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d’nvestigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain

Abstract

Evidence from neuroimaging and electrophysiological studies indicates that the left dorsolateral prefrontal cortex (DLPFC) is
a core region in emotional processing, particularly during down-regulation of negative emotional conditions. However,
emotional regulation is a process subject to major inter-individual differences, some of which may be explained by
personality traits. In the present study we used transcranial direct current stimulation (tDCS) over the left DLPFC to
investigate whether transiently increasing the activity of this region resulted in changes in the ratings of positive, neutral
and negative emotional pictures. Results revealed that anodal, but not cathodal, tDCS reduced the perceived degree of
emotional valence for negative stimuli, possibly due to an enhancement of cognitive control of emotional expression. We
also aimed to determine whether personality traits (extraversion and neuroticism) might condition the impact of tDCS. We
found that individuals with higher scores on the introversion personality dimension were more permeable than extraverts
to the modulatory effects of the stimulation. The present study underlines the role of the left DLPFC in emotional regulation,
and stresses the importance of considering individual personality characteristics as a relevant variable, although replication
is needed given the limited sample size of our study.
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Introduction

The control process of manipulating when, where, how, and

which emotion is experienced or expressed has been termed

emotion regulation, and can occur automatically or consciously

[1]. Emotions play a key role in social behavior as well as in

modeling different cognitive functions such as memory [2],

decision making [3], and attention [4]. How emotions are

regulated determines the proper behavioral responses to achieve

different goals at intra- and interpersonal levels [5,6]. The

importance of emotion regulation is highlighted by the fact that

inappropriate emotional responses may lead to a disruption in

behavior, and in extreme cases to severe psychopathology [7,8].

Through connections with subcortical nuclei such as the

amygdala, the nucleus accumbens, the ventral striatum and the

dorsal raphe nucleus, the medial, ventral and lateral portions of

the prefrontal cortex (PFC) play a key role in both negative and

positive emotional regulation [9,10,11]. Specifically, the dorsolat-

eral PFC (DLPFC) is one of the brain regions implicated in

emotional processing, particularly during down-regulation of

negative emotional conditions [12]. Increased activity in the

DLPFC was reported in fMRI studies during awareness of neutral

stimuli and suppression of fearful stimuli (faces) [13], and during

the processing of positive emotional stimuli in comparison with the

evaluation of neutral and negative ones [14]. Furthermore, a

number of studies using electrophysiological and/or functional

neuroimaging techniques have reported consistently increased

activity in the DLPFC under reappraisal conditions (modifying the

intensity of emotional stimuli using cognitive strategies; [15,16]).

Emotional regulation is a phenomenon subject to major inter-

individual differences [7]. However, little is known about the

mechanisms that might underlie this variability. Some findings

point to baseline neurofunctional or psychophysiological charac-

teristics, such as high levels of baseline left prefrontal activation

[17] or increased salivary cortisol levels [18], as important

variables linked to the individual capacity to regulate emotions.

Emotional responsiveness is also known to be influenced by

psychological aspects such as personality traits [19,20]. For

example, individuals who record high scores on extraversion

measures, tend to be optimistic and enjoy social contact, report

higher positive emotions in their daily life and are more likely to

express their emotions, both positive and negative. On the other
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hand, individuals who score high on neuroticism and tend to be

anxious, worried, sad, tense and apprehensive, report higher

negative emotional experiences and more negative emotions than

less neurotic individuals [1,21].

Personality traits have been shown to be relatively consistent

and stable over time, and evidence linking biological mechanisms

to various dimensions of personality is beginning to accumulate.

Personality has a moderate degree of heritability, and particular

gene variations influence the expression of personality charac-

teristics [22]. Regardless of the relevance of genetic factors in

combination with environmental variables in determining the

configuration of personality differences, the expression of

personality (like any complex psychological construct) also

appears to be amenable to study on the basis of neural network

dynamics. Brain imaging studies have revealed different patterns

of brain activity in response to emotional stimuli as a function of

individual differences in anxiety, harm avoidance, extraversion,

phobic fears, or attachment style [23,24,25]. Specifically,

extraversion has been associated with amygdala activity in

response to happy faces [23], reduced prefrontal resting-state

activity [26] or lateral prefrontal BOLD response to cognitive

demands [27], while neuroticism has been linked to specific

changes in amygdala to dorsomedial PFC and amygdala to

anterior cingulate connectivity when processing fearful faces [28],

and positively correlated with responses in the anterior cingulate

cortex in response to anticipatory fear [29].

