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Abstract

Background: Phosphatase and TENsin (PTEN) homolog is a negative regulator that takes part in IIS (insulin/insulin-like
signaling) and Egfr (epidermal growth factor receptor) activation in Drosophila melanogaster. IIS and Egfr signaling events
are also involved in the developmental process of queen and worker differentiation in honey bees (Apis mellifera). Here, we
characterized the bee PTEN gene homologue for the first time and begin to explore its potential function during bee
development and adult life.

Results: Honey bee PTEN is alternatively spliced, resulting in three splice variants. Next, we show that the expression of PTEN
can be down-regulated by RNA interference (RNAi) in the larval stage, when female caste fate is determined. Relative to
controls, we observed that RNAi efficacy is dependent on the amount of PTEN dsRNA that is delivered to larvae. For larvae
fed queen or worker diets containing a high amount of PTEN dsRNA, PTEN knockdown was significant at a whole-body level
but lethal. A lower dosage did not result in a significant gene down-regulation. Finally, we compared same-aged adult
workers with different behavior: nursing vs. foraging. We show that between nurses and foragers, PTEN isoforms were
differentially expressed within brain, ovary and fat body tissues. All isoforms were expressed at higher levels in the brain and
ovaries of the foragers. In fat body, isoform B was expressed at higher level in the nurse bees.

Conclusion: Our results suggest that PTEN plays a central role during growth and development in queen- and worker-
destined honey bees. In adult workers, moreover, tissue-specific patterns of PTEN isoform expression are correlated with
differences in complex division of labor between same-aged individuals. Therefore, we propose that knowledge on the roles
of IIS and Egfr activity in developmental and behavioral control may increase through studies of how PTEN functions can
impact bee social phenotypes.
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Introduction

Insulin/insulin-like signaling (IIS) and epidermal growth factor

receptor (Egfr) are important and highly conserved signal

transduction pathways, spanning from yeast to fruit flies to

humans [1],[2],[3],[4]. Research on invertebrate model organisms

shows that many physiological processes are influenced by these

pathways, including nutrient metabolism, growth, development,

reproduction, and aging. Thus, IIS and Egfr cascades play major

roles in invertebrate life-history regulation [1]. Also, in vertebrate

systems, IIS and Egfr are part of the energy sensing systems of

individual cells, and defects in these pathway components can lead

to serious illness, including growth abnormalities, diabetes, and

cancer [4],[5],[6].

The tumor suppressor gene PTEN is a dual specificity phosphatase

that is conserved from nematode worms to humans [1],[7],[8].

PTEN can down-regulate both IIS and Egfr by dephosphorylating

PI(3,4,5)-tris-phosphate to PI(4,5)P2, making it a direct antagonist of

phosphoinositide-3-kinase (PI3K). Thereby, PTEN acts antagonis-

tically to the growth-promoting signals from the activated insulin

receptor [9],[10] and Egfr [3],[4]. The D. melanogaster PTEN homo-

log, dPTEN plays a critical role in regulation of cell proliferation, cell

size, and organ/tissue size during development [11], and dPTEN

homozygosity and trans-homozygosity causes lethality during

embryonic and early larval stages [10]. In the nematode worm

Caenorhabditis elegans, the PTEN homolog daf-18 regulates dauer

formation, i.e. developmental and life-extending arrest during the

‘L1’ larval stage [12]. Loss of daf-18 bypasses this arrest and results in

inappropriate growth [12]. PTEN has been studied primarily for its

effects on longevity and cell size, in both worms and flies

[10],[13],[14]. Yet, the recent insight that PTEN influences complex

behavior, even in humans [15], suggests that research should be
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expanded to models of social behavior. The honey bee A. mellifera

provides an attractive model for studies of molecular mechanisms

that contribute to variation in social phenotype.

In honey bees, female larvae can develop into two reproductive

castes: fecund queens or essentially sterile workers. During larval

ontogeny, a bee goes through five larval instars, and female caste

fate is determined in the 3rd instar by nutrition. Adult workers that

exhibit nursing behavior control the food provisions of the larvae.

A queen-destined larva receives nutrient-rich diet (i.e. food rich in

royal jelly) throughout development, whereas worker-destined

larvae receive a less nutrient-rich diet from the 3rd instar and

onward. Larvae respond to this difference in nutrition by changing

the expression of genes involved in IIS, Egfr and Target of

Rapamycin (TOR) nutrient sensing cascades [2],[16],[17].

Consistent with nutrition being causal to female caste fate,

queen-destined bees mostly up-regulate these genes compared to

worker larvae [18],[19],[20], and larval gene-knockdown of the

IIS associated insulin receptor substrate gene, Egfr gene and the central

TOR gene causes queen-destined larvae to develop worker traits

[17],[19],[21]. Wheeler and colleagues [18] reported that larval

dietary manipulation affects PTEN transcript levels, but a function

of PTEN in caste development was never tested directly.

