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Abstract

MicroRNAs (miRNAs) play an important role in gene regulation for Embryonic Stem cells (ES cells), where they either down-
regulate target mRNA genes by degradation or repress protein expression of these mRNA genes by inhibiting translation.
Well known tables TargetScan and miRanda may predict quite long lists of potential miRNAs inhibitors for each mRNA gene,
and one of our goals was to strongly narrow down the list of mRNA targets potentially repressed by a known large list of
400 miRNAs. Our paper focuses on algorithmic analysis of ES cells microarray data to reliably detect repressive interactions
between miRNAs and mRNAs. We model, by chemical kinetics equations, the interaction architectures implementing the
two basic silencing processes of miRNAs, namely ‘‘direct degradation’’ or ‘‘translation inhibition’’ of targeted mRNAs. For
each pair (M,G) of potentially interacting miRMA gene M and mRNA gene G, we parameterize our associated kinetic
equations by optimizing their fit with microarray data. When this fit is high enough, we validate the pair (M,G) as a highly
probable repressive interaction. This approach leads to the computation of a highly selective and drastically reduced list of
repressive pairs (M,G) involved in ES cells differentiation.
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Introduction

MicroRNAs (miRNAs) are small non-coding RNAs, *22

nucleotides in length that are able to bind and repress protein

coding mRNAs through complementary base pairing. The mini-

mum requirement for this interaction is six consecutive nucleotides,

which undergo base pairing to establish a miRNA-mRNA duplex.

The only constraints being that the six nucleotides must be localized

in the 59seed sequence (between nucleotides 2–8) of the miRNA and

the complementary binding sites, which are largely located in the 39-

untranslated regions (39-UTRs) of target mRNAs.

Because of this very minimal binding requirement, a given

miRNA can potentially bind and silence hundreds of mRNAs

across a number of signaling pathways to integrate multiple genes

into biologically meaningful networks regulating a variety of

cellular processes [1–3]. In animals, miRNAs regulate gene

expression post-transcriptionally by either down-regulating their

target mRNAs or by inhibiting their translation [4]. MiRNAs have

two types of effects on their target mRNAs. When a miRNA M

binds to its target mRNA gene G with partial complementarity,

then the translation of gene G is inhibited; however, when M binds

to its target G with near-perfect complementarity, then gene G is

cleaved, resulting in its degradation. Thus, when we ectopically

over-express a miRNA we expect to see a decrease in the target

genes at the protein level but not at the gene level if the miRNA-

mRNA duplex is formed through imperfect complementarity. In

contrast, we expect both mRNA and protein levels to change

when the miRNA-mRNA duplex binds with near perfect

complementarity.

Expression of miRNA genes is ultimately controlled by the same

transcription factors which regulate the expression of protein

coding genes. The expression of these same transcription factors

can in turn be regulated by miRNAs, leading to positive and

negative feedback loops [5–7]. Thus transcription factors such as

Oct4, Sox2 and Nanog, which regulate gene networks controlling

key properties of ES cells, are closely linked with miRNAs that are

enriched in ES cells in both mice and humans [5,8,9].

Genome-wide studies using microarray and sequencing tech-

nologies have significantly expanded our knowledge of the

complex regulatory networks underpinning the key properties of

ES cells, namely self-renewal and pluripotency. Classical methods

like sequence analysis, correlation analysis and other statistical

inference techniques, have often yielded very large lists of

potentially interacting miRNA-mRNA pairs, so that experimental

testing of all possible interactions would be too costly.

In previous work on ES cells regulatory network, ES cells

microarray data recorded during differentiation were mainly

studied by linear correlation analysis, focused on simultaneity of

high miRNA levels and low mRNA levels or vise versa. But

correlation analysis cannot tell whether miRNAs and their target

genes/proteins interact directly or indirectly, nor give clear

indication about the interaction mechanisms.

In this paper, we deepen the analysis of several ES cells

microarray data, by parameterized chemical kinetics modeling of
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miRNA-mRNA interactions, involving associated protein prod-

ucts. Our goal was to drastically narrow down the list of potential

repressive miRNA-mRNA links. We define two specific chemical

kinetic models underlying the two basic repressive actions of a

typical miRNA on a targeted mRNA gene G, namely by direct

degrading of G or by inhibiting the translation of the protein

generated by G.

We implement fast parameter estimation algorithms to

adequately fit these chemical kinetics models to microarray data

from ES cells undergoing retinoic acid (RA) induced differentia-

tion and compute a precise quality of fit between models and data.

We have thus generated, parameterized, and tested more than

10,000 models, to evaluate as many potential instances of miRNA-

mRNA interactions. By thresholding the ‘‘quality of fit’’ of these

models, we then accept or reject the validity of the associated

miRNA-mRNA interaction.

Our presentation here is focused on 10 key regulatory genes for

ES cells differentiation, namely Oct4, Nanog, Sox2, Klf4, Esrrb,

cMyc, Tbx3, Ezh1, Ezh2, Eed, and on the main miRNAs which

may target these 10 key genes, according to the in silico target

prediction databases TargetScan (version 5.0) and/or miRanda.

Our approach radically narrows down the lists of potentially

interacting miRNA-mRNA pairs predicted by TargetScan or

miRanda, and for each validated miRNA-mRNA pair, we identify

wether target mRNA repression occurs by direct degradation or

by translation inhibition.

Materials and Methods

Microarray Data Description
We have centered our miRNA-mRNA interactions study on

microarray data of mouse ES cells undergoing RA-induced

differentiation. This dataset had been previously analyzed by

classical techniques in Gu et al. [5]. The miRNAS microarray was

provided by LC Science Inc. Each microarray data file gathers

genes expressions recordings from two ES cells differentiation

experiments: Wild Type (WT) and GCNF- Knock-Out (KO).