Transcranial direct current stimulation (tDCS) delivers contin-

uous weak electrical current through electrodes positioned over the

subject’s scalp surface. This technique exerts a neuromodulatory

effect, shifting subthreshold neuronal membrane potentials in a

polarity-dependent manner, increasing (anodal-tDCS) or decreas-

ing (cathodal-tDCS) cortical excitability [30,31]. The physiological

effects of tDCS have been reported to last for about one hour after

several minutes of continuous stimulation in humans [30] and

have been linked with neurophysiological mechanisms of long-

term potentiation and depression [32]. Furthermore, the effects of

tDCS can be considered site-specific but not site-limited [33], as

functional neuroimaging techniques have revealed changes in

metabolic rate [34,35] or functional connectivity [36,37] not only

under the site of stimulation but also in distant areas presumably

connected. Behaviorally, a frequent observation of anodal tDCS

over the DLPFC is a transient amelioration in a range of cognitive

functions including working [38] and declarative [39] memory,

probabilistic classification learning [40], language learning [41]

and visual recognition memory [42]. However, despite these clear

modulatory effects on both cognition and brain activity, only one

previous report [43] has investigated the potential impact of tDCS

on emotional processing. In that study, healthy participants viewed

seven pictures restricted to human pain situations while receiving

5min of tDCS (2mA) over left-DLPFC, resulting in a decrease in

emotional discomfort ratings.

Based on the above-mentioned findings regarding the neural

circuitry of emotion regulation, the relevance of individual

differences linked to personality characteristics, and the proven

capacity of electrical stimulation to modulate cognitive functions

and behavior in humans, our study had two main objectives. The

first was to investigate whether the application of tDCS over the

left-DLPFC modulates emotional valence ratings while subjects

evaluate a large number of negative, positive and neutral

emotional pictures. The second was to explore whether individual

differences in personality traits could modify the influence of

electrical brain stimulation on emotional ratings. To do so, we

focused on extraversion and neuroticism dimensions. In this

regard, there is evidence that high scores in extraversion are

associated with a difficulty to suppress expressions of emotion [6].

Further, it was formerly demonstrated from EEG and fMRI

studies that high levels of baseline left prefrontal activation are

associated with increased capacity to voluntarily suppress negative

emotions [15,17,44]. In fact, increased baseline levels of activity

(left prefrontal and amygdala) during the processing of negative,

relative to positive emotional pictures, appear to be characteristic

of individuals exhibiting high ratings in introversion [45]. Hence,

since behavioral emotional expression seems to be more malleable

in introverts than in extraverts and this might be mediated by

greater baseline levels of left prefrontal activity, we hypothesized

that potentiating excitatory neuromodulatory changes by applying

anodal tDCS in this brain region [31], would result in more

prominent and noticeable effects during affective picture process-

ing in participants with high scores in introversion than in

extraversion. Finally, the up-regulation of negative emotions in

subjects with high scores on neuroticism compared to more stable

individuals [46] led us to hypothesize that left DLPFC stimulation

would mainly modulate negative emotional ratings in these

individuals.

Methods

Subjects
Sixteen right-handed healthy women (mean age = 22.93,

S.D = 4.18) were included in the study. As in previous reports

[14], only women were chosen because they are more likely to

show strong physiological responses to emotional stimuli than men

[47]. Individuals with medical history of psychiatric or neurolog-

ical conditions, including substance abuse, substance dependence

or depression were excluded, using a cut-off score of 13 on the

Beck depression inventory [48]. All subjects gave written informed

consent to participate in the study, which had been approved by

the Bioethics Committee at the Hospital Clı́nic of Barcelona,

Spain.

Transcranial Direct Current Stimulation
Direct electrical current was applied to the subject’s scalp

through saline-soaked sponge electrodes (567 cm) connected to a

battery-driven constant current stimulator, Phoresor PM850

(IOMED, Salt Lake City, Utah, USA). The electrodes were

positioned in accordance with the 10–20 international system for

electroencephalogram electrode placement. In the main experi-

ment, the anode was positioned centered on F3 (left prefrontal)

and the cathode was positioned over the C4 (right motor cortex).

Active tDCS consisted of a constant current of 1mA applied for

20 min. For sham tDCS, electrodes were positioned as described

above, but the current was delivered only for 30 sec and then

ramped off (see panel B, figure 1). This method is commonly used

by other recent investigations [39], which have shown that in

general subjects are unable to distinguish between active and sham

stimulation [49].

Experimental Design
We conducted a randomized, sham-controlled, crossover trial

which took place over two separate days. On the first day all

subjects performed the emotional valence rating task (see

description below). Half of them were randomly assigned to

receive sham tDCS, and the other half underwent active tDCS. To

control for putative differential practice effects between active and

sham conditions, the eight subjects beginning with sham tDCS

performed the task under active stimulation on the second day and

vice-versa (figure 1).

Personality and tDCS Effects on Emotion Regulation
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Stimuli and procedure
Stimuli consisted of 180 pictures (60 positive, 60 negative and 60

neutral) selected from the International Affective Picture System

(IAPS) picture database [50]. Images were presented using the

Presentation software program (version 0.50, Neurobehavioral

Systems, 2002; http://www.neurobs.com/) implemented on a

laptop computer. The 15 inch screen was held at eye level and at

an approximate distance of 50 cm from the subject. Each picture

was presented filling the entire screen for 3 sec with an inter-

stimulus fixation cross interval of 4 sec (figure 2). The IAPS

provides normative values for each stimulus (the ones for young

females were considered in the present report) based on the ratings

of arousal and valence dimensions. In this context, arousal refers to

a dimension that varies from calm to excitement, and valence refers

to a dimension that varies from unpleasant (negative) to pleasant

(positive) with neutral in the middle.