Throughout adult life, worker bees perform tasks in a sequential,

and thus age-associated, manner, resulting in a temporal division of

labor. During the first weeks of adult life, workers typically stay

inside the nest and take care of young larvae (nursing behavior).

Thereafter, they go through a distinct behavioral shift to collect

pollen, nectar or water in the field (foraging behavior) [22].

Although usually chronological in sequence, this behavioral

ontogeny can be experimentally decoupled from age per se. If bees

from a single age-cohort form a colony unit together (a single cohort

colony), workers will divide labor so that some bees will nurse while

others forage [23],[24],[25]. This model system is ideally suited to

identify robust associations between gene expression, protein levels,

endocrine physiology and complex behavior [26],[27],[28],

[29],[30],[31],[32], and can be combined with dietary manipula-

tions, pharmacology, and RNAi mediated gene knockdown to

unravel causal relationships [33],[34],[35],[36],[37].

PTEN is alternatively spliced and has three and six isoforms in D.

melanogaster [38] and the mosquito Aedes aegypti, respectively [39]. In

mosquitoes, isoforms show developmental- and tissue-specific mRNA

levels [39]. A putative PTEN ortholog was identified by the Honey

Bee Genome Sequencing project and its transcript was detected in

developing larvae [18]. Yet, the corresponding gene structure, as well

as intra-organismal expression patterns, is unknown.

Here, we have cloned and characterized the PTEN gene.

Alternate splicing was identified, resulting in three splice variants.

We have used RNA interference (RNAi) to down-regulate PTEN

expression in larvae, and show that the efficacy of the knockdown

is dosage dependent and the phenotype associated with using the

higher dosage of RNAi-inducing double-stranded RNA (dsRNA)

is non-viable. Lower dosage of dsRNA did not lead to measurable

PTEN down-regulation and produced a viable phenotype from

larvae raised on queen diet. Finally, we have explored the tissue-

specific gene expression patterns for the PTEN isoforms in adults,

and show how these patterns correlated with social behavior using

a controlled single cohort set up.

Methods

Bees
Wild type (unselected commercial stock) honey bees were used

for all experiments. Bees were reared at the Honey Bee Research

Facility on the ASU Polytechnic campus in Mesa, AZ.

Cloning of PTEN isoforms
Total RNA isolated from worker larval instars (4th and 5th) and

from worker adult brain and fat body was used for cloning PTEN.

Total RNA was treated with DNaseI (Ambion) and 59 and 39

RACE experiments were carried using the GeneRacer Kit

(Ambion) according to the manufacturer’s instructions. For the

59 RACE following three reverse primers (59 TCACAAA-

TAGGTCGACTCCC 39, 59 TCCCCACGTGAGAGTAAACC

39 and 59 GTATCAAACGTGGCTGAACGTA 39) were used in

combination with the 59 RACE supplied with the kit. For 39

RACE following three forward primers (59 TGATGTTGT-

CAAATTGTTGGAA 39, 59 TTTCCATGGAGGTCAAGGAT

39 and 59 CGCAAAGGAATGCATACGA 39) were used in

combination with the 39RACE primers supplied with the kit. Four

independent RACE experiments were carried out. RNA from

different sources (larvae, adult brain and fat body) was used for

RACE experiments. The PCR products were cloned into pCRH 4-

TOPOH vector using TOPO TA cloning kit (Invitrogen), several

clones (6–10 per experiment) were randomly picked and verified

by sequencing. Subsequent to sequence analysis, full-length

mRNA corresponding to the three PTEN isoforms was amplified

and re-verified by sequencing.

dsRNA synthesis and larval feeding
The dsRNA targeted all three isoforms and following forward