In both experiments, expression levels were recorded for 266

well characterized miRNAs on days 0, 1, 3, 6, based on 6 probe

replicates for each miRNA prediction (MCEMIR, Cand, MIR)

and 8 probe replicates for miRNAs (mmu-miRs). Simultaneously,

the expression profiles of 30,000 mRNAs were recorded on days 0,

3, 6 using an Affymetrix mouse 430 2 array, based on three

biological replicates per time point. Expression levels range from 1

to 46,559 for the miRNAs, and from 1 to 21,845 for mRNAs.

For both WT and KO data, and each day, we have several

arrays (chips) recording expression levels for our 266 miRNAs and

30,000 mRNAs. For each miRNA and each mRNA, and for each

day, we synthesize the replicate recordings by simply averaging the

available multiple values of their expression levels.

For each miRNA and each mRNA, we can then interpolate the

available profile data to generate interpolated expression levels

values at 19 intermediary time points (t = 0, 1/3, 2/3, …, 17/3,

18/3), by a Piecewise Cubic Hermite Interpolation (PCHIP)

technique, which is well known to preserve monotonicity and the

basic qualitative features of expression profiles.

Analysis of Western Blot Data for Four Pluripotency
Proteins

By Western blots analysis, we have also recorded protein

expression profiles For GCNF ,Oct4,Nanog,Sox2f g during ES

cell differentiation (see Figure 1), for both WT and GCNF-KO, at

time points (0, 1.5, 3, 6).

The raw image data provided by Western blotting were

converted into numerical values by standard image analysis

software tools [10]. We have then normalized the image intensities

by the corresponding recorded actin intensity (which functions as

an internal loading control). These normalized proteins intensity

data were then interpolated as above to compute proteins

expressions at the same 19 intermediary time points.

Previous Results Linking miRNAs and Regulatory Loops
for ES Cells Differentiation

Several publications indicate that miRNAs have important

functions in post-transcriptional silencing and are involved in the

regulation of self-renewal and of differentiation for ES cells. In the

ES cells differentiation study [5], the authors classified miRNAs

into three classes: for class HL, expression levels are High on days

0–1 and Low on day 6; for class LH, expression levels are Low on

days 0–1 and High on day 6; class TR gathers all other

‘‘Transient’’ expression profiles.

Figure 1. Western blots for 4 proteins and actins. Oct4 and Nanog levels exhibit quite strong decrease for WT cells and very slow decrease for
GCNF-KO cells. Sox2 levels vanish after 1.5 days for WT cells and slowly decrease for GCNF-KO cells. GCNF levels are initially low, peak at day 3 and fall
back on day 6 for WT cells. For GCNF-KO cells, GCNF levels naturally vanish.
doi:10.1371/journal.pone.0023263.g001
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Our microarray recordings included 46 miRNAs in class TR,

105 miRNAs in class HL, and 78 miRNAs in class LH. According

to TargetScan and/or miRanda, pluripotency regulatory genes in

ES cells are targeted by 26 of the 105 miRNAs in class HL, and by

23 of the 78 miRNAs in class LH.

To detect interacting miRNA-mRNA pairs [5], used qualitative

correlation of expression profiles, mostly for miRMNA classes HL

and LH, without any conclusions for miRNA class TR. For Wild

Type ES cells differentiation [5], outlined a regulatory network

(see Figure 2 [5]) involving the orphan nuclear receptor GCNF

(NR6A1), which is a transcriptional repressor of Oct4 and Nanog.

Both Oct4 protein and Nanog protein are transcriptional

regulators for two groups of mRNAs: the Self-Renewal Regulators

SRR (Sox2, Klf4, Esrrb, Tbx3, cMyc), and the Differentiation

Inhibitors DI such as the Polycomb complex (Ezh1, Ezh2, Eed). In

the Figure 2 network, the miRNAs of class HL target

Oct4,Nanog,SRR,DI½ � and the Hox cluster, while miRNAs of

class LH target GCNF ,SRR,DI½ �.
Our goal was to deepen this analysis, by nonlinear modeling

techniques, to validate more precisely if any miRNA ‘‘M’’ actually

represses an ES cell regulatory gene G belonging to the list

TARG(M) of all mRNAs targeted by M according to miRanda or

to TargetScan 5.0. Our approach was to first select several basic

small interaction motifs including the pair (M,G), and then to

parametrize a chemical kinetic model for each such motif, in order

to fit the expression profiles recorded in our microarray data sets.

We now introduce the two basic interaction architectures we have

systematically modeled.

Transcription-Degradation (Transcr.Degr.) Architecture
Linking miRNAs to ES Cells Regulatory Networks

Basic Transcription-Degradation architecture. Our first

basic interaction architecture for any miRNA-mRNA pair (M,G)

deals with situations where the miRNA ‘‘M’’ directly degrades the

transcription of its mRNA target G by direct binding with perfect

or near-perfect complementarity. For a fixed ‘downstream’’

mRNA G, we assume that few miRNAs may simultaneously bind

with G with near-perfect complementarity.

Hence for each key ES regulatory gene G, we have selected a

family Transcr.Degr(G) of small Transcription-Degradation (Tran-

scr.Degr.) architectures (see Figure 3) potentially involving transcrip-

tion-degradation of G by one or several miRNAs (M1,M2, . . . ) as

well as the interactions of G with the main proteins acting as

transcriptional factors of G. Combinatorial considerations show

that the size of Transcr.Degr.(G) can be quite large (see below).

Here is an example of a small network of Transcr.Degr. type,

involving 5 molecules: GCNF, mRNA gene Oct4, Oct4 protein,

Nanog protein, and miRNA mmu-miR-186.

