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Abstract

Given the expanding availability of scientific data and tools to analyze them, combining different assessments of the same
piece of information has become increasingly important for social, biological, and even physical sciences. This task
demands, to begin with, a method-independent standard, such as the P-value, that can be used to assess the reliability of a
piece of information. Good’s formula and Fisher’s method combine independent P-values with respectively unequal and
equal weights. Both approaches may be regarded as limiting instances of a general case of combining P-values from m
groups; P-values within each group are weighted equally, while weight varies by group. When some of the weights become
nearly degenerate, as cautioned by Good, numeric instability occurs in computation of the combined P-values. We deal
explicitly with this difficulty by deriving a controlled expansion, in powers of differences in inverse weights, that provides
both accurate statistics and stable numerics. We illustrate the utility of this systematic approach with a few examples. In
addition, we also provide here an alternative derivation for the probability distribution function of the general case and
show how the analytic formula obtained reduces to both Good’s and Fisher’s methods as special cases. A C++ program,
which computes the combined P-values with equal numerical stability regardless of whether weights are (nearly)
degenerate or not, is available for download at our group website http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/
downloads/CoinedPValues.html.
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Introduction

Forming a single statistical significance out of multiple inde-

pendent tests has been an important procedure in many scientific

disciplines, including social psychology [1,2], medical research [3],

genetics [4], proteomics [5], genomics [6], bioinformatics [7,8]

and so on. Among the best known approaches are Fisher’s method

[9] and Good’s formula [10]. To form a single significance

assignment out of L independent tail-area probabilities, Fisher’s

method combines these L probabilities democratically while

Good’s formula weights every probability differently. Being able

to weight more on better trusted P-values, Good’s formula is

versatile. Nevertheless, it suffers from numerical instabilities when

weights are nearly degenerate [10]. This paper provides an

analytic formula (see eq. (33)) to properly handle nearly degenerate

weights. Employing complex variable theory, we have derived this

controlled expansion, in powers of differences in inverse weights,

that affords for the first time both accurate statistics and stable

numerics.

In addition to the scenarios covered by Fisher’s method and

Good’s formula, one may foresee the occurrence of the following

general case (GC): independent P-values are categorized into groups

within each of which P-values have the same weight, while weight

varies by group. The criterion for grouping can be very general,

ranging from previously known attributes to differences in

experimental protocols. As an example, one may wish to group

data and their associated P-values by type of experimental instru-

ments and assign each group a different weight. When there is only

one instrument type, the GC reduces to Fisher’s consideration.

When there exist no replicates within each instrument type, the GC

coincides with the consideration of Good.

In [10], Good also mentioned the possibility of obtaining an

analytic expression for the GC, but did not provide it. Since

Good’s formula [10] contains, in the denominator, pairwise

differences between weights, he cautiously remarked that his

formula may become ill-conditioned when weights of similar

magnitudes exist and thus calculations should be done by holding

more decimal places. This statement has been paraphrased by

numerous authors [11–15], and many of them have tried to seek

numerically stable alternatives at the expense of using uncontrolled

approximations. However, what remained elusive was a proper

procedure that both provides accurate statistics and deals with

nearly degenerate weights in a numerically stable manner.

The main result of this paper is an explicit formula (eq. (33)) that

can properly handle nearly degenerate weights for the GC,

including Good’s formula of course. This derived, controlled

expansion, in powers of differences in inverse weights, affords for

the first time both accurate statistics and stable numerics. Employing
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a complex variable integral formulation, we also provide a novel

derivation of the distribution function for the GC and thus become

the first, in the context of combining P-values, to make available an

analytic formula for the probability distribution function for the GC.

In the statistics community, attempts to obtain an overall

significance level for the results of independent runs of studies date

back to the 1930s [9,16–18], if not earlier. Nevertheless, one

should note that the mathematical underpinnings of combining P-

values also appear in other areas of research. For example, the

equivalent of Good’s formula had emerged in 1910 in the context

of sequential radioactive decay [19], while the first analytic

expression for Fisher’s combined P-value had emerged in 1960 as

a special case of the former when all the decay constants are

identical [20]. After Good’s work [10], Good’s formula was

rederived by McGill and Gibbon [21], and later on by Likes [22].