and reverse primers were used for dsRNA synthesis 59 TAA-

TACGACTCACTATAGGGCGATGATGTTGTCAAATTG-

TTGGAA 39 and 59 TAATACGACTCACTATAGGGCGACG-

TATGCATTCCTTTGCGTA 39 giving a product of 562 bp. T7

promoter sequence in underlined and dsRNA derived from GFP

encoding sequence (503 bp) was used as a control [40],[41]. Queens

from two wild-type background were caged for 24 h and three days

later, newly emerged (12–18 h) old larvae (n = 100 per treatment

group) were grafted into 24-well plates. First, the larvae were raised

on a queen diet, the dsRNA was administered in the diet at either

150 mg/ml or 450 mg/ml concentration at 12 h intervals for two

consecutive days. The details of the feeding regime for rearing

queens were previously described by Patel and colleagues [19]. Due

to methodological challenges, in vitro rearing typically does not yield

a high proportion of queens. It is desirable that the frequency of

successfully raised individuals with full queen morphology is higher

than 50% before a diet is characterized as ‘queen-inducing’ diet. For

the second set up, the feeding regime was modified and larvae were

nutritionally restricted and fed every 24 h on the VS diet

throughout larval ontogeny. This feeding regime yields primarily

worker caste (Kaftanoglu O, Amdam GV, Page RE, unpublished

data). The dsRNA was fed for four consecutive days at either

150 mg/ml or 450 mg/ml concentration at 24 h intervals. The

larvae were collected 24 h after the final dsRNA feeding for

knockdown verification and both set ups were independently

replicated.

Scoring morphological characters that distinguish
queens, intercastes and workers

Queens were identified as having .100 ovarioles/ovary,

notched mandibles, smooth stinger and absence of corbicula

(pollen basket). Workers were identified as having 2–30 ovarioles,

barbed stinger and presence of corbicula. Intercastes have

characters reminiscent of queens but had smaller ovary size

(ranging between 40–70 ovarioles/ovary). Ovariole scoring was

carried out as described previously ([19] Detailed data on

morphological characters are not shown, as their occurrence was

in agreement with our earlier results reported in [19],[21].

Role of PTEN during Developmental Ontogeny in Bees
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Preparing single cohort colonies
Two single cohort colonies were prepared in 4-frame standard

Langstroth-size nucleus hives (19 inches in length and 19 1/8

inches in depth. (483 mm6232 mm). Queens (n = 2) were caged

for 24 h to obtain newly laid eggs. The combs with the newly laid

eggs were numbered and left in the colonies. These combs were

removed 24 h prior to the emergence of adult workers and placed

into an incubator at 35uC and 65% RH, in order to collect newly

emerged bees. Single cohort colonies were established by placing

about 7,000 newly emerged bees into the 4-frame nucleus hives.

Each hive had 1 frame of honey, 1 frame of pollen, 2 fully drawn

combs for queens to lay eggs.

Sample collections
Foragers were marked in both single cohort colonies after 15

days. Foragers identified at the hive entrance when returning from

foraging flights were marked on the abdomen with a dot of paint

and then allowed to enter the hive and continue foraging. Five

days later, nurses and marked foragers were sampled directly into

liquid nitrogen. Nurses were identified on the brood with their

heads inside the brood cells. For RNA isolation and mRNA

quantification, materials from three bees were pooled to make up

one biological sample per tissue (brain, ovaries, and fat body).

Three such biological replicates were derived from each single

cohort colony, to make up a total sample size of 6 for each tissue

and behavioral group (nurse bee and forager).

RNA Isolation and quantitative real-time RT-PCR (RT-
qPCR)

For RNA was isolated from brain, ovaries and fat body using

standard Trizol procedure except that the RNA was precipitated

overnight in the presence of glycogen. For the RT-qPCR, total RNA

was treated with DNaseI (Ambion) following standard instructions.

RNA was diluted to 25 ng/ml and 2.0 ml was used a template. The

RT-qPCR was run in triplicate (i.e. three technical replicates of the

same sample on the same plate) using ABI Prism 7500 Applied

Biosystems, and the data were analyzed using the comparative CT

method [42] with actin (XM_623378) used as an reference gene. RT-

qPCR conditions as described earlier by Wang and colleagues [43]

were used. Following PTEN isoform-specific qPCR primers were

used: PTEN_A Fp 59 TCTGCATCTCTGGTGGTGAA 39 and

PTEN_A Rp 59 TTGTGGTTTGCCGATGACTA 39; for the B

isoform, PTEN_B Fp 59 ACCATGCATACAATAGGAAATGG 39

and PTEN_B Rp 59 ACAAATAGGTCGACTCCCCTGTGT 39

and for the C isoform, PTEN_C Fp 59 AAGCGGACAGCAGT-

GAATG 39 and PTEN_C Rp 59 AAAAATGTGTCCGCTGG-

TTT 39. The amplification products were verified by sequencing

prior to quantification. For actin, forward and reverse primers were

Fp 59 TGCCAACACTGTCCTTTCTG 39 and Rp 59 AGAATT-

GACCCACCAATCCA 39 respectively. Negative control (without

reverse transcriptase) for every sample was used to verify that the

RT-qPCR assay was not confounded by DNA contamination or

primer dimers. To determine the primer efficiencies, we checked

melting curves for each set of primers and run the PCR products on

agarose gels. Each primer pair had a single peak in melting curve

analysis and a single sharp band of expected size on the agarose gel.

