assays, as described in the

materials and methods. Pyruvate, which was shown previously to

be actively metabolized as an energy and carbon source by

HTCC1062 cells [62], was used as a positive control. ATP

content increased in cells incubated with all of the methylated

compounds tested with the exception of formate, relative to

negative controls. Methanol and TMAO caused the greatest

increases in ATP content (3- and 2.4-fold, respectively). We

speculate that formate did not enhance ATP levels because it was

not transported into cells.

Consistent with predictions from the genome sequence,

radioisotope studies with 14C-[methyl]-GBT, 14C-TMA, 14C-

Table 1. Distribution of genes involved in C1 metabolism among three SAR11 Ia genomes.

Genes for C1 oxidation and methylovory HTCC 1062 HTCC1002 HTCC7211

THF-linked oxidation formate dehydrogenase, alpha subunit (fdhF) + + +

NAD-dependent formate dehydrogenase, beta subunit (fdsB) + + +

formate dehydrogenase, chain D (fdhD) + + +

molybdopterin-guanine dinucleotide biosynthesis protein A (mobA) + + +

molybdopterin biosynthesis protein (moeA) + + +

formate-THF ligase (fhs) + + +

methylene-THF reductase (metF) + + +

bifunctional methylene-THF dehydrogenase-methenyl-THF cyclohydrolase (folD) + + +

methanol oxidation iron-containing alcohol dehydrogenase (Fe-ADH) + + +

methylamine oxidation glutamine synthetase III (glnT) + + +

putative N-methylglutamate synthase (glxBCD) + + +

putative N-methylglutamate dehydrogenase (soxBDAG) + + +

GBT oxidation betaine-homocysteine methyltransferase (bhmT) + + +

sarcosine dehydrogenase (sardh) + + +

dimethylglycine dehydrogenase (dmgdh) + + +

AMTs glycine system cleavage T-protein (gcvT) + + +

dimethylsulfoniopropionate-dependent demethylase (dmdA) + + +

putative aminomethyltransferase + + +

GSH dependent pathway glutathione-dependent formaldehyde activating enzyme (gfa) - - +

glutathione-dependent formaldehyde dehydrogenase (GD-FALDH) - - +

S-formyl-glutathione hydrolase (FGH) - - +

The phylogenomics pipeline HAL and manual searches were used to detect orthologs among the genomes. Genes for C1 oxidation were present in all three genomes.
HTCC7211 possesses three genes for the glutathione (GSH) dependent C1 oxidation pathway that are not present in the other two SAR11 Ia genomes.
doi:10.1371/journal.pone.0023973.t001
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methanol and 14C-formaldehyde demonstrated that HTCC1062

oxidized methyl groups from methylated compounds and C1

compounds to CO2, but incorporation of the compounds into

biomass was negligible (Fig. 5). Among these compounds, the

oxidation rate was fastest with 5 mM 14C-TMA (3.82 nmol61010

cells216h21), while 100 nM 14C-formaldehyde was oxidized to
14CO2 at the lowest rate (0.01 nmol61010 cells216h21), likely

reflecting the lack of formaldehyde activating enzyme in

HTCC1062. The rate of 20 mM methanol oxidized to 14CO2

was 0.50 nmol61010 cells216h21.

The ability of cultured Ca. P. ubique to oxidize C1 compounds,

and the conservation of genes for C1 metabolism in streamlined

SAR11 genomes, suggests that C1 oxidation pathways may

contribute significantly to the energy budget of these cells in

nature. To examine this hypothesis, we measured the potential

rates at which 14C-labeled C1 and methylated compounds were

oxidized and incorporated into biomass by cells concentrated from

the Sargasso Sea upper euphotic zone during the period of

summer stratification. Long-term time series measurements have

shown that SAR11 cells range from 30-40% of cells at this ocean

site, and that the distinctive microbial community that forms in the

upper euphotic zone during the summer is dominated by the

SAR11 Ia subclade [25,29]. The data from bacterioplankton

populations collected in the western Sargasso Sea revealed rates of

carbon assimilation and oxidation of the same order observed with

pure SAR11 cultures in the laboratory (Fig. 6 and [62]). Similar

methanol oxidation rates (,0.8 – 2.5 nmol61010 cells216h21)