As for the GC, Fisher’s method included, the mathematical

equivalents appear in different areas of studies mainly under the

consideration of sum of exponential/gamma variables. The

distribution functions of linear combinations of exponential/

gamma variables are useful in various fields. When limited to

exponential variables, it results in the Erlang distribution that is

often encountered in queuing theory [23]. It is also connected to

the renewal theory [24] and time series problem [25], and it can

be applied to model reliability [26]. The intimate connections

between these seemingly different problems are not obvious at first

glance. Consequently, it is not surprising that the distribution

function of the GC has been rediscovered/rederived many times

and that some information about it has not been widely circulated.

Our literature searches show that the first explicit result (without

further derivatives involved) for the distribution function for the

GC was obtained by Mathai [27]. Subsequently, motivated by

different contexts, Harrison [28], Amari and Mirsa [29], and

Jasiulewicz and Kordecki [26] all rederived the same distribution

function.

There also exist numerical approaches for combining indepen-

dent P-values. These typically involve inverting cumulative

distribution functions. For example, Stouffer’s z-methods [1],

whether unweighted [30] or weighted [31,32], require inverting

the error function. Lancaster’s generalization [33,34] of Fisher’s

formalism also requires inverting gamma distribution function to

incorporate unequal weighting for P-values combined. Since our

main focus is on analytic approaches, we shall refrain from delving

into any numerical method.

In the Methods section, we will first summarize Fisher’s and

Good’s methods for combining P-values, then present the

mathematical definition of the GC. In the Results section, the

subsection headed by ‘‘Derivation of Prob(Qƒt)’’ is devoted to

the derivation of the probability distribution function and

cumulative probability for the GC. Since both Fisher’s and

Good’s considerations arise as special limiting cases of the GC, we

also illustrate there that our cumulative probability distribution for

the GC indeed reduces to the appropriate limiting formulas upon

taking appropriate parameters. In the subsection headed by

‘‘Accommodation of arbitrary weights’’, we delve into our main

innovative part – taming the instability caused by nearly

degenerate weights – and provide a formula with controllable

accuracy for combining P-values. A few examples of using the

main results are then provided in the Example subsection. This

paper then concludes with the Discussion section. A C++ program

CoinedPValues, which combines independent weighted P-values

with equal numerical stability regardless of whether weights

are (nearly) degenerate, is available for download at our group

website: http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads/

CoinedPValues.html.

Methods

Summary of Fisher’s and Good’s methods for combining
P-values

Assume that a piece of information is assessed by L independent

tests, each yielding a P-value. Each P-value obtained is between

zero and one since, by definition, it is the probability for the

experimental outcome to arise from the null model. Prior to

combining these L independent P-values (p1,p2, . . . ,pL) to form a

single significance level, we note the following. Although for any

null model P-value must distribute uniformly over (0,1�, the L P-

values obtained need not have their average close to 0:5. This is

especially the case when the piece of information we are evaluating

is not well described by the null model(s) considered.

For later convenience, let us define

tF:p1
:p2 � � � pL , ð1Þ

tG:p
w1
1
:p

w2
2 � � � p

wL
L , ð2Þ

where wiw0 is the weight associated with the ith P-value. To form

a unified significance, Fisher and Good considered respectively the

stochastic quantities QF and QG , defined by

QF:x1
:x2 � � � xL , ð3Þ

QG:x
w1
1
:x

w2
2 � � � x

wL
L , ð4Þ

where each xi represents a random variable drawn from an

uniform, independent distribution over (0,1�. The following

probabilities

Prob(QF ƒtF )~tF

XL{1

l~0

½ ln (1=tF ) � l

l!
ð5Þ

Prob(QGƒtG)~
XL

l~1

Ll tG
1=wl ð6Þ

provide the unified statistical significances, corresponding respec-

tively to Fisher’s and Good’s considerations, from combining L
independent P-values. In eq. (6), the prefactor Ll is given by

Ll~
wL{1

l

Pk=l (wl{wk)
: ð7Þ

Apparently, Ll is ill-defined when the weight wl coincides with or

is numerically close to any other weights wk. Although Fisher did

not derive (5), from this point on, we shall refer to (5) as Fisher’s

formula and (6) as Good’s formula.

General case including Fisher’s and Good’s formulas
Let us divide the L independent P-values into m groups with

1ƒmƒL. Within each group k, we weight the nk P-values

equally; while P-values in different groups are weighted differently.