Indeed, in view of Figure 2, GCNF is a transcriptional repressor

of the mRNA gene Oct4, and miRNAs of class HL may target and

degrade Oct4. According to [8,11], the Oct4 protein and the

Nanog protein are potential transcriptional activators of gene

Oct4. Finally, by miRanda, the miRNA mmu-miR-186 may

target Oct4.

Key Families of small networks of Transcr.Degr. type. We

now construct the family of all small networks of Transcr.Degr. type

involving arbitrary downregulating pairs (M,G) where M is any one

of our 266 miRNAs and G is any one of the 10 key ES regulatory

factors Oct4, Nanog, Sox2, Klf4, Esrrb, Tbx3, cMyc, Ezh1, Ezh2,

Eed. Naturally we require the mRNA gene G to belong to the target

list TARG(M), which reduces the initial set of 2660 pairs (M,G) to

only 238 pairs where M may target G, including for instance 19 pairs

(miRNA, Oct4), 2 pairs (miRNA, Nanog), 29 pairs (miRNA, Sox2),

etc.

Based on [5,11], transcription of Oct4 and Nanog is repressed

by GCNF, and activated by Oct4, Nanog, Sox2. So for each one

of the 19 potentially downregulating pairs (M,Oct4), we study

seven Transcr.Degr. architectures, ‘‘combining the molecules M

and Oct4 with each one of the following 7 proteins combinations:

(Oct4), (Nanog), (Sox2), (Oct4,Nanog), (Oct4,Sox2), (Nanog,

Sox2), (Oct4, Nanog, Sox2). This generates 7|19~133 potential

networks of Transcr.Degr. type downregulating Oct4 via an

miRNA.

By a similar construction, the only 2 pairs (M, Nanog) retained

above are associated to 7|2~14 networks of Transcr.Degr. type

potentially downregulating Nanog via an miRNA.

When the downstream gene G is in the list L = (Sox2, Klf4,

Esrrb, Tbx3, cMyc, Ezh1, Ezh2, Eed) [5], suggests, as seen in

Figure 2), that Oct4 and Nanog are transcriptional activators or

repressors of G. For each one of the 217 pairs (M,G) retained

above with gene G belonging to the list L, we then generate one

network of Transcr.Degr. type including M,G, as well as the Oct4

and Nanog proteins. This defines 217 corresponding networks of

Transcr.Degr. type.

Thus we have determined a set of 217+147 = 364 potential

Transcr.Degr. architectures to be studied below by chemical

kinetics model fitting.

Translation-Inhibition Architectures (Transl.Inhib.) Linking
miRMNAs to key ES Cell Regulatory genes

Basic Translation-Inhibition Architecture. Our second

basic interaction architecture for any miRNA-mRNA pair (M,G)

models the cases where the upstream miRNA ‘‘M’’ inhibits the

translation of the downstream mRNA gene G, and thus represses

the expression of the protein P generated by G. For a fixed mRNA

G, we may have several upstream mRNAs M1,M2,:::Mk

inhibiting the translation of G. The molecules G,P,M1,M2,:::Mk

then define a Translation-Inhibition (Transl.Inhib.) architecture

(Figure 3).

Figure 2. A few key regulatory loops for ES cells according to
[5]. Arrows indicate ‘‘activation’’ while bars ending with a hash indicate
‘‘repression’’.
doi:10.1371/journal.pone.0023263.g002
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We have generated Western blot data for the 4 proteins GCNF,

Oct4, Nanog, Sox2. Hence in this paper we restrict the study of

Transl.Inhib. architectures to the cases where P is one of these 4

proteins. For instance among the 19 miRNAs M potentially

targeting gene Oct4, as listed by miRanda or Targetscan, we can

select the 3 miRNAs (mmu-mir-290, mmu-mir-296, mmu-mir-

138) and study the Transl.Inhib. architecture defined by (gene

Oct4, protein Oct4) and these 3 mRNAs.

Key Families of small gene networks of Transl.Inhib.

type. To restrict somewhat the combinatorial complexity, we

have limited to 3 the number of upstream miRNAs involved in any

Transl.Inhib. architecture repressing each one of the 3 proteins

Oct4, Nanog, Sox2. For the Transl.Inhib. architectures repressing

gene GCNF, we have restricted the number of upstream miRNAs

to 1. Indeed, since GCNF is not expressed in the KO context, the

number of profile points available from our WT microarray is too

small to correctly parametrize the Transl.Inhib. architectures

repressing GCNF as soom as they involve 2 or more upstream

miRNAs.

With these restrictions we have thus defined and studied 5337

Transl.Inhib. architectures potentially repressing one of the 4

proteins GCNF, Oct4, Nanog, Sox2.

Chemical Kinetic Equations for Transcr.Degr. and
Transl.Inhib. Architectures

Select any miRNA-mRNA pair (M,G). Call P the protein

generated by gene G. The two main modalities of interaction

within the triplet of molecules [G, P, M] were formalized above by

the Transcr.Degr. and the Transl.Inhib. architectures. We now

model these two types of interactions by chemical kinetic equations

linking the expression levels of these molecules.

We point out an essential mathematical property of the two

chemical kinetic models introduced below. Under arbitrary scale

changes affecting the numerical expression levels of mRNAs,

proteins and miRNAs, the chemical kinetic equations for both

architectures Transcr.Degr. and Transl.Inhib. will still keep the

same mathematical form but with corresponding nonlinear

changes in the equations parameters. This is a crucial ‘‘model

invariance’’ property for model fitting since raw microarray data

and Western blot data are at best roughly proportional to the

absolute expression levels of the molecules of interest, and the

corresponding constants of proportionality are fundamentally

unknown.