In each condition, while under real or sham tDCS, subjects

were instructed to evaluate each picture using a 9-point Likert-

type scale by pressing a button on a keyboard (1 = negative,

5 = neutral, 9 = positive). Subjects were told to evaluate the

pictures according to their subjective emotional perception. The

images were presented in such a way that no more than two

pictures of the same emotional valence could be presented

consecutively. Two equivalent tasks were used in our counterbal-

anced design regarding condition (sham vs active stimulation) and

moment of stimulation (day 1 or day 2, see table 1). The two tasks

contained the same number of pictures and were comparable in

terms of arousal and valence (see table 1).

Finally, a parallel study using the same experimental design as

in the main experiment was undertaken in 9 independent healthy

young women (age: 25.80 (5,20)). This second experiment served

as a control to verify that anodal, but not cathodal, stimulation

exerts an effect on emotional regulation. The polarity of the

electrodes was reversed, thus placing the anodal electrode over C4

(right motor cortex) and the cathodal electrode over the F3 (left

prefrontal).

Assessment of other behavioral measures
To investigate putative changes in emotional ratings under

active compared to sham stimulation we considered comparisons

between each of the valence conditions (positive, neutral, negative)

under each stimulation condition as well as changes from sham to

active ratings within each valence. Further, in order to control for

possible mood effects of tDCS, before and after each session of

sham or active stimulation, a series of visual analogical scales

(VAS) was administered. The VAS consisted of a 10-cm solid

horizontal line (left-edge = minimal value, right-edge = maximal

value) which subjects were required to intersect by drawing a

vertical mark reflecting their subjective perception in each of the

following states: nervousness, contentment, sadness, hope and

annoyance.

We also analyzed potential changes induced by electrical

stimulation in the Positive and Negative Affect Schedule (PANAS)

[51], a commonly used 20-item self-report questionnaire devel-

oped to measure positive and negative affect, as well as in the

‘state’ part of the STAI [52], where subjects are requested to

respond to 20 items each with four options of response, reporting

personal anxiety levels at the moment of evaluation. Finally,

personality was included in the assessment as a potential modifier

of the tDCS effects on emotional ratings, as hypothesized above.

To do so, we used the NEO-FFI questionnaire [53], a reduced

version of the NEO Personality Inventory (NEO PI-R) [54], which

includes 60 items (12 items per domain) measuring personality

traits such as Neuroticism (N), Extraversion (E), Openness to

Experience (O), Agreeableness (A) and Conscientiousness (C).

Data analyses
The Statistical Package for Social Sciences (SPSS, version 16.0)

was used for all the statistical analyses, with a two-tailed p-value

,0.05 considered significant. Prior to analyses, all variables

underwent Kolmogorov-Smirnov testing. As the null hypothesis

could not be rejected in any of the cases, the distributions were

assumed to be normal. For the main analysis of this study we

Figure 1. Experimental design. Each subject underwent sham and active stimulation on two different days in a counterbalanced design (see
panel A). Two equivalent emotional processing tasks were used (A and B in the figure), which were randomized within subjects. For real tDCS, 20 min
of 1mA was continuously applied whereas for the sham stimulation the current stimulator was turned only during the first 30 seconds, to mimic the
somatic sensations without actually affecting the underlying cerebral cortex (see panel B).
doi:10.1371/journal.pone.0022812.g001

Personality and tDCS Effects on Emotion Regulation
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performed a three-way repeated-measures (2x3x2) analysis of

variance (ANOVA) to test the main effects and the interactions of

the following factors over emotional picture ratings: effect of order

of stimulation (first day/second day), valence (negative, neutral

and positive), and stimulation condition (sham vs. real). Repeated

measures ANOVAs searching for main effects and interactions

were performed to test any possible effect of stimulation condition

(real vs. sham) or administration time condition (before tDCS vs.

after tDCS) on VAS, STAI and PANAS variables. Analyses were

repeated for the control (cathodal) experiment, and post-hoc

paired t-test comparisons (i.e. sham vs. real stimulation within each

level of the valence factor) were subsequently performed to

investigate the direction of the differences, when significant

findings emerged in the ANOVAs. The Huynh-Feldt correction

was applied when sphericity assumptions were violated. Finally, a

correlation analysis was performed between the magnitude of

changes observed in valence rating under real tDCS and

personality traits (extraversion and neuroticism), to determine

whether individual variability in this latter variable modulates the

effects of brain stimulation.

Results

All subjects completed the entire experiment. None of the

subjects evaluated using the NEO-FFI questionnaire in our study

obtained values suggesting clinical alterations on any scale. No

adverse effects such as pain, skin burns or irritation, or headache

were reported during or after tDCS. Most subjects reported no

difference between active and sham conditions, although 65% of

times they guessed the condition correctly. The mean valence

ratings for the overall set of pictures was 4.86 (SD = 0.36), being

2.11 (0.57) for negative pictures, 5.40 (0.48) for neutral pictures

and 7.32 (0.62) for positive pictures. The mean reaction time was

2.38 seconds (0.38).