Additionally, amplification curves of each PTEN isoform paralleled

with those of actin, which indicated that primers for each gene had

equal and comparable efficiencies.

Statistics
For gene knockdown verification, PTEN expression levels were

log transformed [43],[44] and Main Effect ANOVA was used for

statistical analysis after validating that the data conformed the

assumptions of Levene’s test. Treatment group and qPCR plate

(technical factor) were categorical predictors. Adult expression

data were also log transformed and main effects ANOVA was

conducted separately for each tissue. Behavioral caste, qPCR plate

and colony were categorical predictors. Comparisons were not

made between tissues or between isoforms because i) actin

transcript levels (our reference gene within tissue) can be assumed

to vary between tissues, and because ii) amplification efficacies

may differ between the three isoform-specific primer sets. The data

conformed to assumptions of ANOVA, as determined by Levene’s

tests. Fishers’ LSD post hoc tests were used to identify the pattern

of significance for each isoform. Statistica 6.0 (StatSoft) was used

for all analyses. For ovary and adult wet weight, the data was not

normally distributed, therefore we used the non-parametric

Kruskal-Wallis test, and thereafter Mann-Whitney U tests for post

hoc comparisons between the treatment groups.

Results

Identification of alternate splice variants
A single honey bee PTEN gene was identified based on in silico

genomic analysis by the Honey Bee Genome Consortium [45]. We

used RACE (Rapid Amplification of cDNA Ends) to clone alternate

splice variants of this gene, and to demonstrate that the gene, overall,

contains eleven exons and ten introns. The intron/exon organization

of PTEN is not shared between honey bee, D. melanogaster, mosquitoes

(A. aegypti and Anopheles gambiae), C. elegans and human sequences ([39]

and our Figs. 1 A and B). Despite these differences at the nucleotide

level, the encoded proteins show relatively high amino acid sequence

homology (Fig. 2). The degree of shared identity is 47% to D.

melanogaster, 51% to A. aegypti, 37% to C. elegans, and 45% to the

human proteins. The highest degree of identity is toward another

hymenopteran insect, Nasonia vitripennis (73%).

As determined before for D. melanogaster [38], A. aegypti [39] and

human [46], we found that the honey bee PTEN gene is

alternatively spliced. Three splice variants were cloned (Fig. 1B).

All isoforms encode the putative phosphatase domain (residues 52–

198), essential for its activity as a tumor suppressor in humans [47]

and the putative C2 lipid binding domain (residues 244–338), which

has affinity to phospholipid membranes [47],[48]. The PTEN

signature motif representing active site residues ‘HCXXGXXR’

(HCKAGKGR in honey bee) [48] was found at position 132–137 in

all honey bee PTEN splice variants, and thus it is identical between

all the available insect sequences so far (Fig. 2). The signature motif

is also present in tyrosine phosphatases and dual specificity protein

phosphatases but no sequence homology occurs outside this motif

between these phosphatases and PTEN [49],[50]. The PTEN PDZ

binding motif (XTXL/V), which has a potential role in protein-

protein interaction [49],[50], was only present in honey bee PTEN

isoform B. This finding is similar to the data on fly and mosquito

PTEN, where only one isoform with PDZ binding motif was

detected [38],[39]. Furthermore, of the three honey bee PTEN

isoforms, only isoform A encodes multiple serine and threonine

toward the C-termini that provide sites for post-transcriptional

modification, particularly for phosphorylation (Fig. 2). Honey bee

PTEN isoform C, thereby, was characterized as lacking both the

PDZ binding motif (isoform B-specific) and the multiple serine and

threonine residues (isoform A-specific).

Effects of reducing PTEN gene expression during larval
development

Knockout of PTEN in flies and mice is embryonic lethal

[51],[52] and most of the studies to gain insights into PTEN

Role of PTEN during Developmental Ontogeny in Bees
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function during development have being conducted on mutants of

eye [10] or wing [51] tissue generated by somatic recombination.

Here, we combined in vitro (laboratory) rearing of 1st–5th instar

honey bee larvae with suppression of PTEN activity by

introduction of dsRNA against the PTEN gene in the larval food.

The PTEN dsRNA targeted all the three isoforms of the gene

(180–741 bp). Previously, we have used the in vitro dsRNA feeding

technique to reduce larval expression of TOR and the insulin receptor

substrate, IRS [19],[21]. Feeding of dsRNA is also successful in

down-regulating gene expression in C. elegans, termites, tsetse fly

and ticks [53],[54],[55],[56]. In our study, we tested two amounts

of PTEN dsRNA in both of two diets to study efficacy and effects of

PTEN gene knockdown. Each dsRNA/diet combination was

replicated twice.