Therefore, when m~L and nk~1 Vk, we have the Good’s case;

when m~1 and n1~L, we reach Fisher’s case. We will hence

Combine Weighted P-Values Free from Instability
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define the following quantities of interest

t: P
m

k~1
P
nk

j~1
pk;j

� �wk

, ð8Þ

Q: P
m

k~1
P
nk

j~1
xk;j

� �wk

, ð9Þ

where each xk;j represents again a random variable drawn from an

uniform, independent distribution over (0,1�. The quantity of

interest Prob(Qƒt), if obtained, should cover results of both

Fisher and Good as the limiting cases. In the next section, we will

start by deriving an exact expression for Prob(Qƒt) and

describing how to recover the results of Fisher and Good.

Results

Derivation of Prob(Qƒt)
Let F (t):Prob(Qƒt), we may then write

F (t)~

ð1

0

� � �
ð1

0

h t{ P
m

k~1
P
nk

i~1
xk;i

� �wk
� �

P
m

k~1
P
nk

j~1
dxk;j , ð10Þ

where h(x) is the heaviside step function, taking value 1 when

xw0 and value 0 when xv0. Upon taking a derivative with

respect to t, we obtain

f (t):
dF(t)

dt
~

ð1

0

� � �
ð1

0

d t{ P
m

k~1
P
nk

j~1
xk;j

� �wk
� �

P
m

k~1
P
nk

j~1
dxk;j ,ð11Þ

where d(x) is Dirac’s delta function that takes value 0 everywhere

except at x~0 and that Vaw0,

ða

{a

d(x)dx~1.

To proceed, let us make the following change of variables

t~e{t

xk;j~e
{uk;j

and remember that if y0 is the only root of f (f (y0)~0)

d(f (y))~
d(y{y0)

jf ’(y0)j ,

we may then rewrite (11) as

f (t)~f (e{t)~ð ?

0

� � �
ð ?

0

ete{
X

k,j
uk;j d t{

Xm

k~1

wk

Xnk

j~1

uk;j

" # !
P
m

k~1
P
nk

j~1
duk;j

ð12Þ

:etfe(t) : ð13Þ

Note that fe(t) is exactly the probability density function of a

weighted, linear sum of exponential variables.

By introducing the integral representation of the d function

d(t{c)~
1

2p

ð?
{?

dq e{iq(t{c) ,

we may re-express (12) as

f (t)~

ð?
{?

dq

2p
e{it(qzi) P

m

k~1

ð?
0

e{ueiqwkudu

� �nk

~

ð?
{?

dq

2p
e{it(qzi) P

m

k~1

1

1{iqwk

� �nk

~

ð?
{?

dq

2p
e{it(qzi) P

m

l~1

i

wl

� �nl

P
m

k~1

1

qzirk

� �nk

~ P
m

l~1
r

nl
l

� �
ið Þ
Pm

k~1
nk

ð?
{?

dq

2p
e{it(qzi) P

m

k~1

1

qzirk

� �nk

ð14Þ

: P
m

l~1
r

nl
l

� �
~ff (t; n1,n2, . . . ,nm) , ð15Þ

where rk:1=wk is introduced for the ease of analytic manipula-

tion and ~ff is introduced for later convenience. Since all wkw0,

implying that all rkw0, the poles of the integrand in (14) lie

completely at the lower half of the q-plane. Consequently, the

integral of q may be extended to enclose the lower half q-plane to

result in

f (t)~et P
m

l~1
(i rl)

nl

� �
{2pi

2p

� �

Xm

k~1

L=Lqð Þnk{1

(nk{1)!
e{itq P

m

j~1,j=k

1

qzirj

� �nj
� �

q~{irk

~et P
m

l~1
(i rl)

nl

� �Xm

k~1

({i)
X

g1,g2,...,gm~0P
gi~nk{1

({1)nk{1(it)gk

gk! erk t |

8>>><
>>>:

P
m

j~1,j=k

(nj{1zgj)!

(nj{1)!gj !

{i

rj{rk

� �njzgj
�

~et P
m

l~1
r

nl
l

� �Xm

k~1

X
g1,g2,...,gm~0P

gi~nk{1

(t)gk

gk!
e{rk t

8>>><
>>>:

| P
m

j~1,j=k

(nj{1zgj)!

(nj{1)!gj !