The VASs revealed no significant main effects or interactions of

type of tDCS (sham or active tDCS) or day of testing (day 1/day 2)

in any of the scales except for decreased nervousness following

tDCS sessions in either sham or active conditions. In other words,

subjects were less nervous once they had completed any tDCS

session as compared to before starting the stimulation session, but

this was not related to the type of stimulation received (sham or

active). No significant effects of stimulation or interactions were

observed for the PANAS and STAI-S measures (Table 2).

Regarding emotional valence ratings, a significant main effect of

valence (F = 428.01; p,0.001) was found, as expected, but neither

stimulation condition (F = 0.61; p = 0.45) nor stimulation order

(F = 0.38; p = 0.55) were significantly related with emotional rating

scores. Regarding the analysis of interactions, a significant effect

for the stimulation condition*valence was observed (F = 4.661;

p = 0.028), whereas stimulation condition*stimulation order

(F = 0.065; p = 0.803), valence*stimulation order (F = 0.741;

Figure 2. Stimulus presentation protocol and examples of pictures used in the study. Before the presentation of each picture a white
cross was shown on the screen for 4 seconds, followed by a positive, negative or neutral picture for 3 seconds, requiring emotional rating by the
subject. Then another cross was presented for 4 seconds. Note that although the example contains pictures of the three emotional valences (positive,
neutral, negative), during the experiment only one picture corresponding to a single emotional valence was presented at each time.
doi:10.1371/journal.pone.0022812.g002

Table 1. Comparison of tasks A and B in terms of the
representation of valence and arousal dimensions.

VALENCE (1-9)/AROUSAL (1-9)

TASK A TASK B T (sig)

POSITIVE 7.34(0.59)/5.55(0.86) 7.28(0.58)/5.32(0.79) 0.63(0.53)/1.35(0.18)

NEGATIVE 2.26(0.50)/5.90(0.78) 2.32(0.48)/5.82(0.56) 0.61(0.54)/1.41(0.16)

NEUTRAL 5.19(0.45)/3.31(0.64) 5.04(0.38)/3.26(0.52) 1.87(0.07)/0.53(0.60)

Each task consists of 180 stimuli, as described in the main text. Values are given
in mean (SD).
doi:10.1371/journal.pone.0022812.t001

Personality and tDCS Effects on Emotion Regulation

PLoS ONE | www.plosone.org 4 July 2011 | Volume 6 | Issue 7 | e22812



p = 0.440) and stimulation condition*valence*stimulation order

(F = 0.917; p = 0.392) were not significant. Paired t-test compar-

isons (sham vs. real tDCS) for each level of valence showed that

ratings in neutral and positive pictures were unaffected by the

condition of stimulation. However, the scores of the evaluation of

emotionally negative pictures were higher with real tDCS than

with sham stimulation reflecting that subjects perceived these

stimuli as being less negative in terms of the degree of their

emotional valence (higher values in the scale 1 = negative,

5 = neutral, 9 = positive; see table 3 and figure 3).

Finally, the control experiment with cathodal tDCS over the

left-DLPFC only revealed the expected effect of valence

(F = 146.012; p,0.001) but no significant effect of stimulation

condition (F = 0.004; p = 0.950) or stimulation order (F = 0.763;

p = 0.411). No interactions between factors could be observed

following cathodal stimulation, including stimulation condition*-

valence (F = 0.011; p = 0.990). Paired t-test comparisons for the

cathodal experiment did not lead to any significant results (see

table 3 and figure 3).

As regards personality variables, the mean ratings of neuroti-

cism and extraversion were 21.75 (8.29) and 31.75 (4.44)

respectively. Extraversion showed significant correlations with

positive picture ratings (r = 0.54, p = 0.03) whereas neuroticism

showed a negative correlation with neutral picture ratings (r = -

0.61, p = 0.01). There were no significant correlations between

neuroticism and extraversion (r = -0.15, p = 0.57). Interestingly,

while neuroticism was not related (r = 0.29, p = 0.28) to changes in

negative emotional ratings induced by tDCS, a significant effect

was observed for extraversion (r = -0.53, p = 0.04). The direction of

this correlation indicates that the effect induced by tDCS in

decreasing the intensity of negative valence ratings is more evident

the more individuals manifest themselves as introvert (figure 4).

Discussion

The main aim of our study was to investigate whether non-

invasive electrical stimulation of the DLPFC could result in a

detectable change in emotion regulation processes in healthy

young women. Two principal results emerged: (1) Compared to

sham and cathodal stimulation, 20 minutes of 1mA anodal-tDCS

over the left-DLPFC resulted in increased ratings during negative

emotional picture processing, reflecting that such items were

perceived less negatively. These results were not explained by

more general mood or anxiety changes; (2) This effect was stronger

in individuals with higher subclinical scores on the introversion

personality dimension.