Larvae (n = 100, per treatment group) were either given a diet

made primarily of royal jelly that supports queen development

(queen diet) [19] or reared on a modified diet that supports worker

development (worker diet) (see Methods for details). Additionally,

we also tested the dosage dependent RNAi response using two

different dsRNA dosages (150 mg/ml and 450 mg/ml). First, the

diets contained dsRNA at a concentration of 450 mg/ml and were

fed over two or four consecutive days depending upon the diet

(details in the methods). Corresponding control groups were raised

on both diets mixed with dsRNA against green fluorescent protein

(GFP) sequence, which does not share homology with genes in the

honey bee genome. This approach led to a significant reduction in

PTEN expression in the animals reared on worker diet (main

effects ANOVA: F (1,21) = 5.55, p = 0.03, Fig. 3A) and on queen

diet (main effects ANOVA: F (1,43) = 5.40, p = 0.03, Fig. 3B). As

before, the controls developed normally into either queens (.50%)

or workers (.70%), depending upon the diet. Regardless of diet,

however, none of the PTEN knockdowns completed metamor-

phosis. When they reached the pupal stage, PTEN RNAi

phenotypes had body region deformities, such as distorted heads,

thoraces and abdomens. Mortality was 100% within 5 days after

the onset of pupation. Second, we tested a lower dose of dsRNA

(150 mg/ml). This approach did not affect PTEN expression at the

whole-body level irrespective the rearing conditions (Fig. S1A, B).

As before, the controls developed normally into either queens or

workers depending upon the feeding regime. Whereas, the larvae

reared on queen diet and this low dosage emerged with intercastes

characteristics (queen/worker intermediates) (See Fig. S2), while

those reared on worker diet failed to complete development.

Expression profiling of brain, ovary and fat body in
different behavioral groups

Using two replicate single cohort colonies, we studied PTEN

mRNA expression in honey bee nurses and foragers (Fig. 4,

Table 1). We found that all honey bee PTEN isoforms were

expressed at a significantly higher level in the brains and ovaries of

foragers compared to age-matched nurses (Fig. 4, A–F, see the

legend for details on the statistics). In contrast, only PTEN isoform

B was significantly elevated in the fat body of nurses when

compared to age-matched foraging bees (Fig. 4H).

Within tissue, we next plotted the correlative relationships

between isoforms (Fig. 5). This approach allowed us to study

putative associations between the transcript amounts, while taking

into account that the absolute expression levels of the isoforms

could not be directly compared. This is because we used a semi-

quantitative measure for gene expression that is scaled separately

for each gene product (see Methods). We found that PTEN

isoforms A and B were significantly positively correlated in brain

(Pearson’s correlation, n = 6, p,0.0005) and in ovary (p,0.05),

but not associated in fat body (p,0.4) (Fig. 5A). Similarly, isoforms

A and C were positively correlated in brain (p,0.01) and ovary

(p,0.01), but not in fat body (p,0.85) (Fig. 5B), and the pattern

was repeated for isoforms B and C: significant correlation in brain

(p,0.01) and ovary (p,0.007), but not in fat body (p,0.2)

(Fig. 5C).

Discussion

PTEN is a conserved lipid and protein phosphatase
As a key negative affector of IIS and Egfr signaling, PTEN

homologs have been identified in all eukaryote genomes sequenced

so far. Our study has identified three PTEN isoforms in honey

bees. Similar to fly and human PTEN, these isoforms all share the

highly conserved PTEN signature motif ‘HC(X)5R’ [46],[48], the

phosphatase domain [48] and the C2 domain [48]. Crystal

structure provided insights into functional motifs responsible for

mediating different PTEN functions [48]. Subsequent studies

based on structure-functional analysis of these motifs, and, by

mutating key residues within these motifs, strongly suggested that

PTEN activity is required for normal growth and loss in its activity

contributes to tumorigenesis [57]. These genetic approaches have

also shown the link between the phosphatase domain and PI(3,4,5)

P3 phosphatase activity [49],[58], and between the C2 lipid

Figure 1. Schematic diagram of the organization of the honey bee PTEN gene. (A) cDNA sequences of three honey bee PTEN isoforms (A, B
and C) were compared to the genomic sequences gleaned from the Honey Bee Genome Resources database (http://www.ncbi.nlm.nih.gov/genome/
seq/BlastGen/BlastGen.cgi?taxid=7460) to define the exons (including alternative exons) and introns. (B) Three alternate splice forms were cloned and
their structure is shown.
doi:10.1371/journal.pone.0022195.g001
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binding domain’s phospho-lipid membrane affinity [47],[48] and

Ca2+ dependent recruitment of kinases [59].