were measured in off-shelf northeast Atlantic seawaters [14],

which are also dominated by SAR11 cells [25]. Notably, in the

natural bacterioplankton community less than 6 % of the 14C-

methanol, 2 % of 14C-formate, and 3 % of 14C-formaldehyde were

assimilated into biomass, with the remainder oxidized to CO2 by

Figure 3. Phylogenetic tree of Fe-ADH proteins. Coloration is according to 16S rRNA gene phylogeny, as shown in the boxed legend. Bootstrap
values were omitted for clarity; nodes with less than 60% support were collapsed. Arrows indicate Fe-ADH proteins for which methanol
dehydrogenase activity has been demonstrated experimentally. Scale bar = 0.4 changes per position.
doi:10.1371/journal.pone.0023973.g003
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the natural community. In contrast, 35 % of glucose and 27 % of

pyruvate were assimilated into bacterioplankton biomass in the

field experiments (Fig. 6), similar to the fraction of organic carbon

assimilation into biomass observed previously with growing

SAR11 cultures and typical of bacterial organic carbon assimila-

tion in general [62]. One noteworthy difference between the

results obtained with cultured strain HTCC1062 and measure-

ments made in the field is the higher rate of formaldehyde

oxidation in the field study. During comparative genome sequence

analysis the protein GFA (formaldehyde activating enzyme) was

noted in the HTCC7211 genome (Table 1), an isolate obtained

from the Sargasso Sea. It may be that ecotypes of SAR11 found in

the Sargasso Sea summer upper euphotic zone microbial

community have a potential to oxidize formaldehyde that is not

found in coastal isolates. Overall, these findings suggest that energy

production by C1 oxidation, rather than methylotrophy, in which

a large fraction (i.e., 62 %; [63]) of the C1 compound is

incorporated into biomass, is the predominant mode of C1

oxidation in surface waters of temperate oligotrophic oceans.

Conclusions
It is a paradox that the SAR11 clade evolved small genomes while

becoming the most successful heterotrophs known, because DOC is a

complex substrate that would appear to require complex metabolic

pathways for oxidation. The most obvious solution to this conundrum

is substrate specialization by SAR11 and other heterotrophic species

in microbial communities, dividing the oxidative side of the carbon

cycle into niches. In this report we show that a considerable part of

the SAR11 Ia genomes is devoted to C1 metabolism that produces

energy but not biomass. C1 and methylated compounds have not

generally been regarded as a large fraction of the marine carbon

cycle, but there have been a number of reports of C1 compounds and

C1 oxidation activity in marine systems [14,47]. We speculate that

C1 metabolism evolved in SAR11 because it gave these cells the

ability to catabolize a variety of compounds – ranging from low

molecular weight photolysis products to osmolytes carrying multiple

methyl groups, such as DMSP and GBT. DMSP catabolism in

SAR11, and its use as a source of reduced sulfur for growth, has been

the subjects of previous studies that did not examine the fate of methyl

groups [53,64].

The concept of cells producing energy but not biomass from C1

compounds has received little attention. The best analogy is the

term ‘‘carboxidovory’’, which was coined to describe the

metabolism of cells that produce energy by oxidizing carbon

monoxide, and to distinguish them from ‘‘carboxidotrophs’’

[65,66], which can use carbon atoms from carbon monoxide for

the net assimilation of biomass. Based on this precedent, we

propose a new term, ‘‘methylovores’’, to distinguish cells, such as

SAR11 and likely many other bacteria, that can utilize C1

compounds as a source of energy, from methylotrophs, which are

able to use C1 compounds as sole sources of energy and carbon.

Phylogenomic studies have placed the mitochondria deep

within the Alphaproteobacteria, close to Rickettsiales and the SAR11

Table 2. ATP response of starved cells to addition of various
alcoholsa.