({1)gj

(rj{rk)njzgj

)
:

ð16Þ

Comparing eq. (16) with eqs. (12) and (13), we see that the right

hand side of (16) is composed of the product of the factor et and

fe(t) of eq. (13). In fact, the explicit expression for fe(t), in addi-

tion to the new derivation presented here in eq. (16), was derived
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much earlier [27] under different context and was rediscovered/

rederived multiple times [26,28,29] by different means. Its

connection to combining P-values, however, was never made

explicit until now.

From (10), we know that F (t~0)~0, implying that

F (t)~

ðt

0

f (t’)dt’~
ð?

t

f (e{t’) e{t’dt’

~ P
m

l~1
r

nl
l

� �Xm

k~1

X
g1,g2,...,gm~0P

gi~nk{1

P
m

j~1,j=k

(nj{1zgj)!

(nj{1)!gj!

({1)gj

(rj{rk)njzgj

 !
|

ð?
t

(t’)gk

gk!
e{rk t’dt’

~ P
m

l~1
r

nl
l

� �Xm

k~1

X
g1,g2,...,gm~0P

gi~nk{1

P
m

j~1,j=k

(nj{1zgj)!

(nj{1)!gj!

({1)gj

(rj{rk)njzgj

 !
|

Xgk

l~0

tgk{l

rlz1
k (gk{l)!

e{rk t

 !

~
Xm

k~1

X
g1,g2,...,gm~0P

gi~nk{1

P
m

j~1,j=k

(nj{1zgj)!

(nj{1)!gj!

({rk)gj r
nj
j

(rj{rk)njzgj

 ! Xgk

l~0

(rk t)gk{l

(gk{l)!
e{rk t

 !

~
Xm

k~1

Xnk{1

gk~0

Xnk{1{gk

gi=k~0P
i

gi~nk{1

P
m

j~1,j=k

(nj{1zgj)!

(nj{1)!gj!

({rk)gj r
nj
j

(rj{rk)njzgj

 !
H(rk t,gk) ,

ð17Þ

where the function H is defined as

H(x,n): e{x
Xn

k~0

xk

k!
: ð18Þ

Eq. (17) represents the most general formula that interpolates the

scenarios considered by both Fisher and Good.

Let us take the limiting cases from (17). For Fisher’s formula,

one weights every P-value equally, and thus corresponds to m~1
and n1~L. The constraint in the sum of (17) forces

g1~n1{1~L{1. Consequently, we have (by calling r1 by r for

simplicity)

Prob(QF ƒtF )~H(rt,L{1)~e{rt
XL{1

l~0

(rt)l

l!
: ð19Þ

Notice that regardless whatever the weight w one assigns to all the

P-values, the final answer is independent of the weight. This is

because t~{ ln t~{w ln tF ~({ ln tF )=r and therefore

rt~ ln (1=tF ). This results in

Prob(QF ƒtF )~tF

XL{1

l~0

ln (1=tF )½ � l

l!
, ð20Þ

exactly what one anticipates from (5). To obtain the results of

Good, one simply makes m~L and nk~1 Vk, implying all gi~0.

In this case, (17) becomes (with rl~1=wl , e{t~tG and

H(rl t,0)~e{rl t~tG
1=wl )

Prob(QGƒtG)~
XL

l~1

P
k=l

rk

rk{rl

� �
tG

1=wl ~
XL

l~1

Ll tG
1=wl , ð21Þ

reproducing exactly (6).

One may also re-express eq. (17) in a slightly different form

F (t)~ P
m

l~1
r

nl
l

� �Xm

k~1

Xnk{1

gk~0

1

r
gkz1

k

H(rk t,gk)|

Xnk{1{gk

gi=k~0P
i

gi~nk{1

P
m

j~1,j=k

(nj{1zgj)!

(nj{1)!gj !

({1)gj

(rj{rk)njzgj

 !

: P
m

l~1
r

nl
l

� �
~FF (t; n1,n2, . . . ,nm) :

ð22Þ

Note that in the expression (22), we have isolated an overall

multiplying factor and have kept explicit the n1ƒkƒm dependence

for later convenience. As cautioned by Good [10] regarding

Good’s formula, the products of the inverse weight differences in

eq. (22) may cause numerical instability in computing the

combined P-values when some of the inverse weights become

nearly degenerate. To see this point, let us consider varying rj from

a bit smaller than rk to a bit larger than rk. Although the change of

weight 1=rj is infinitesimal, some terms in (22) do change abruptly.

We will provide some numerical examples in the Example

subsection.