Chemical Kinetics for Transcr.Degr. Architectures. The

transcription-degradation architecture Transcr.Degr. is a small

size interaction model formalizing how the rate of change for the

expression of a downstream mRNA ‘‘G’’ depends on the

expression levels of its main upstream factors. These factors

include the post-transcriptional repressor miRNA ‘‘M’’, and two

sets of proteins: the set rep(G)~fR1,R2, . . . ,Rkg of transcriptional

repressors for G, and the set act(G)~fA1,A2, . . . Aqg of

transcriptional activators for G.

Denote by g(t),p(t),m(t),r1(t), . . . rk(t),a1(t), . . . ,aq(t) the ex-

pression levels of molecules G,P,M, R1, . . . Rk, A1, . . . ,Aq at time t.

To model the transcription of downstream mRNA gene G by

interaction with transcription repressors rep(G) and activators

act(G), we introduce a nonlinear chemical kinetic equation (CKE)

similar to equations proposed in [12,13], but with a complemen-

tary term encoding the repressive influence of miRNA M on its

target mRNA G, as follows (see [14]).

We first define the individual impacts of proteinic repressors Ri

and activators Aj on the rate of change dg(t)=dt by

represi(t)~
1

(1zuiri(t))
BSRi

for 1ƒiƒk ð1Þ

activj(t)~
1

(1zwjaj(t))
BSAj

for 1ƒjƒq ð2Þ

where BSRiw0,uiw0 and BSAjw0,wjw0 are respectively the

number of binding sites and the affinity constants with G for the

transcriptional factors Ri and Aj .

The synthetic impacts REP(t) and ACT(t) of repressors rep(G)

and activators act(G) on dg(t)=dt are then (see [12–14]) given by

REP(t)~repres1(t)|repres2(t)| . . . |represk(t) ð3Þ

ACT(t)~activ1(t)|activ2(t)| . . . |activq(t) ð4Þ

By a probabilistic analysis detailed in [12–14], the fraction F (t) of

DNA templates committed to the transcription of G can then be estimated

by

F (t)~REP(t) 1{ACT(t)½ � ð5Þ

Let bw0 be the degradation rate of G, kw0 the transcription rate

of G, and vw0 be the reaction rate between G and M. During the

small time interval ½t,tzdt�, the concentration of new G molecules

synthesized by transcription is equal to kF (t)dt, the repressive

interaction of molecules M and G eliminates vg(t)m(t)dt
molecules of G, and natural decay destructs bg(t)dt molecules of

G. Hence the expression level g(t) of G verifies the following CKE,

Figure 3. Transcription-Degradation (Transcr.Degr.) architectures and Translation-Inhibition (Transl.Inhib.) architectures.
doi:10.1371/journal.pone.0023263.g003
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characteristic of Transcr.Degr. architectures,

dg(t)

dt
~{bg(t){vg(t)m(t)zkF (t) ð6Þ

Note that this CKE is parametrized by the (3z2kz2q) unknown

positive parameters v,b,k, BSRi,ui, BSAj ,wj .

Chemical Kinetics for Transl.Inhib. Architectures. The

translation-inhibition architectures Transl.Inhib. involves one

downstream mRNA gene G, the protein P produced by G, and

a selected set MIR(G) of n upstream miRNAs ½M1,M2,:::Mn�
repressing the translation of G. The concentrations at time t of

P,G,M1, . . . ,Mn, are denoted by p(t),g(t),m1(t), . . . ,mn(t). We

have modeled Transl.Inhib. architecture by the following chemical

kinetics equation [12,14]. For each miRNA Mi, call BSMiw0 the

number of binding sites with G and and biw0 the affinity constant

between Mi and G. The individual repressive impact of Mi on

dg(t)=dt is as above defined by

represi(t)~
1

(1zbimi(t))
BSMi

and the global repressive impact of all the miRNAs in MIR(G) on

the rate of change dp(t)=dt of protein P is given as above by

H(t)~repres1(t)|repres2(t)| . . . |represk(t) ð7Þ

Let cw0 and lw0 be the degradation rate and the translation

rate for protein P. During the small time interval ½t,tzdt�, the

concentraion of P molecules destroyed by natural degradation of P

is cp(t), the concentration of G molecules committed to the

translation of G is equal to g(t)H(t)dt, and hence the

concentration of P molecules generated by translation of G
molecules is lg(t)H(t). Thus the concentration p(t) of protein P is

driven by the following CKE, characteristic of the Transl.Inhib.

architectures

dp

dt
~{cp(t)zlg(t)H(t) ð8Þ

A probabilistic analysis justifying the preceding arguments is

outlined in [12,14]. Since c can be estimated from protein

evolution recordings such as Western blots data, the CKE just

derived depends on the (1z2n) unknown positive parameters

l,(BSM1,u1), . . . ,(BSMn,un).

Parameter Estimation for Chemical Kinetics Models
For any given Transcr.Degr. or Transl.Inhib. architecture, an

immediate challenge is to determine which parameter values must

be injected in the corresponding CKE 6 or 8 in order to best fit

our given sets of microarray data. We have developed and

implemented innovative algorithms to compute these optimal

parametric values.

For instance, consider the simplest Transcr.Degr. architecture

model where there is only 1 transcription factor, which can either

be a repressor or an activator. The number of parameters to be

evaluated is 5 and after extrapolating the concentration data

recorded by microarrays for both WT and GCNF-KO experi-

ments on ES cells differentiation.