Test compoundsb samples
Cellular ATP content
(Mean ± SD; zeptogram cell-1)

* ethanol T 5768

N 1463

P 135615

* 1-propanol T 4766

N 1964

P 4163

2-propanol T 1061

N 1162

P 2661

1-butanol T 2567

N 2369

P 3567

2-pentanol T 1362

N 1162

P 2569

iso-amyl alcohol T 1865

N 1462

P 4068

a. For each assay, cells were grown in media containing the test compound,
then washed and starved for 20 hrs. Cellular ATP content was measured after
cells were exposed for 2 hrs to the test compound (T), to no compound added
(N), and to pyruvate (P; positive control to confirm metabolic activity of cells).
b. Asterisk indicates statistical significance (p-value ,0.01) between ‘‘no
compound added’’ and ‘‘test compound’’ treatments.
doi:10.1371/journal.pone.0023973.t002

Table 3. ATP response of starved cells to addition of C1 and
methylated compoundsa.

Test compoundsb samples
Cellular ATP content
(Mean ± SD; zeptogram cell21)

formate T 3263

N 2968

P 22164

* methanol T 4860

N 1663

P 16068

* formaldehyde T 3366

N 1461

P 7765

* DMSP T 2363

N 1661

P 16367

* methylamine T 2761

N 1860

P 145610

* glycine betaine T 4161

N 2363

P 13263

* TMAO T 6365

N 2662

P 148610

a. For each assay, cells were grown in media containing the test compound,
then washed and starved for 20 hrs. Cellular ATP content was measured after
cells were exposed for 2 hrs to the test compound (T), to no compound added
(N), and to pyruvate (P; positive control to confirm metabolic activity of cells).
b. Asterisk indicates statistical significance (p-value ,0.01) between ‘‘no
compound added’’ and ‘‘test compound’’ treatments.
doi:10.1371/journal.pone.0023973.t003
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clade [67]. Although respiration is a central feature of mitochon-

dria that is assumed to have driven the original endosymbiotic

event, mitochondria make complex contributions to cellular

metabolism, including vitamin biosynthesis [68], and the metab-

olism of C1 compounds [69,70], which evidence supports as being

present in the protomitochondrion [71]. In light of the data

presented here it is not unreasonable to speculate that the C1

metabolism of mitochondria was contributed by free-living

methylovorous ancestors of modern SAR11.

The findings we report show that SAR11 Group Ia strains can

produce cellular energy from a broad range of C1 and methylated

compounds by oxidative metabolism that we here refer to as

methylovory to distinguish it from methylotrophy. The data we

present also show that the potential for methylovory was highly

expressed in a natural oligotrophic ocean surface microbial

community dominated by SAR11. Based on these findings, we

speculate that C1 oxidation pathways contribute significantly to the

marine carbon cycle and in part explain the broad success of SAR11.

Materials and Methods

Bioinformatics analysis and phylogeny
Gene calls and functional assignment of SAR11 Group Ia

genomes were performed by an automated pipeline at Oregon

State University’s Center for Genome Research and Biocomput-

ing (http://bioinfo.cgrb.oregonstate.edu/microbes/index.html).

Conserved domains were determined with Pfam [72]. KEGG

[73] and MicrobesOnline [74] were used for predicting physio-

logical and metabolic pathways.

For the phylogeny of the Fe-ADHs, Pfam was used to confirm

the orthology of the Fe-ADH domain in the three SAR11 strains

with that of the known methanol dehydrogenase genes (Pfam Fe-

ADH PF00465). The phylogenetic tree was then constructed using

these six sequences and those of over 70 of the 100 top hits

identified using PSI-BLAST with the HTCC1062 gene

(YP_266695) as the query sequence. Sequences were aligned

using MUSCLE [75,76], and manually edited to remove columns

with .85% gaps. Substitution modeling was completed using

ProtTest [77]. The alignment was then analyzed with RAxML

[78] using the WAG substitution model and nodal support was

estimated based on 100 bootstrap replications.