Accommodations of arbitrary weights
In our derivation of (20) in the previous subsection, it is

explicitly shown that the final P-value obtained is independent of

the weight w that was assigned to all the individual P-values,

p1,p2, . . . ,pL. It is thus natural to ask, if one starts by weighing

each P-value differently, upon making the weights close to one

another, will one recover Fisher’s formula (5) from Good’s formula

(6) in the limit of degenerate weights? By continuity, the answer is

expected to be affirmative. In the broader context of the GC, one

would like to have a formal protocol to compute the combined P-

value when some of the weights become (nearly) degenerate.

In this subsection, we first illustrate the transition from Good’s

formula to Fisher’s formula by combining two P-values with

almost degenerate weights. We will then provide a general

protocol to deal explicitly with the numerical instability caused

by nearly degenerate weights. Possible occurrences of this

instability were first cautioned by Good [10] and subsequently

by many authors [13–15].

Let us consider combining p1 and p2 with weights w1 and w2

using Good’s formula. One has

Prob(QGƒtG)~
1

w1{w2
w1 p1p

w2
w1
2 {w2 p

w1
w2
1 p2

" #
: ð23Þ

Without loss of generality, one assumes w1ww2 and hence writes

w1=w2~1zE with Ew0. We are interested in the case when the

weights get close to each other, or when E?0. We now rewrite eq.

(23) as

Combine Weighted P-Values Free from Instability
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Prob(QGƒtG)~
w2

w1{w2

w1

w2
p1p

w2
w1
2 {p

w1
w2
1 p2

" #

~
1

E
(1zE)p1p

1
1zE
2 {p1zE

1 p2

� �
:

ð24Þ

In the limit of small [, we may rewrite (24) as

Prob(QGƒtG)~
p1p2

E
(1zE)p

{ E
1zE

2 {pE1

� �

~
p1p2

E
(1zE)e

{ E
1zE ln p2{eE ln p1

h i
~

p1p2

E
E{E( ln p2z ln p1)zO(E2)
� �

~p1p2 1{ ln (p1p2)zO(E)½ �

{?
E?0

p1p2 1{ ln (p1p2)½ �~ Prob(QF ƒtF )

ð25Þ

Note that when the small weight difference w1{w2 is near the

machine precision of a digital computer, using formula (6) directly

will inevitably introduce numerical instability caused by rounding

errors.

To construct a protocol to deal with nearly degenerate weights,

one first observes from eqs. (14–22) that it is the inverse weights

rk:1=wk that permeate the derivation of the unified P-value. The

closeness between weights is thus naturally defined by closeness in

the inverse weights. As shown in eqs. (2) and (6), the combined P-

value yielded by Good’s formula depends only on the pairwise

ratios of the weights. Making the observation that rk t in eq. (17)

only depends on the ratios rk=rj=k, one deduces that for the GC

the combined P-values (see (17)) also depend only on the ratios of

weights, not the individual weights. We are thus free to choose any

scale we wish. For simplicity, we normalize the inverse weight

associated with each method by demanding the sum of inverse

weights equal the total number of methods

XL

j~1

rj~
XL

j~1

1~L , ð26Þ

where 1=rj represents the weight associated method j and L

represents the total number of P-values (or methods) to be

combined. For the GC described in the Methods section,

L~
Xm

k~1
nk. This normalization choice makes the average

inverse weight of participating methods be 1.

The next step is to determine, for a given list of inverse weights

and the radius for clustering, the number of clusters needed. This

task may be achieved in a hierarchical manner. After normalizing

the inverse weights rk using eq. (26), one may sort the inverse

weights in either ascending or descending order. For a given radius

gw0, one starts to seek the pair of inverse weights that are closest

but not identical, and check if their difference is smaller than the

radius g. If yes, one will merge that pair of inverse weights by using

their average, weighted by number of occurrences, as the new

center and continue the process until every inverse weight in the

list is separated by a distance farther than g. We use an example of

L~8 to illustrate the idea. Let the normalized inverse weights

frjg8
j~1 be

0:50,0:70(2),0:71,0:74,1:03,1:80,1:82,

where the number 2 inside the pair of parentheses after 0:70
simply indicates that there are two identical inverse weights 0:70 to

start with. Assume that one chooses g, the radius for clustering, to

be 0:005. Since every pair of adjacent inverse weights are

separated by more than 0:005, no further clustering procedures

is needed and one ends up having seven effective clusters: one

cluster with two identical inverse weights 0:70, and six singletons.