In general, our results are in agreement with prior studies

linking activity of the left frontal lobes with emotional positive

mood states [55,56], including the repeated findings of an

antidepressant effect after high frequency rTMS over the left

prefrontal cortex [57]. Particularly, our results corroborate those

of a previous tDCS study by Boggio et al. [43], which found that

applying anodal tDCS over left-DPLFC in healthy subjects

resulted in a less unpleasant perception of images demonstrating

human pain. Thus, while our results confirm that tDCS is able to

modulate the perception of negative emotional stimuli, they also

expand on previous observations indicating that this effect seems

to be less noticeable for neutral or positive stimuli, and that it is

influenced by individual personality characteristics.

The underlying functional brain mechanisms that account for

the behavioral effects observed may be multiple and difficult to

elucidate. However, since the neural bases and psychological

processes underlying emotion regulation have been extensively

investigated [9,10,11], and since a body of knowledge is now

Table 2. Mean scores (and SD or p values) on mood variables (STAI, PANAS and VAS questionnaires).

Pre Sham Post Sham Pre Active Post Active F(p) tDCS F(p)moment F(p) tDCS*moment

STAI-S 13.88 (9.16) 14.12 (9.29) 12.60 (9.60) 11.33 (9.37) 2.84 (0.11) 0.73
(0.41)

1.33
(0.27)

Positive Affect 34.56 (5.69) 35.31 (4.21) 35.53 (5.72) 34.07 (5.52) 0.36 (0.56) 0.21
(0.65)

3.62
(0.08)

Negative Affect 13.12 (3.32) 12.75 (4.25) 12.93 (3.69) 12.93 (4.92) 0.15 (0.70) 0.04
(0.84)

0.13
(0.73)

Nervousness 2.13 (1.88) 1.61 (2.00) 2.60 (2.85) 1.29 (1.39) 0.09 (0.76) 6.25
(0.03)*

1.27
(0.28)

Sadness 1.24 (1.39) 1.18 (1.38) 1.14 (1.05) 1.31 (1.70) 0.24 (0.63) 0.03
(0.86)

0.55
(0.47)

Happiness 7.83 (1.18) 7.84 (1.28) 7.68 (0.95) 7.96 (1.41) 0.01 (0.92) 0.28
(0.61)

0.34
(0.57)

Hopefulness 7.01 (1.66) 6.90 (2.23) 6.54 (2.12) 6.58 (2.60) 0.36 (0.56) 0.01
(0.94)

0.05
(0.84)

Only a significant Pre-Post decrease in nervousness VAS rating was found.
doi:10.1371/journal.pone.0022812.t002

Table 3. Direct (paired t-test) comparisons for each
stimulation condition (active and sham) within each
emotional valence (negative, neutral and positive).

Real tDCS Sham T(p)

Anodal
tDCS

Negative Pictures 2.29 (0.67) 1.95 (0.40) 22.30(0.036)

Neutral Pictures 5.35 (0.46) 5.45 (0.52) 1.37 (0.19)

Positive Pictures 7.28 (0.60) 7.38 (0.66) 0.96 (0.34)

Cathodal
tDCS

Negative Pictures 2.22 (0.65) 2.19 (0.68) 20.18 (0.85)

Neutral Pictures 5.12 (0.15) 5.12 (0.40) 20.05 (0.96)

Positive Pictures 4.77 (0.65) 4.75 (0.68) 0.27 (0.78)

Note that only for negative picture ratings there was an effect of real tDCS
stimulation (as figure 3 illustrates).
doi:10.1371/journal.pone.0022812.t003

Personality and tDCS Effects on Emotion Regulation
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available as regards the behavioral and physiological effects of

anodal tDCS stimulation over the DLPFC ([38–42], and see

introduction section), it is possible to draw some interpretations.

The DLPFC (the PFC region presumably targeted by anodal

tDCS in the present study) is a pivotal area of cognitive control

mechanism [58], and is associated with cognitive processing when

attention must be focused on the external environment [58].

Particularly, it is one of the key prefrontal areas implicated in

cognitive control of emotion mechanisms [59] such as reappraisal

(including the reinterpretation of the negative situation and

distancing one’s self from aversive stimuli) and distraction

[15,16,60,61]. Hence, as anodal tDCS is thought to facilitate

activity in the underlying cortex [30,34,38] a plausible interpre-

tation of our behavioral findings may be that tDCS facilitated

enabling processes allocated to goal-directed or attentional

networks perhaps competing with emotion processing resources,

reducing the impact of a vivid emotional experience and resulting

in lower scores for emotional ratings. This assumption is indirectly

supported by our previous fMRI study which showed that

applying 20 min of tDCS over DLPFC increases the temporal

synchrony of the fronto-parietal attention system [37]. The

interpretation also fits in with the more general notion of a

bidirectional competition between goal-directed and emotional

processing systems (i.e while emotional stimulus processing often

boosts attentional systems, emotional distracters may disrupt goal-

directed processing and viceversa; [61]). Specifically, studies

investigating the control of affective and cognitive (i.e. non-

affective) conflict indicate that the DLPFC (and the lateral parietal

in some studies), the posterior medial frontal cortex and the dorsal

anterior cingulate cortex are active during conflict between

affective and cognitive tasks [61,62]. However, the DLPFC may

be involved more during cognitive conflict monitoring, and the

medial frontal cortex during emotional conflict [62]. This latter

finding adds further evidence that increasing the cortical activity in

the DLPFC area in our study may have biased brain processing

resources towards more ‘cognitive’ aspects of the image presented

in detriment of emotional processing, thus resulting in more

‘neutral’ ratings of negative stimuli.