Phylogeny of the AMTs was performed by MicobesOnline

website and MacVector software. The top 10 matched protein

sequences of each AMT (YP_265671, YP_266089, YP_266673,

YP_266710) were downloaded using BLAST tools from Microbe-

sOnline. AMTs were aligned using the ClustalW module of

MacVector version 10.5.2, and Phylogenetic trees were construct-

ed using the neighbor-joining method. One-hundred bootstrap

replicates were used to estimate the robustness of branches in the

phylogenetic tree. Accession numbers are in Table S3.

Figure 4. Phylogeny of SAR11 AMT proteins. Four paralogous AMTs in HTCC1062 were placed into three functional subgroups: DmdA-like,
GcvT, and an AMT of unknown function. All four AMTs were also identified in HTCC1002 and HTCC7211 genomes. This phylogenetic tree was
generated using the neighbor-joining method. Bootstrap values are based on 100 iterations.
doi:10.1371/journal.pone.0023973.g004
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Homology assessment of methylovory genes was completed

using the HAL pipeline [36,79] (http://aftol.org/pages/Halweb3.

htm; http://sourceforge.net/projects/bio-hal/) followed by man-

ual examination of predicted orthologous clusters. For this study,

the HAL pipeline directed the following analyses: Protein

sequences from 127 publically available Alphaproteobacteria genomes

(for a complete list, see [67]) were imported in FASTA format

from IMG (http://img.jgi.doe.gov) and subjected to all vs. all

BLASTP with the output E-values provided to the program MCL

[80], which grouped proteins into orthologous clusters using 13

inflation parameters from 1.1 – 5.0. For homology assessment in

Figure S2, we examined clusters formed at the relatively

Figure 5. 14C-labeled compound utilization by HTCC1062 in culture. HTCC1062 Cells from log phase were collected and resuspended in
artificial seawater media (ASW). Radioisotope assays were conducted at room temperature (22uC) in ASW amended with (A) 1 mM 14C-[methyl]-GBT;
(B) 5 mM 14C-TMA; (C) 20 mM 14C-methanol; or (D) 100 nM 14C-formaldehyde. Where not visible, error bars are smaller than the size of the symbols.
doi:10.1371/journal.pone.0023973.g005

Figure 6. Utilization of 14C-labeled C1 and methylated compounds by bacterioplankton in the western Sargasso Sea. The oxidation
and incorporation rates were calculated from the initial linear part of each curve. Rate of 14C-compound oxidation to 14CO2 (&); rate of 14C-
compounds incorporation into biomass (%).
doi:10.1371/journal.pone.0023973.g006
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conservative 3.0 inflation parameter, and thus these numbers can

be considered as lower estimates of total homologs.

Metagenomic analysis
The reciprocal best BLAST (RBB) approach [81] was used to

identify environmental fragments in the global ocean survey

(GOS) database originating from SAR11 and encoding genes

related to C1 and methyl group oxidation. The amino acid

sequences for the genes discussed in this paper were searched with

BLASTP (e-value threshold = 161025) against peptide sequences

called from GOS metagenomic nucleotide reads. The taxonomies

of matching peptides were determined by querying the peptide

against the NCBI non-redundant protein database (NR) using

BLASTP (e-value threshold = 10). Sequences were only retained if

this second search against NR found one of the three Ca. P. ubique

strains to be the best match to the environmental peptide. Peptides

were lastly searched with BLASTP (e-value threshold = 161025)

against all Ca. P. ubique strain HTCC1062 amino acid sequences

to ensure that the initial Ca. P. ubique query protein, rather than a

paralog, was the best match to the environmental peptide

sequence. The number of environmental peptides passing the

RBB test, or hits, per gene at each GOS sampling site were

normalized to the length of the single-copy essential gene recA and

the number of hits to recA at the same sampling site using the

formula Pg = (LrecA / Lg)6(Hg / HrecA), where Pg is the percentage

abundance related to recA for gene g, LrecA is the length of recA in

base-pairs (bp), Lg is the length of gene g in bp, Hg is the number of

hits for gene g, and HrecA is the number of hits to recA [82]. GOS

sampling sites that had fewer than five hits to recA were removed

from downstream analysis.