This corresponds to m~7, n1~1, n2~2, n3~n4~ � � �~n7~1.

Suppose one chooses the clustering radius g to be 0:05. In the

first step, we identify that 0:70 and 0:71 are the closest pair of

inverse weights. The weighted average between them is

2:0:70z0:71

3
~

2:11

3
~0:70�33 :

The list of inverse weights then appears as

0:50,0:70�33(3),0:74,1:03,1:80,1:82 :

The closest pair of inverse weights is now between 1:80 and 1:82,

and upon merging them the list becomes

0:50,0:70�33(3),0:74,1:03,1:81(2) :

The next pair of closest inverse weights is then 0:70�33 and 0:74.

The weighted average leads to (2:11z0:74)=4~0:7125. After this

step, the difference between any two cluster centers is larger than

0:05. The list of inverse weights now appears as

0:50,0:7125(4),1:03,1:81(2) ,

indicating that we have m~4 ( four clusters), with number of

members being n1~1, n2~4, n3~1 and n4~2. The centers of the

four clusters are specified by the averaged inverse weights:

0:50,0:7125,1:03,1:81.

This is a good place for us to introduce some notation. We shall

denote by rkzgk;j the jth inverse weights of cluster k, whose

averaged inverse weight is rk. With this definition, for the example

above, we have g1;1~0, g2;1~g2;2~{0:0125, g2;3~{0:0025,

g2;4~0:0275, g3;1~0, g4;1~{0:01, and g4;2~0:01.

Using the hierarchical protocol mentioned above, the number

of clusters m, the center rk of the inverse weight of cluster k, and

the numbers of members nk of cluster k are all obtained along with

fgk;jg once and for all. The gk;j , as will be shown later, constitute

the key expansion parameters that yield, upon multiplying by
~FF (t; nl) with different fnlg, the higher order terms in our key

result. We show below how this is done.

Following the derivation in the previous subsection, we obtain a

probability density function very similar to (14)

f (t)~

P
m

l~1
P
nl

j~1
(rlzgl;j)

� �
ið Þ
Pm

k~1
nk

ð?
{?

dq

2p
e{it(qzi) P

m

k~1
P
nk

j~1

1

qzi(rkzgk;j)

" #
:
ð27Þ
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From the preceding subsection, we see that the ill-conditioned

situations emerge when some weights are nearly degenerate and

the source of difference in inverse weights comes from obtaining
~FF (t; n1,n2, . . . ,nm) in (22) from ~ff (t; n1,n2, . . . ,nm) in (15).

Therefore, one may leave the prefactor Pm
l~1 P

nl

j~1 (rlzgl;j)
h i

untouched and focus on the rest of the right hand side of eq. (27).

To proceed, we write

1

qzi(rkzgk;j)
~

1

qzirk

1z
igk;j

qzirk

� �{1

~
1

qzirk

e
{ ln 1z

i gk;j
qzirk

	 

~

1

qzirk

exp
X?
g~1

1

g

{igk;j

qzirk

� �g
" #

:

Consequently, we may write

P
nk

j~1

1

qzi(rkzgk;j)
~

1

(qzirk)nk
exp

X?
g~1

Yk;g (i)g

qzirkð Þg

" #
, ð28Þ

where

Yk;g:
Xnk

j~1

({gk;j)
g

g
: ð29Þ

The product in eq. (27) may now be formally written as

P
m

k~1
P
nk

j~1

1

qzi(rkzgk;j)

" #

~ P
m

k~1

1

(qzirk)nk

� �
exp

X?
g~1

(i)g
Xm

k~1

Yk;g

qzirkð Þg

" #
:

ð30Þ

We now note a simplification by choosing rk to be the average

inverse weight of the kth cluster. In this case, we haveXnk

j~1
gk;j~0 Vk. That is, Yk;1~0 always. This allows us to

write eq. (30) as

P
m

k~1
P
nk

j~1

1

qzi(rkzgk;j)

" #

~ P
m

k~1

1

(qzirk)nk

� �
exp

X?
g~2

(i)g
Xm

k~1

Yk;g

qzirkð Þg

" #
:

ð31Þ

The key idea here is to Taylor expand the exponential and

collect terms of equal number of 1=(qzir). Evidently, the first

correction term starts with 1=(qzir)2. Furthermore, before the

1=(qzir)4 order, there is no mixing between different clusters.