The second main finding of our study is that normal variations

of the extraversion-introversion personality dimension condition

the effects of tDCS on emotional ratings. In spite of the consistent

data showing that patients with clinical diagnoses of anxiety-

related disorders exhibit deficits in emotional regulation [8], less

evidence is available of the impact of specific personality measures

on this process [63], and even less when considering subclinical

variability in healthy individuals [64]. However, in agreement with

our report, Hofman and Schutter [65] recently provided the first

evidence that TMS can reveal functional asymmetries between the

Figure 3. Changes induced by real tDCS in the scores of emotional evaluations compared to sham tDCS. The values correspond to the
mean change of rating between sham and real tDCS (and standard errors of mean), both anodal and cathodal, for each valence category. Only ratings
for the negative emotional pictures under anodal left DLPFC were significantly different from sham (* p = 0.036, see table 3).
doi:10.1371/journal.pone.0022812.g003
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left and the right hemisphere related to the degree of aggressive

personality style and to higher attentional bias scores toward angry

facial expressions.

Using tDCS instead of TMS, in the present study we observed

that the more introvert a given subject the more permeable she

was to the effects of electrical stimulation on emotional regulation.

Individual differences in cognition, behavior and emotions as a

function of the introversion-extraversion continuum presumably

correspond to distinct characteristics of brain functionality. As

classically proposed by Eysenck [66], extraverts may have a

relatively lower level of cortical arousal associated with diminished

activity in retuculothalamic-cortical pathways [67]. Conversely,

according to Eysenck’s and Gray’s theories and subsequent

functional neuroimaging findings [25], introverts may have higher

activity than extraverts, especially in the frontal lobes.

These observations in the field of personality studies recall the

principle of state-dependency, a concept with a long history in

psychology and increasingly invoked in interpretations of recent

brain stimulation investigations. Here, state-dependency refers to

the observation that it is necessary to consider the baseline or

ongoing activation state of the targeted neurons as well as the

stimulation parameters to predict the response of a system to an

external stimulus [68]. As an example, Bestmann and coworkers

(2008) [69] used TMS concurrently with event-fMRI to show that

state-dependency influenced the interplay between the dorsal

premotor cortex and contralateral homologous region and M1.

Those authors demonstrated that stimulation of the dorsal

premotor cortex while subjects were performing an ipsilateral

grip task increased brain activity in the contralateral homologous

area as well as in contralateral M1, whereas stimulation in the no-

grip rest condition had the opposite effect.

The phenomenon of stochastic resonance may be important in

explaining the state-dependency findings in brain stimulation

studies, and may provide a mechanistic explanation for our

observations. Stochastic resonance refers to the delicate balance

between low levels of noise added to a system which has a

measurement threshold and the behavioral outcome obtained

[70]. In a system of this kind, information transfer is enhanced by

the injection of low levels of noise, which lower its response

threshold. Hence, if the system’s signal strength is subthreshold,

adding noise (for example by TMS or tDCS) might make neurons

more sensitive to a given range of weak inputs and push them

beyond the threshold, leading to behavioral changes. In contrast, if

the baseline neural signal of the system is already suprathreshold,

then the scope for facilitation is naturally limited and the addition

of low levels of noise may have no behavioral consequence. This

has been demonstrated in adaptation paradigms of the visual

system, where online TMS facilitated motion detection after V5/

MT had been suppressed by offline 1 Hz rTMS [71], presumably

because the amount of noise being added was lower after

adaptation than at baseline. In addition, a recent study [72] has

shown how at low intensity online TMS facilitated the detection of

Figure 4. Modulation of personality measures on tDCS effects. The scatterplot depicts a negative correlation between increasing scores of
the extraversion dimension of personality (represented in the x-coordinate) and the tDCS-induced effects (represented in the y-coordinate) evaluated
by the mean change of rating in negative emotional pictures between real and sham tDCS. Note that the tDCS modulation is higher the more the
subjects manifest themselves as introverts.
doi:10.1371/journal.pone.0022812.g004
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weak motion signals, but with higher TMS intensities and stronger

motion signals resulted in impairment in detection. The authors

concluded that online TMS can induce stochastic resonance in the

human brain.