With the preceding notations, for Transcr.Degr. architectures,

g(t),p(t),m(t),ri(t),aj(t) At a finite number of time values ‘‘t’’,

which we have extended to 19 instants by specific extrapolation,

each one of our two microarray data sets (WT and GCNF-KO)

provides observed values proportional to the concentrations of all

the molecules involved in each one of our 5701 instances of

Transcr.Degr. or Transl.Inhib. architectures. Hence after dis-

cretization of CKE 6 or of CKE 8 at 19 time instants, our two

microarray data sets provide us with 38~2|19 nonlinear

algebraic equations (of high degree) involving the unknown

parameters of the corresponding CKE.

For each Transcr.Degr. networks, the number (3z2kz2q) of

unknown parameters remains between 5 and 15, since we have

imposed kƒ3 and qƒ3.

For each Transl.Inhib. networks, the number (1z2n) of

unknown parameters remains between 3 and 7 since we have

imposed nƒ3.

Hence optimal parametrization of our 5701 genes interaction

networks NETi of types Transcr.Degr. or Transl.Inhib. was a

numerical challenge since to parametrize each small network, we

had to solve an overdetermined system of 38 algebraic equations of

quite high degree involving between 3 and 15 unknowns. A

natural mathematical approach is to solve the associated highly non

linear least squares problem involving 38 equations and a number of

unknowns inferior to 15.

There are no explicit solutions for such problems; moreover fast

computing was essential here, since we had to implement the

solutions to 5701 such nonlinear least squares problems.

This is a nonlinear optimization problem, since we want to

select up to 15 positive parameters minimizing the sum of squares of

38 ‘‘residuals’’, in order to optimize the quality of fit of the model

under 38 equality constraints. We have of course tested several

generic optimization approaches (see [15–18]) such as ‘‘gradient

descent’’ and ‘‘genetic algorithms’’. These last two well known

optimization techniques turned out to require far too much

computing time and were often unreliable due to their high

dependence on initialization values.

So we had to develop and implement specific efficient

algorithms dedicated to the parameterization of equations CKE

6 (or CKE 8) based on a combination of multi-scale searches for

the ui,BSRi and the uj ,BSAj (or for the ui,BSMi) combined with

constrained linear programming determination of the other

parameters once the affinity constants and the numbers of binding

sites have been tentatively fixed.

For CKE 6, the factors hi~1=(1zuiri(t)) and

tj~1=(1zwjaj(t)) always lie within the range ½0,1�, so we

perform a grid search on the interval ½0,1� to explore the values

of these factors at fixed key instants t, and then derive the

associated potential values for ui,wj . We also impose a moderate

bound S on the numbers of binding sites BSRi and BSAj . This of

course generates a large set of potential values for the 2k

parameters ui,BSRi and the 2q parameters wj ,BSAj . Once we

fix tentative values for these (2kz2q) parameters, we can estimate

the decay rate b, reaction rate v, and transcription rate k by

solving a constrained linear programming problem in dimension 3

(see [14]).

For the parametrization of CKE 8, we have developed an

analogous algorithm.

For both CKEs 6 and 8, our parametrization algorithm is quite

fast and easily implemented. For each one of the 5701 small

network selected above, the parametrization generated by our

algorithm provides a good optimization for the quality of fit

between CKE model and our two microarray data sets. To reach

robust conclusions, our parametric modeling applies a ‘‘parameter

CKE Modeling miRNA Regulatory Circuits
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parsimony’’ principle, selecting among models with high quality of

fit to data, the models having the smallest number of parameters.

Our parametrized chemical kinetic modeling approach handles

microarray data through nonlinear parameterization algorithmics, and

clearly goes further than linear techniques such as Principal

Components Analysis (PCA) or profiles correlation analysis. Our

parsimonious modeling of small interaction networks, combined

with the quality of fit evaluations outlined below, provides a

powerful tool for microarray data analysis, complementing

classical linear data mining techniques. Moreover, since our

network models are either of Transcr.Degr. or Transl.Inhib. type,

the miRNA-mRNA pairs we validate below are automatically

assigned to one of the two basic repressive modalities Tran-

scr.Degr. or Transl.Inhib.

Validation of parametrized Transcr.Degr. and Transl.Inhib.
architectures by Quality of Fit to data

To model the potentially interacting pairs (M,G) where M

belong to our set of 266 miRNAs and G is one of the 10 key ES

cell regulatory genes listed above, we have generated, as outlined

above, a group of 5701 Small Interaction Networks which we

denote SIN~½NET1, . . . ,NET5701�. The group SIN comprises

364 Transcr.Degr. motifs and 5337 Transl.Inhib. motifs.

Each miRNA-mRNA pair (M,G) considered above was only

retained when M targets G according to miRanda or Targetscan.

Then we consider the family Net(M,G) of all the networks which

belong to the group SIN and include the pair (M,G). We will

validate the pair (M,G) as a repressive miRNA-mRNA pair if and

only if at least one of the networks in the subset Net(M,G) has been

modeled by a parametrized CKE having a high enough quality of fit

to our microarray data. We now need to precisely define this

quality of fit.

Each specific network NETi belonging to Net(M,G) has been

modeled by a chemical kinetic equation CKEi of type Tran-

scr.Degr. or Transl.Inhib., and the parameters of CKEi were

computed to optimize the fit with our WT and GCNF-KO

microarray data sets.

Call D the downstream target of CKEi. The molecule D is the gene

G if NETi is of Transcr.Degr. type; if NETi is of Transl.Inhib.

type, D is the protein P produced by G. The concentrations D(t) of

D are separately recorded by microarrays for WT ES cells and for

GCNF-KO ES cells.