ATP measurements
HTCC1062 cultures for ATP assays were grown in autoclaved,

filtered seawater amended with 1 mM NH4Cl, 100 mM KH2PO4,

1 mM FeCl3, 80 mM pyruvate, 40 mM oxaloacetate, 40 mM

taurine, 1 mM GBT, 50 mM glycine, 50 mM methionine, and

excess vitamins [62]. C1 and methylated compounds to be tested

were added as follows: 1 mM GBT, 20 mM formate, 10 mM

methylamine, 5 mM TMAO, 1 mM DMSP, 20 mM methanol and

100 nM formaldehyde. The concentration of GBT used in the

assay was the same as routinely used in Ca. P. ubique growth

media (1 mM). The concentrations of other compounds utilized in

assays were chosen by testing the growth of HTCC1062 with

differing concentrations of each compound and selecting concen-

trations that were not inhibitory (Fig. S3). Cultures were grown in

the dark at 16uC. When cultures entered early stationary phase

(,36108 cells mL21), 10 mL of each culture were collected and

cells were harvested via centrifugation (50 min at 43,700 g, 10uC).

Following centrifugation, cells were washed twice in artificial

seawater (ASW) [62] and finally resuspended in 5 mL ASW. Then

cells were distributed into 1.7 mL tubes (500 mL in each tube) and

starved overnight (20 hours in the dark, 16uC). Test treatments

and controls were done in triplicate with identical cell suspensions.

After 2 hours incubation in the dark, ATP content was measured

using a luciferase-based assay (BactTiter Glo, Promega, Madison,

WI) as follows: 90 mL of BactTiterGlo reagent were dispensed into

white 96 well plates (Tissue culture-treated, BD Biosciences, San

Jose, CA). 20 mL of each sample were added per well, and

luminescence was measured after 4 min using a multi-functional

plate reader (TECAN, Infinite M200) with a 1 s integration and

10 ms settle time. An ATP standard curve was used to calculate

the concentration of ATP in the samples. Student’s t-test was used

to assess statistical significance (p-value,0.01) between controls

and treatments. The ATP measurements for other alcohols

(20 mM ethanol, 20 mM 1-propanol, 20 mM 2-propanol, 20 mM

1-butanol, 20 mM 2-pentanol, and 20 mM iso-amyl alcohol) were

performed as described above.

Radioisotope assays
To distinguish between 14C-labeled compounds incorporated

into biomass and oxidized to 14CO2, a method was devised for

volatile 14C compounds (e.g., 14C-labeled methanol). Trichlor-

oacetic acid (TCA)-precipitation was used to assess 14C-incorpo-

ration into cellular material, and 14CO2 was precipitated by

addition of NaOH, Na2CO3 and BaCl2, forming Ba14CO3 and

BaOH. Filtration removed unincorporated 14C compounds and

BaOH, thus minimizing potential quenching effects of the base.

For experiments with radioisotopes, HTCC1062 was grown in

seawater medium as described above for ATP measurements.

Cultures were amended with unlabeled test compounds to induce

activities (5 mM TMA, 20 mM methanol, or 100 nM formalde-

hyde; 1 mM GBT was in the seawater medium). Cells were

harvested in log phase by centrifugation (1 hour at 43,700 g, 10uC)