We found that the PDZ binding motif at the carboxy terminal is

only present in honey bee PTEN isoform B. In mice, mutations in

the PDZ domain greatly reduced PTEN ability to inhibit Akt/

PKB signaling and lead to rapid degradation of the PTEN

product, suggesting that PDZ domain stabilize PTEN through

different protein-protein interactions [60],[61]. We also found that

honey bee PTEN isoform A encodes putative phosphorylation sites

toward the C-termini. Phosphorylation of these residues can result

in conformation change that affects recruitment of PTEN-

associated complexes to plasma membrane [62], and can further

stabilize PTEN, control its subcellular location, and/or its

association with other signaling molecules [49],[63],[64]. Thus,

our data indicate how PTEN isoforms may have different

stabilities that may be linked to different functions in honey bees.

Knockdown of PTEN during larval development
We made a first effort to test honey bee PTEN function by

down-regulating PTEN during larval development using RNAi.

The dsRNA targeted all three isoforms during larval ontogeny.

We used two different feeding protocols and two different dsRNA

amounts. We fed the larvae with a high amount of dsRNA

(450 mg/ml of each diet) (see Methods for details). This dosage

produced a significant reduction of PTEN expression in larvae

irrespective of the feeding regime (Fig. 3A, B). These knockdown

larvae failed to complete development and died during pupation.

Similar lethal phenotypes are also reported for the PTEN knockout

mice [65] and flies [51]. We also tested a lower dsRNA

concentration (150 mg/ml) (details in Methods). This approach

did not reduce PTEN expression significantly (Fig. S1A, B). These

results lead us to conclude that knockdown efficacy is dosage

dependent. Dosage-dependent gene suppression is reported in

mice, where efficacy of knockdown in different tissues (liver, kidney

and lung) was directly proportional to dosage of siRNA

administered [66]. Similar results are also reported for rat tissues

[67] and in human cell lines [68].

Although PTEN expression was not reduced with lower dsRNA

dosage, the phenotype was different from control: while larvae

reared on worker diet failed to complete development, some larvae

reared on queen diet completed metamorphosis and achieved

intercaste or worker morphology. These adults had enlarged

abdomens (see Fig. S2 B). Phenotypic effects in the absence of

significant PTEN down-regulation might be explained by the

target gene being affected in some regions and tissues but not in

others. This heterogeneous response could make whole-body

RNAi-detection difficult. In adult honey bees, where it is easier to

conduct tissue specific studies of gene expression, regional RNAi

efficacies are already confirmed [43]. Overall, our study did not

provide evidence that PTEN is specifically involved in queen-

worker differentiation because PTEN gene suppression was lethal

in both phenotypes during development. Our inference from the

results, therefore, is limited to PTEN playing a central role in

nutrient sensing, presumably conferred by conserved effects on IIS

and Egfr activity; and thus perturbation of PTEN can negatively

impact larval development.

The significant down-regulation was achieved with a high

dosage that resulted in non-viable phenotype. It can always be a

concern that a non-viable phenotype is unspecific. However, many

studies in honey bees and other organisms have highlighted the

specificity of RNAi [54],[69],[70],[71],[72]. Recent results from C.

elegans, moreover, suggest that regions must share 40 bp with 95%

identity for off-target effects to occur [73]. A modified BLASTn

search at the NCBI non-redundant database (with somewhat

similar sequences option enabled) of our PTEN dsRNA region

produced only one significant hit of 19 bp against another honey

bee gene: a putative cytochrome P450. This makes off-target

effects unlikely. In addition, controls reared on the same amount of

GFP dsRNA developed normally, ruling out negative effects of

dsRNA per se. Our study does not explicitly address the lethality of

PTEN down-regulation, but the phenotype is well known from

experiments in mice and flies [51],[52], where the effect is

explained by various developmental defects reported in different

tissues and organs [51],[52]. Future studies may explore if similar

explanation can be found in bees. In this context, isoform-specific

approaches may yield viable phenotypes and be more informative.

PTEN expression and correlation to social behavior
We demonstrate that the honey bee PTEN isoforms are

transcribed at different levels within the brain, ovaries and fat

Figure 3. PTEN RNAi during larval development. Test of gene knockdown in honey bee larvae fed worker (A) vs. queen (B) diet in each of two
separate experiments (n = 24). The larvae were fed with a higher dosage (450 mg/ml) of dsRNA which elicited significant PTEN knockdown (A,B). Bars
represent mean 6 s.e, different letters (a, b) denote significantly different groups, main effect ANOVA, p,0.05).
doi:10.1371/journal.pone.0022195.g003