For each such experiment, the parametrized equation CKEi

clearly generates model predicted values D̂D(t) for the concentra-

tions D(t) of the downstream target, by numerically solving the

Ordinary Differential Equation (ODE) specified by CKEi. More

precisely, the ODE 6 can be solved for the concentration

g(t)~D̂D(t) of D~G, and the ODE 8 can be solved for the

concentration p(t)~D̂D(t) of P, since the recorded data provide

values for all the m(t),r1(t), . . . ,rk(t),a1(t), . . . ,aq(t) involved in the

ODE 6 and for all the g(t),m1(t), . . . ,mn(t) involved in the ODE

8.

To assess the quality of fit between the model predictions D̂D(t)
and the recorded microarray data D(t), a natural criterion is the

Relative Error of Prediction jD(t){D̂D(t)j=D(t). However this

relative error of prediction becomes meaninglessly large whenever

D(t) is close to zero. To avoid these spurious large values, we

introduce the mean value �DD of D(t) over all t, and we compute the

Smoothed Relative Error of Prediction by

SRER(t)~jD(t){D̂D(t)j=D(t) if D(t)§0:15:�DD ð9Þ

SRER(t)~jD(t){D̂D(t)j=�DD if D(t)v0:15:�DD ð10Þ

Then we define the global Error of Prediction ErrPred of the CKEi

model by

ErrPred~ max
t

(SRER(t))

The error of prediction ‘‘ErrPred’’ is percentage valued and

quantifies the quality of fit between the model CKEi and the

microarray data. Note that small values of ErrPred correspond to

high quality of fit between model and data. Hence our parameters

estimation algorithms were actually implemented to select parameters

minimizing ErrPred for both WT and the GCNF-KO microarray

data.

We will consider the network NETi as ‘‘validated’ if, for both the

WT and the GCNF-KO microarray data, the global ‘‘error of

prediction’’ ErrPred of the model CKEi is less than 10%.

To each miRNA-mRNA pair (M,G) considered above, we have

associated the family Net(M,G) of all the networks NETi which

include the pair (M,G) and belong to our group SIN of small

networks. We will validate the pair (M,G) as a repressive miRNA-mRNA

pair if and only if at least one of the networks NETi belonging to

Net(M,G) has been validated, as just outlined, by exhibiting small

enough global errors of prediction.

Once an miRNA-mRNA pair (M,G) is actually validated, we

can then rank all the validated networks NETi belonging to

Net(M,G) in decreasing order of reliability, which is equivalent to

the increasing order for their errors of prediction ErrPred. To

break ties between networks models with comparable ErrPred

values, we apply a parameter parsimony principle and give priority

to models with smaller numbers of parameters.

Results

Validated miRNA-mRNA Pairs of Transcr.Degr. Type
Our main results on validated miRNA-mRNA pairs of

Transcr.Degr. type are summarized in Tables 1 and 2.

We had initially constructed 364 small networks of Tran-

scr.Degr. type, for which the mRNA downstream targets belonged

to one of the 3 following sets of ES cell regulatory genes: the self-

renewal regulators (Sox2, Klf4, cMyc, Tbx3, Esrrb), the

differentiation inhibitors (Ezh1, Ezh2, Eed), and the differentiation

regulators Oct4 and Nanog.

For the 2 downstream targets Oct4 and Nanog, as seen in

Figure 2, the proteins produced by Oct4, Nanog, Sox2 are

transcription activators [8,11], GCNF is a key transcription

repressor, and the potential miRNAs transcription repressors

included 19 miRNAs for Oct4 and 2 miRNAs for Nanog. We had

generated potential lists of upstream transcription repressors for

Oct4 and for Nanog by combining each one of these 21~(19z2)
miRNAs with GCNF and with one of the 7 short lists (Oct4),

(Nanog), (Sox2), (Oct4, Nanog), (Oct4, Sox2), (Nanog, Sox2),

(Oct4, Nanog, Sox2).

After parametrization and validation of these Transcr.Degr.

models repressing the downstream target Oct4, only 5 repressing

pairs (miRNA,Oct4) were validated by high quality of fit to data,

and they involved the five miRNAs (miR-24, miR-103, miR-107,

miR-186, miR-466). Each one of the 5 corresponding validated

Transcr.Degr. architectures combined one of these 5 miRNA

repressors of Oct4 with the 3 transcriptional repressors (GCNF,

Oct4, Nanog).
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Figure 4 displays expression profiles corresponding to one of

these 5 validated Transcr.Degr. model, with upstream transcrip-

tion repressors mmu-miR-186, GCNF, Oct4, Nanog, and with

transcription activators (protein Oct4, protein Nanog).

For the 2 downstream targets Nanog and Esrrb, as reported in

Table 1, there were no validated repressing pair (miRNA, Nanog)

or (miRNA, Esrrb) of Transcr.Degr. type. However, our datasets

of recorded microarray data contained only 266 known miRNAs,

so our modeling could not include a small group of miRNAs

known to be potentially targeting Nanog or Esrrb, but for which

we had no recorded microarray data.

We omit details (see [14]) and refer to Tables 1 and 2 for the

other 6 downstream targets (Klf4, cMyc, Tbx3, Ezh1, Ezh2, Eed).

Over all our initial 364 models of Transcr.Degr. type, only 88

models were validated after parametric modeling. In Table 2, we

list all the 85 validated miRNA-mRNA pairs of Transcr.Degr. type

repressing one of the 10 downstream targets (Oct4, Nanog, Sox2,

Klf4, cMyc, Tbx3, Esrrb, Ezh1, Ezh2, Eed).

Validated miRNA-mRNA Pairs of Transl.Inhib. Type
We had initially generated a list of 5337 small networks of

Transl.Inhib. type potentially inhibiting the translation of one of the 4

downstream targets (Oct4, Nanog, Sox2, GCNF). Each one of these

5337 networks involved at least 1 and at most 3 of the 133 miRNAs

targeting one of the 4 downstream genes (Oct4, Nanog, Sox2, GCNF).