In the framework of stochastic resonance, an explanation for the

results presented here is that introverts with higher levels of activity

at baseline [66,67] in combination with a relatively weak

neuromodulator technique such as tDCS at a low level of

stimulation (1mA current intensity), could have reached the

threshold more easily than extraverts, resulting in more marked

behavioral changes as subjects had higher scores in this personality

trait. In contrast, extraverts would need higher stimulation to the

DLPFC for down-regulation of negative emotional processing to

ensue. This interpretation is in agreement with Eysenck’s classic

biologically based theory and with subsequent findings from

psychophysiological [73] and neuroimaging studies [23,25], which

have shown that introverts have enhanced sensitivity under low or

moderate levels of stimulation, whereas extraverts are expected to

manifest higher reusability only under high stimulation conditions

[67].

Unexpectedly, neuroticism ratings did not modulate the tDCS

effects observed in our study. To our knowledge, the differences in

baseline activity levels previously reported for the introversion-

extraversion dimension have not found experimental support in

the case of the neuroticism dimension. Therefore, the differential

effects of state-dependency discussed above may not apply when

considering this personality dimension. On the other hand, earlier

reports showed that anxious individuals tend to up-regulate their

negative emotion states [44] and have difficulty in reallocating

attentional resources away from these negative ruminations. Here,

before tDCS we found a significant negative correlation between

neutral picture ratings and neuroticism that was not maintained

after tDCS, where ratings were more adjusted to the standardized

neutral ratings. However, no significant association was observed

before or after tDCS between negative emotional pictures and

neuroticism. Hence, it is possible that the attention resources in

subjects with higher neuroticism might be easily deviated from

ruminations on negative emotions when they are rating neutral

pictures, but emotional regulation would be more difficult during

negative picture ratings due to the strong bias in these subjects to

upregulate emotions of this kind.

Our study has some limitations that should be overcome in

further research. First, despite being a cross-over, sham-controlled

investigation, the sample size is relatively small and the findings

must be replicated in larger cohorts. Second, as it administered

using commonly available electrodes, tDCS is a technique with

low spatial resolution. When positioning our anodal electrode over

F3, the areas under direct stimulation are grossly the superior and

parts of the middle frontal gyri (lateral parts of BA 9, 10), which

have been implicated in emotion regulation in neuroimaging

studies [60,61]. However, the effects observed might also respond

to a similar mechanism related to the direct modulation of

excitability extending to more inferior-lateral areas of the

prefrontal cortex (i.e. lower dorsal middle and ventrolateral

PFC) where its activity and connectivity with subcortical structures

such as the nucleus accumbens and the amygdala positively

correlates with behavioural reappraisal [10]. Finally, we can not

rule out the possibility that changing the excitability of the DLPFC

activity may have trans-synaptically modulated the response of

other cortical areas not directly located under the area of the

electrode but included in the emotional regulation circuit such as

the medial frontal cortex, or even inferior parietal areas [15].

Overall, then, we acknowledge that due to the complexity of the

emotional regulation networks and the use of a low spatial

resolution technique without concomitant electrophysiological or

functional neuroimaging information, the interpretation of our

results at the level of the putatively involved neurophysiological

areas and connections remains tentative.

In summary, our findings represent the first evidence that

increasing the cortical excitability by anodal, but not by sham or

cathodal, tDCS of the left-DLPFC results in down-regulation of

the ratings of negative emotional stimuli compared with its effect

on neutral or positive pictures. Interestingly, this effect is

modulated by individual subclinical personality ratings in the

introversion-extraversion dimension. Our results confirm and

expand the role of the left-DLPFC as a core hub of the emotional

regulatory circuit, and open up new possibilities for the use of non-

invasive brain stimulation as an add-on treatment that takes

account of individual personality differences in patients in

conditions where control mechanisms of affectively charged

stimuli are compromised, such as chronic pain, anxiety, specific

phobias or posttraumatic stress disorder.

Author Contributions

Conceived and designed the experiments: CP-G DB-F ÁP-L. Performed
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41. Flöel A, Rösser N, Michka O, Knecht S, Breitenstein C (2008) Noninvasive

brain stimulation improves language learning. J Cogn Neurosci 20: 1415–22.

42. Boggio PS, Khoury LP, Martins DC, Martins OE, de Macedo EC, et al. (2009b)

Temporal cortex direct current stimulation enhances performance on a visual

recognition memory task in Alzheimer disease. J Neurol Neurosurg Psychiatry

80: 444–7.

43. Boggio PS, Zaghi S, Fregni F (2009c) Modulation of emotions associated with

images of human pain using anodal transcranial direct current stimulation

(tDCS). Neuropsychologia 47: 212–217.

44. Jackson DC, Burghy CA, Hanna AJ, Larson CL, Davidson RJ (2000) Resting

frontal and anterior temporal EEG asymmetry predicts ability to regulate

negative emotion. Psychophysiology 37: S50.

45. Canli T, Zhao Z, Desmond JE, Kang E, Gross J, Gabrieli JD (2001) An fMRI

study of personality influences on brain reactivity to emotional stimuli.
Behavioral Neuroscience 115: 33–42.

46. Nolen-Hoeksema S, Parker LE, Larson J (1994) Ruminative coping with

depressed mood following loss. J Pers Soc Psychol, 67: 92–104.
47. Lang PJ, Greenwald MK, Bradley MM, Hamm AO (1993) Looking at pictures:

affective, facial, visceral, and behavioral reactions. Psychophysiology 30: 261–73.
48. Beck AT, Steer RA, Brown GK (1996) ‘‘anual for the Beck Depression

Inventory-II’’ San Antonio, TX: Psychological Corporation.