Figure 2. Alignment of the honey bee PTEN proteins toward other known PTEN amino acid sequences. The honey bee isoforms were
aligned with the sequences of D. melanogaster (AF161258), Nasonia vitripennis (NP_001128398), Tribolium castaneum (XP_974994), Aedes aegypti
(ABM21568) and Homo sapiens (NP_000305) using ClustalW version 1.82. The PTEN signature motif (HCXXGXXR) is highlighted (grey), the
phosphatase domain underlined with a solid black line, the C2 domain underlined with a dashed line, and PDZ binding motif is double underlined.
The Genbank accession numbers for three honey bee PTEN isoforms A, B and C are FJ_969918, FJ_969919 and FJ_969920, respectively.
doi:10.1371/journal.pone.0022195.g002
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body of same-aged nurses and foragers (Fig. 4). In brain, all

isoforms are expressed in higher levels in foragers. Since PTEN

generally suppresses growth, our finding is not consistent with the

volume increase of the neuropil of the mushroom body, a brain

region that is generally expanded during honey bee foraging

[74],[75]. This apparent discrepancy may be explained by the

increase in neuropil volume being due to dendritic arborization

rather than neurogenesis [76]. Dendritic arborization determines

the nature and extent of innervation of a neuron in response to

intrinsic and extrinsic signals and is a result of cytoskeleton

changes in neurons [77]. PTEN is essential for proper localization

of an F-actin-myosin II-based cytoskeleton in Dictyostelium

discoideum, permitting the formation of filopodia necessary for both

locomotion and chemotaxis [78]. In honey bees, increased

locomotion and olfactory learning are both associated with

foraging activities [79],[80]. Therefore, increased PTEN expres-

sion may be involved in cytoskeleton changes in mushroom bodies

that occur during behavioral transition from in-hive work to

foraging. However, we measured gene expression in the entire

brain, and it is unclear how this overall transcript level reflects on

dynamics in smaller sub-compartments like mushroom bodies.

Likewise, all isoforms show higher transcript levels in forager

ovaries when compared to nurses of the same chronological age. In

vertebrates, ovarian activity increases when PTEN expression is

suppressed [81], and similarly, the propensity for ovary activation

and egg-laying is increased in nurse bees compared to 21-day-old

worker bees that are of forager age [82]. Thus, we hypothesize that

elevated PTEN expression in the ovaries of forager bees contributes

to their reduced propensity of reproductive activation [83].

In fat body (the abdominal adipose tissue), only the PTEN

isoform B was transcribed at significantly different levels between

the bees of different behavioral phenotype, and with increased

expression in nurses. Nurse bee fat body also expresses vitellogenin

(Vg) at high levels [25],[84],[85]. Vg is a yolk protein precursor

and behavioral effector protein that is hypothesized to suppress IIS

and perhaps Egfr signaling in honey bees [19],[86]. In general, IIS

is anticipated to be reduced in nurse bee fat body [32]. Our result

from PTEN isoform B is consistent with this expectation.

Finally, we found that, while the relative expression levels of all

isoforms were correlated in brain and ovaries, none were correlated

in fat body (Fig. 5). This pattern is largely driven by the expression

dynamics described above: in brain and ovary, isoforms show highly

variable expression levels that diverge consistently between nurse

bees and foragers. In fat body, however, the variance is less

pronounced and – with the exception of isoform B – the transcript

levels do not diverge between the two behavioral groups.

Honey bees as a model system to study PTEN function
Honey bees provide a model for understanding the mole-

cular mechanisms that regulate complex behavior. In insects

as well as mammalian systems, behavior can be affected by

physiological feedback between brain, gonad and adipose tissue

[26],[87],[88],[89],[90],[91]. This feedback is at least partly linked

to nutrient- and energy sensing signals. In honey bees, IIS, partly

Figure 4. PTEN isoform- and tissue-specific expression in adult forager and nurse bees of the same chronological age. RT-qPCR was
used to determine isoform-specific PTEN transcript levels in (A–C) Brain; (D–F) Ovary; and (G–I) Fat body. Age matched (20-day old bees) nurses and
foragers from single-cohort colonies were used for the expression analysis. All RT-qPCR samples were run in triplicate. Brain, ovaries and fat body
from 3 individual bees were pooled by tissue to make up one biological sample (n = 6). Bars represent mean 6 s.e, different letters (a, b) indicate
significant differences as determined with a Fisher LSD post-hoc test, p,0.05.
doi:10.1371/journal.pone.0022195.g004
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through insulin-like peptides (ilp-1 & 2), can form a complex

regulatory network influencing social behavior, which includes

Vg and juvenile hormone (JH) (Fig. 6) [32],[86]. Reduced Vg can

accelerate foraging behavior through feedback with JH, a systemic

hormone with pleiotropic effects on metabolic biology and

development [34],[86],[92],[93]. TOR can facilitate vg gene

expression [19], while IRS, a central gene in IIS, can affect

food-related behavior — presumably in interplay with Vg and JH

[43]. Our gene expression results suggest that PTEN may be

involved in adult social behavior (Fig. 6). Since PTEN influences

Egfr signal transduction, Egfr could potentially also influence this

regulatory loop to modulate the behavioral repertoire of worker

bees. However, the role of Egfr in adult behavior is yet to be

determined for honey beees.