After parametric modeling of these 5337 networks, and

validation by requesting high quality of fit to data, we have

validated only 24 miRNAs as translation inhibitors repressing one

of these 4 downstream proteins Oct4, Nanog, Sox2, GCNF. These

results are summarized in In Tables 3 and 4.

Among the 19 miRNAs targeting Oct4, only 13 were validated

as inhibiting the translation of Oct4. Each one of these 13 miRNA

inhibitors of Oct4 was included in several of the 51 validated

Transl.Inhib. architectures repressing Oct4. Each one of these 51

validated architectures involved a group of 3 miRNAs inhibiting

the translation of Oct4.

Figure 5 displays the expression profiles for one example of

validated network inhibiting the translation of Oct4 through 3

upstream miRNA repressors (mmu-miR-542-3p, mmu-miR-484,

mmu-miR-138).

Among the 11 validated miRNAs inhibiting the translation of

GCNF, we find no miRNA in the high-low class HL, 4 miRNAs in

the low-high class LH, and 7 miRNAs in the transient class TR.

This result agrees quite well with [5], which indicates that

miRNAs of class HL do not repress GCNF but that some miRNAs

of class LH may repress GCNF.

Among the 83 miRNAs targeting GCNF, we have validated

only 11 miRNAs inhibiting the translation of GCNF. For the

GCNF protein, we naturally only have profile data for the WT ES

cells since GCNF vanishes in GCNF-KO data. The number of

data points for GCNF data hence half of the data points available

for other proteins. The Transl.Inhib. architectures potentially

repressing GCNF were thus restricted to include only one miRNA

targeting GCNF, in order to restrict the number of model

parameters.

Finally, among the 31~2z29 miRNAs potentially targeting

Nanog or Sox2, none could be validated within a translation

inhibiting pair of the form (miRNA, Nanog) or (miRNA, Sox2).

Let us clarify further this situation. Since the Nanog protein is

potentially repressed by only 2 miRNAs (see [4]), we could include

Table 1. Transcr.Degr. architectures: numbers of validated miRNA-mRNA pairs.

mRNA gene G Oct4 Nanog Sox2 Klf4 Esrrb cMyc Tbx3 Ezh1 Ezh2 Eed

# of miRNAs targeting G 19 2 29 44 10 12 18 51 29 25

# of validated miRNAs 5 0 9 2 0 12 18 20 12 7

doi:10.1371/journal.pone.0023263.t001

Table 2. Transcr.Degr. architectures: the 85 validated miRNA-mRNA pairs.

miR-24; miR-103; miR-107; miR-186; miR-466 Oct4

miR-19a; miR-19b; miR-21; miR-129-3p; miR-182; miR-290; miR-292-5p; Sox2

miR-339; miR-431

miR-19a; miR-29b Klf4

let-7b; let-7c; let-7f; let-7i; miR-96; miR-98; miR-135a; miR-135b; cMyc

miR-182; miR-212; miR-340; miR-451

miR-17-3p; miR-17-5p; miR-20a; miR-20b; miR-26a; miR-26b; miR-93; Tbx3

miR-106b; miR-126-5p; miR-142-3p; miR-142-5p; miR-146; miR-146;

miR-106a; miR-338; miR-448; miR-466; miR-469

miR-15a; miR-15a; miR-15b; miR-16; miR-16; miR-22; miR-28; Ezh1

miR-195; miR-195; miR-291a-3p; miR-301; miR-301; miR-302c; miR-323;

miR-145; miR-183; miR-329; miR-342; miR-345; miR-449

let-7a; let-7b; let-7c; let-7d; let-7e; let-7f; let-7g; let-7i; Ezh2

miR-26a; miR-26b; miR-98; miR-98

miR-1; miR-30a-3p; miR-101a; miR-301; miR-323; miR-337; miR-34b Eed

doi:10.1371/journal.pone.0023263.t002
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one or both of these miRNAs in only 3 potential Transl.Degr.

architectures. The fact that none of these 3 networks could be

validated by high quality of fit to data is not surprising, since the

rate of attrition due to model validation was fairly high in general.

For the Sox2 protein, we had a choice of 29 miRNAs potentially

targeting Sox2, and hence a large set of 1653 Transl.Inhib. models

to parametrize. For all these models, after parametric fitting to

both WT and GCNF-KO data,the estimated translation rate c was

almost zero. So no matter what upstream miRNAs were selected,

the modeling prediction for Sox2 remained the same. We have

traced this effect to the modeling assumption that the degradation

rates of the downstream protein remains the same for both WT

and GCNF-KO experiments. But our Western Blots data indicate

that the Sox2 protein degradation rate in WT ES cells seems to be

larger than in GCNF-KO ES cells.

Note that the half-life of a protein like Sox2 may quite possibly

change in different cell cultures; for instance, protein Oct4 has a

half-life of 90 minutes in undifferentiated P19 cells [19] and of 6 to

8 hours in NIH3T3 cells transfected with wild type Oct4 [20].

If we now generate parameterized models of the same

translation-inhibition architectures, but with the new assumption

that the half-life of protein Sox2 is different for WT cells and for

GCNF-KO cells, then we obtain much better model predictions.

The estimated half-life of protein Sox2 is then 20.5 hours for WT

cells, and 64.5 hours for GCNF-KO cells. We have left this

question opened for the moment, until further experiments help us

generate a concrete conclusion on the possibly distinct values for

the half-life of protein Sox2 in WT cells and in GCNF-KO cells.

Discussion

Our goal was to analyze the regulatory role of miRNAs in ES

cells differentiation, on the basis of two sets of microarray data,

recorded for WT and for GCNF-KO ES cells.