Below, we rewrite eq. (27) to include the first few orders of

correction terms

f (t)

Pm
l~1 P

nl
j~1 (rlzgl;j)

~ ið Þ
Pm

k~1
nk

ð?
{?

dq

2p
e{it(qzi)

exp
X?

g~2
(i)g
Xm

k~1

Yk;g

qzirkð Þg
� �

Pm
k~1 (qzirk)nk

~~ff (t; fnlgm
l~1)z

Xm

k~1

Yk;2
~ff (t; fnl=k,nkz2g)

z
Xm

k~1

Yk;3
~ff (t; fnl=k,nkz3g)

z
Xm

k~1

Yk;4z
(Yk;2)2

2!

 !
~ff (t; fnl=k,nkz4g)

z
1

2!

Xm

k,k’~1
k=k’

Yk;2Yk’;2
~ff (t; fnl=k,k’,nkz2,nk’z2g)zO(g5) :

ð32Þ

This immediately leads to

F(t)

Pm
l~1 P

nl
j~1 (rlzgl;j)

~~FF(t; fnlgm
l~1)z

Xm

k~1

Yk;2
~FF (t; fnl=k,nkz2g)

z
Xm

k~1

Yk;3
~FF (t; fnl=k,nkz3g)

z
Xm

k~1

Yk;4z
(Yk;2)2

2!

 !
~FF(t; fnl=k,nkz4g)

z
1

2!

Xm

k,k’~1
k=k’

Yk;2Yk’;2 ~FF(t; fnl=k,k’,nkz2,nk’z2g)zO(g5)

ð33Þ

Note that when the clustering radius g is chosen to be zero, the

only clusters are from groups of identical weights, and all gk;j must

be zero. In this case, only the first term on the right hand side of

(33) exists and the result derived in the previous subsection is

recovered exactly. Since all ~FF are finite positive quantities, the

errors resulting from truncating the expression in eq. (33) at

certain order of g can be easily bounded. Therefore, any desired

precision may be obtained via including the corresponding

number of higher order terms. As the main result of the current

paper, our expansion provides a systematic, numerically stable

method to achieve desired accuracy in computing combined

P-values.

Examples
Example (a). This example provides a numerical work flow

to compute the ~FF(t; fnlg) function present in eq. (22). Assuming

m~4, we show below how to open up the sum in eq. (22). The

constraint
P

i gi~nk{1 implies that one only has m{1 (~3
here) independent gis. Once the (m{1) gis are specified, the

remaining one is determined. To simplify the exposition, let us
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introduce the following notation

a(gj ; j,k):
(nj{1zgj)!

(nj{1)!gj !

({1)gj

(rj{rk)njzgj
:

This allows one to expand the sum in (22) as

~FF (t)~
Xn1{1

g1~0

H(r1 t,g1)

r
g1z1

1

Xn1{1{g1

g2~0,

a(g2; 2,1)
Xn1{1{g1{g2

g3~0

a(g3; 3,1) a(g4; 4,1)

z
Xn2{1

g2~0

H(r2 t,g2)

r
g2z1

2

Xn2{1{g2

g1~0

a(g1; 1,2)
Xn2{1{g2{g1

g3~0

a(g3; 3,2) a(g4; 4,2)

z
Xn3{1

g3~0

H(r3 t,g3)

r
g3z1

3

Xn3{1{g3

g1~0

a(g1; 1,3)
Xn3{1{g3{g1

g2~0

a(g2; 2,3) a(g4; 4,3)

z
Xn4{1

g4~0

H(r4 t,g4)

r
g4z1

4

Xn4{1{g4

g1~0

a(g1; 1,4)
Xn4{1{g4{g1

g2~0

a(g2; 2,4) a(g3; 3,4) :

ð34Þ

Note that in eq. (33), in the zeroth order term, the argument nl

of ~FF represents the number of members associated with cluster l.
However, for higher order correction terms, the nls entering ~FF no

longer carry the same meaning. Therefore, in the example shown

here, one should not assume that nj is the number of methods

associated with cluster j.
Example (b). This example illustrates the possibility of

numerical instability associated with eqs. (6) and (22) when they

are used to combine P-values with nearly equal weights. This

instability arises from adding numbers with nearly identical

magnitude but different signs, yielding a value containing few or

no significant figures. We also show how such instabilities are

resolved by using eq. (33). Consider the case of combining five P-

values, {0.008000257, 0.008579261, 0.0008911761, 0.006967988,

0.004973110}, weighted respectively by {0.54531152, 0.54532057,

0.54531221, 0.54531399, 0.54531776}. Using eq. (2), one obtains

tG~4:30656196|10{7. The combined P-value is then obtained

as the probability of attaining a random variable QG, defined in eq.