49. Gandiga PC, Hummel FC, Cohen LG (2006) Transcranial DC stimulation
(tDCS): a tool for double-blind sham-controlled clinical studies in brain

stimulation. Clinical Neurophysiology 117: 845–50.
50. Lang PJ, Bradley MM, Cuthbert BN (2001) International Affective Picture

System (IAPS): Instruction manual and affective ratings. Technical report A-5.
Gainesville, FL: University of Florida.

51. Watson D, Clark LA, Tellegen A (1988) Development and validation of brief

measures of positive and negative affect: The PANAS scale. J Pers Soc Psychol
54: 1063–1070.

52. Spielberger CD (1983) Manual for the state-trait anxiety inventory. Palo Alto,
CA: Consulting Psychologists Press.

53. Mccrae, RR, Costa PT (2004) A contemplated revision of the NEO Five-Factor

Inventory. Personality and Individual Differences 36: 587–596.
54. Costa PT, Jr., McCrae RR (1992) NEO PI-R professional manual. Odessa, FL:

Psychological Assessment Resources, Inc..
55. Baxter LR, Jr., Schwartz JM, Phelps ME, Mazziotta JC, Guze BH, et al. (1989)

Reduction in left prefrontal cortex glucose metabolism common to three types of
depression. Arch Gen Psychiatry 46: 243–250.

56. Canli T, Desmond JE, Zhao Z, Glover G, Gabrieli JD (1998) Hemispheric

asymmetry for emotional stimuli detected with fMRI. Neuroreport 9: 3233–9.
57. George MS (2010) Transcranial magnetic stimulation for the treatment of

depression. Expert Rev Neurother 10: 1761–72.
58. Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function.

Annu Rev Neurosci 24: 167–202.

59. Ochsner KN, Gross JJ (2005) The cognitive control of emotion. Trends Cogn
Sci 9: 242–9.

60. Ochsner KN, Ray RD, Cooper JC, Robertson ER, Chopra S, et al. (2004) For
better or for worse: neural systems supporting the cognitive down- and up-

regulation of negative emotion. Neuroimage 23: 483–499.
61. Blair KS, Smith BW, Mitchell DG, Morton J, Vythilingam M, et al. (2007)

Modulation of emotion by cognition and cognition by emotion. Neuroimage 35:

430–40.
62. Ochsner KN, Hughes B, Robertson ER, Cooper JC, Gabrieli JD (2009) Neural

systems supporting the control of affective and cognitive conflicts. J Cogn
Neurosci 21: 1842–55.

63. Koenigsberg HW, Fan J, Ochsner KN, Liu X, Guise KG, et al. (2009) Neural

correlates of the use of psychological distancing to regulate responses to negative
social cues: a study of patients with borderline personality disorder. Biol

Psychiatry 66: 854–63.
64. Ray RD, Ochsner KN, Cooper JC, Robertson ER, Gabrieli JD, et al. (2005)

Individual differences in trait rumination and the neural systems supporting
cognitive reappraisal. Cogn Affect Behav Neurosci 5: 156–68.

65. Hofman D, Schutter DJ (2009) Inside the wire: aggression and functional

interhemispheric connectivity in the human brain. Psychophysiology 46:
1054–8.

66. Eysenck HJ (1967) The biological basis of personality. Charles CT, ed.
Springfield, Il, (Eds).

67. Eysenck HJ (1981) General features of the model. In: A model for personality, pp

1–37. Berlin: Springer.
68. Silvanto J, Muggleton N, Walsh V (2008a) State-dependency in brain

stimulation studies of perception and cognition. Trends Cogn Sci 12: 447–54.
69. Bestmann S, Swayne O, Blankenburg F, Ruff CC, Haggard P, et al. (2008)

Dorsal premotor cortex exerts state-dependent causal influences on activity in

contralateral primary motor and dorsal premotor cortex. Cereb Cortex 18:
1281–91.

70. Stocks NG (2000) Suprathreshold stochastic resonance in multilevel threshold
systems. Phys Rev Lett 84: 2310–3.

71. Silvanto J, Cattaneo Z, Battelli L, Pascual-Leone A (2008b) Baseline cortical
excitability determines whether TMS disrupts or facilitates behavior.

J Neurophysiol 99: 2725–30.

72. Schwarzkopf DS, Silvanto J, Rees G (2011) Stochastic resonance effects reveal
the neural mechanisms of transcranial magnetic stimulation. J Neurosci 31:

3143–7.
73. Stahl J, Rammsayer T (2004) Differences in the transmission of sensory input

into motor output between introverts and extraverts: Behavioral and

psychophysiological analyses. Brain Cogn 56: 293–303.

Personality and tDCS Effects on Emotion Regulation

PLoS ONE | www.plosone.org 9 July 2011 | Volume 6 | Issue 7 | e22812