We have modeled, by 2 basic chemical kinetic equations 6 and

6, the 2 main functions of miRNAs in post-transcriptional down-

regulation of genes expression. These CKEs correspond to 2

Figure 4. Example of small network of Transcr.Degr. type repressing mRNA Oct4. All expression profiles are over days 0–6. Top profiles:
miRNA miR-186 for WT and GCNF-KO data. Middle profiles: transcription factors of Oct4 for WT and GCNF-KO data. Blue solid line = protein Oct4.
Green dash line = protein Nanog. Red dotted-solid line = protein GCNF. Bottom profiles: mRNA Oct4 for WT and GCNF-KO data. Blue line = recorded
levels. Red dash line = predicted levels. ‘‘prediction error’’ is the model global relative error of prediction; std is the relative standard deviation of
recorded levels.
doi:10.1371/journal.pone.0023263.g004

Table 3. Transl.Inhib. architectures: numbers of validated
miRNA-mRNA pairs.

mRNA gene G Oct4 Nanog Sox2 GCNF

# of miRNAs targeting G 19 2 29 83

# of validated miRNAs 13 0 0 11

doi:10.1371/journal.pone.0023263.t003

Table 4. Transl.Inhib. architectures: the 24 validated miRNA-
mRNA pairs.

miR-103; miR-107; miR-138; miR-186; miR-218; miR-24; miR-324-5p; Oct4

miR-337; miR-338; miR-369-5p; miR-466; miR-484; miR-542-3p

let-7e; let-7g; miR-10a; miR-10b; miR-23b; miR-30c; GCNF

miR-124a; miR-181b; miR-214; miR-351; miR-382

doi:10.1371/journal.pone.0023263.t004
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formal types (Transcr.Degr. and Transl.Inhib.) of interaction

architectures between miRNA, mRNA, and associated proteins.

Starting with the 266 miRNAs recorded in our microarray data,

we have focused on their potential repressive impact on 11 key

regulatory mRNA genes of ES cells differention, namely (Oct4,

Nanog, Sox2, Klf4, cMyc, Tbx3, Esrrb, Ezh1, Ezh2, Eed) for the

Transcription Degradation modality and the (Oct4, Nanog, Sox2,

GCNF) proteins for the Translation Inhibition modality.

We have retained as potentially interacting only the miRNA-

mRNA pairs (M,G) in which M targets G according to miRanda

or Targetscan. Each such miRNA-mRNA pair was naturally

imbedded within one of 5701 small genes interaction networks,

namely 364 networks of Transcr.Degr. type and 5337 networks of

Transl.Inhib. type. We have developed an innovative algorithmic

approach to parametrize the corresponding 5701 chemical kinetics

equations by optimizing their quality of fit to our two sets of

microarray data. Our numerical algorithm solves efficiently a

nonlinear least squares fitting of 38 high degree algebraic

equations involving between 3 and 15 unknown parameters. Each

one of the 5701 parametrized CKE we thus obtained was then

tested for the accuracy with which the CKE could predict the

expression profiles of its downstream mRNA gene target (or

protein target), for comparison with our WT and GCNF-KO

microarray data. The corresponding small network was considered

as valid if and only if the predicted and recorded expression

profiles of these down stream target were well matched, with a

relative error of prediction inferior to 10%.

The list VAL of interaction networks which were validated by

high quality of fit to data was naturally much smaller than our

initial list of 5701 small networks modeling potential miRNA-

mRNA interactions. We have then considered that a potential

miRNA-mRNA pair was validated if and only if it had been

imbedded in at least one of the networks belonging to VAL. We

have thus determined 109 ‘‘model validated’’ miRNA-mRNA

pairs, namely 85 pairs interacting by Transcription Degradation of

the mRNA target, and 24 pairs interacting by inhibiting the

translation of their gene target into protein. These results,

summarized in Tables 1, 2, 3, 4, should help to circumscribe

further experimental gene expression analyzes on miRNA-mRNA

pairs.

For any given mRNA gene G in our 11 key genes regulating of

ES cells differentiation, our results provide very short lists of model

validated miRNAs repressing G. A typical experimental validation

will be to first pick two such miRNA candidates, Ma degrading the

transcription of G, and Mb inhibiting the translation of G. As in

(see Methods in [4]), one could transfect one set of wild-type ES

cells with precursor miRNA (pre-miRNA) oligomers associated to

Ma and similarly transfect another set of ES cells with Mb.

Recording the expression levels of mRNA gene G should enable

the comparison of the two rates of change of G after a short

transfection time, for both sets of ES cells, considering that, in such

a short time, the expression levels for the transcription factors of G

are not yet likely to be influenced to any great extent. Prediction

by parameterized modeling should help the quantitative interpre-

tation of the experimental recordings and enable concrete

conclusions on the interactive parts played by Ma and Mb.

When fairly comprehensive knowledge of the transcriptional

factors for a specific mRNA gene G is available, and for any new set

of microarray data, we can implement our automated modeling and

validation of miRNA-mRNA pairs involved in transcription-

degradation architecture just as above. A key facilitating point

would be the availability of associated proteins expression levels,

Figure 5. Example of Transl.Inhib. architecture repressing Oct4. All expression profiles are over days 0–6. Upper 6 profiles: miRNAs miR-542-
3p, miR-464 and miR-138 for WT and GCNF-KO. Bottom 2 profiles: Blue line = recorded level. Red dash line = predicted levels.
doi:10.1371/journal.pone.0023263.g005
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which are difficult to measure simultaneously for a large set of

proteins. But we can still use our Transcr.Degr. CKEs to determine

whether the proteins with actually recorded expression levels are

indeed transcriptional factors for the mRNA gene G.
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