(4), such that it is less than or equal to tG.

Combining P-values using eq. (6) gives

Prob(QGƒtG)~1923475672:53812003z134195847:49348195

{3271698577:16100168z1726093852:57087326

{512066795:44147670~{0:00000322 :

When one uses equation (22), t takes the value of tG and the

random variable Q is simply QG , and the combined P-value

becomes

Prob(Qƒt)~170090507:09336647z21761086:68190728

{972903041:25101399z941269625:31004059

{512066795:44252247~{0:00000006 :

Apparently, probability cannot be negative. The negative values

shown above illustrate how eqs. (6) and (22) may lead to

cancellation of numbers of comparable magnitude thus may yield

meaningless values when the weights are nearly degenerate. This

numerical instability is removed by applying equation (33), which

combines weighted P-values using a controlled expansion and

yields, for this example,

Prob(Qƒt)~5:379093|10{8z1:407305|10{16

{1:066323|10{21z1:634917|10{25zO(10{29)

~5:37909|10{8 :

Example (c). One natural question to ask is how well does eq.

(33) work when one chooses a larger clustering radius and group

weights that are clearly distinguishable into a few clusters? To

consider this case, let us use the five P-values from example (b) but

with weights chosen differently. Let us assume that the inverse

weights (rk:1=wk) associated with these five P-values are

f0:6,0:65,1:2,1:25,1:3g. For this case, t~tG~1:935663|

10{13. Combining P-value using formulas (6) yields

Prob(Qƒt)~2:187324|10{6{5:946040|10{7

z2:131226|10{13{8:011644|10{14

z7:639290|10{15~1:59272|10{6 ,

while combining P-values using (22) yields identical results

Prob(Qƒt)~1:725699|10{6{3:049251|10{7

z1:311524|10{13{6:162803|10{14

z7:639290|10{15~1:59272|10{6 :

When one uses g~0:1 as the clustering radius, one obtains two

clusters: one with average inverse weight 0:625 and the other with

average inverse weight 1:25. If one then uses eq. (33) to combine

P-values, one attains the following results

Prob(Qƒt)~ 1:472453|10{6z1:171521|10{7z0

z2:584710|10{9z4:889899|10{10zO(10{12)

~1:59268|10{6 ,

ð35Þ

which contains no sign alternation and agrees well with the results

from both (6) and (22). This illustrates the robustness of eq. (33) in

combining P-values. Note that the third term on the right hand

side of (35) is zero. This is because the multiplying factor Yk;3 is

zero for both clusters. In general, Yk;3 measures the skewness of

inverse weights associated with cluster k and for our case here both

clusters of inverse weights are perfectly symmetrical with respect to

their centers, leading to zero skewness. If the inverse weights of

cluster k distribute perfectly symmetrically with respect to its

center, it is evident from eq. (29) that Yk;g~0 for odd g.

Evidently if one chooses a large clustering radius g and then uses

eq. (33) to combine P-values, many higher order terms in the

expansion will be required to achieve high accuracy in the final

combined P-value.

Discussion

Although the expression (17) provides access to exact statistics

for a broader domain of problems and our expansion formula (33)

provides accurate and stable statistics even when nearly degener-

ate weights are present, there remain a few unanswered questions
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that should be addressed by the community in the near future. For

example, even though we can accommodate any reasonable P-

value weighting, thanks to (33), the more difficult question is how

does one choose the right set of weights when combining statistical

significance [35–39]. The weights chosen should reflect how much

one wishes to trust various obtained P-values. Ideally, a fully

systematic method should also provide a metric for choosing

appropriate weights. How to obtain the best set of weights remains

an open problem and definitely deserves further investigations.

Another limitation of (17) and (33), and consequently of Fisher’s

and Good’s formulas, is that one must assume the P-values to be

combined are independent. In real applications, it is foreseeable

that P-values reported by various methods may exhibit non-

negligible correlations. How to obtain the correlation [40–42] and

how to properly incorporate P-value correlations [15,43,44] while

combining P-values are challenging problems that we hope to

address in the near future.
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