and resuspended in ASW to about 46107 cells mL21. Negative

controls (‘‘Killed’’) were incubated in 10% formalin for 1 hour

before the addition of the isotope to the sample. 1 mM 14C-

[methyl]-GBT, 5 mM 14C-TMA, 20 mM 14C-methanol, or

100 nM 14C-formaldehyde were added to both ‘‘Live’’ and

‘‘Killed’’ culture samples. Inoculated cultures (4 mL) were

aliquoted into 40 mL sealed vials. Samples were incubated at

room temperature. At each time point, reagents were added to

cultures using syringes inserted through stoppers. For 14C-

incorporation, 2.2 mL 100% w/v cold TCA was added; for

trapping 14CO2, 1 mL 1N NaOH, 0.5 mL 0.1 M Na2CO3 and

1 mL 1 M BaCl2 were added. All samples were collected by

filtration after incubation at 4uC for 12 hrs. Filters were

transferred to vials containing 15 mL Ultima GoldTM XR

scintillation fluid (Perkin-Elmer) and kept in dark overnight before

counting (Beckman LS-6500 liquid scintillation counter).

For field studies of radiolabeled compound utilization by

bacterioplankton in the western Sargasso Sea, seawater was

collected from 10 m at Bermuda Hydrostation S using Niskin

bottles, and transferred to an acid-washed, autoclaved polycar-

bonate carboy. For each experiment, microbial plankton were

concentrated from 80 L seawater by tangential flow filtration to a

final volume of 600 mL, and isotopic labeling was carried out as

described above. The concentrations of the tested compounds

were 3 mM glucose, 1.7 mM pyruvate, 0.3 mM formate, 1.1 mM

formaldehyde, 50 mM methanol and 0.5 mM TMAO. A high

concentration of methanol was used because the specific activity of

the labeled compound was very low. Some unexpected evapora-

tion of the radio-labeled compounds occurred during transport

causing some variability between concentrations of the other

compounds used. Nevertheless, in all cases the concentrations used

were likely to be substantially higher than typical seawater

concentrations, and the results represent potential rates of

compound utilization.

Supporting Information

Figure S1 The abundance of SAR11 C1 metabolism
genes in GOS data, relative to SAR11 recA genes. Genes

were identified as SAR11 by a reciprocal best BLAST (RBB)

approach. SAR11 C1 genes with frequencies less than SAR11 recA

(,1x) may indicate that only subpopulations of SAR11 cells

possess that gene; genes greater than 1x suggest that multiple

copies of that gene are present per cell. Boxes encompass points

between the 25th and 75th percentiles, with the median
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represented as a thick horizontal line. Whiskers span the minimal

distance needed to include all points within 1.5 x the interquartile

range beyond the interquartile boundary, with points outside of

this range rendered individually as circles. For each gene, n = 40.

Abbreviations: adj., genomically adjacent genes.

(TIF)

Figure S2 Distribution of C1 gene homologs throughout
the Alphaproteobacteria. The number of genomes containing

homologs of C1 oxidation genes reported by gene and divided by

Order. The total number of genomes examined for each order is

in parentheses.

(TIFF)

Figure S3 Culture experiments to determine the con-
centrations of C1 and methylated compounds for ATP
and radioisotope assays. HTCC1062 cells were cultured in

seawater medium amended with 10 mM NH4Cl, 1 mM KH2PO4,

10 nM FeCl3, vitamins, and C1 and methylated compounds at

different concentrations.

(PDF)

Table S1 Methylovory pathways and associated genes
in Candidatus Pelagibacter ubique SAR11 HTCC1062.
Table includes genes involved in methylovory in SAR11

HTCC1062 and their associated homologs in other organisms

mentioned in the text of the paper. Associated proteins are

grouped together. Identifiers and annotated functions are taken

from the Integrated Microbial Genomes database (IMG) where

available, and from the literature where marked. Clusters of

Orthologous Groups assignments (COGS) were taken from the

IMG database, where available, and were generated using the

COGnitor tool (available from http://www.ncbi.nlm.nih.gov/

COG/) for sequences referred to the literature sources. Locus

names are taken from IMG where available.

(XLS)

Table S2 The percent abundance of SAR11 C1 metab-
olism genes at each sample site in GOS data, relative to
recA.

(XLS)

Table S3 Accession numbers used in Figure 3 and
Figure 4.

(DOC)
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