PTEN knockdown mice are characterized by brain overgrowth

and deficits in female social behavior [15]. Mutant alleles are also

associated with human behavioral disease [15]. Thus, researchers

have already established links between PTEN activity and

complex behavior. To understand these relationships more fully,

future studies on honey bees may provide insights that are less

accessible in vertebrate systems or difficult to probe in flies (D.

melanogaster), which lacks complex social behavior. In this context,

Table 1. Statistical analysis using main effects ANOVA.

Tissue Test Main effect F value d.f. p

Brain ANOVA Behavior 13.8 3 ,0.01

qPCR plate 0.12 3 0.94

Colony 0.32 6 0.91

Post hoc comparison of isoform
b/w nurses and foragers

Isoform A ,0.005

Isoform B ,0.01

Isoform C 0.01

Ovary ANOVA Behavior 6.75 3 0.03

qPCR plate 0.26 3 0.85

Colony 0.72 6 0.64

Post hoc comparison of isoform
b/w nurses and foragers

Isoform A 0.04

Isoform B ,0.005

Isoform C ,0.005

Fat body ANOVA Behavior 16.7 3 ,0.01

qPCR plate 0.6 3 0.63

Colony 0.8 6 0.58

Post hoc comparison of isoform
b/w nurses and foragers

Isoform A 0.11

Isoform B 0.01

Isoform C 0.08

Behavioral caste (nurse bee and forager), qPCR plate and colony were categorical predictors. Post hoc comparison using Fisher’s LSD were used to determine the effect
of behavioral caste on each isoform (see Materials and Methods for details). Significant differences are highlighted in green.
doi:10.1371/journal.pone.0022195.t001

Figure 5. PTEN isoform-specific correlation plots by tissue. (A) Isoforms A and B, (B) Isoforms A and C (C) Isoforms B and C. Relative levels in
brain (red circles), ovary (blue squares) and fat body (green triangles) are shown. Open circles, squares and triangles represent the forager data points
while the closed symbols represent the nurse bee data points. As a general pattern, expression of PTEN isoforms is positively correlated in brain and
ovary (Pearson’s correlation, p,0.05), but not in the fat body of the workers (p.0.05).
doi:10.1371/journal.pone.0022195.g005
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our isoform- and tissue-specific data provide a platform for future

experimental planning.

Supporting Information

Figure S1 PTEN RNAi during larval development. Test of

gene knockdown in honey bee larvae fed worker (A) vs. queen (B)

diet in each of two separate experiments (n = 24). The larvae were

fed with a lower dosage (150 mg/ml). Compared to the controls,

the low dosage of dsRNA did not lead to measurable PTEN down-

regulation at the whole-body level, neither for the queen diet,

(main effects ANOVA: F (1,43) = 0.50, p = 0.48, A) nor for the

worker diet (main effects ANOVA: F (1,21) = 0.38, p = 0.54, A). For

the queen diet treatment, the controls primarily emerged as

queens (56%) relative to 28% intercastes (individuals with mixed

caste traits) and 14% workers, while those that received PTEN

dsRNA emerged with intercaste phenotypes (44%) or with worker

traits (52%). The phenotypic distributions of the bees, thereby,

were different between the control and the PTEN dsRNA-

containing queen diets (Chi-square test: x2 = 83.1, df = 2,

p,0.0001). Bars represent mean 6 s.e.

(TIF)

Figure S2 Effect of PTEN RNAi on physiological char-
acters. (A) Adult wet weight at emergence. Q-controls were

heavier than the bees fed PTEN dsRNA and the W-controls

(n = 20). Intercastes were characterized by enlarged abdomen (Fig.

S1A and B), lower adult wet weight (controls: 187.6–232.7 mg vs.

PTEN dsRNA fed group: 156.9–221.6 mg; Mann-Whitney U

tests, p,0.001, n = 20 per group, (B) Ovary size. Q-controls had

larger ovaries than the bees fed PTEN dsRNA and the W-controls

(n = 10). Ovary size (controls: 120–165 ovarioles/ovary vs. PTEN

dsRNA fed group: 38–70 ovarioles/ovary, Mann-Whitney U tests,

p,0.001, n = 10 per group). For worker diet treatment, the

controls primarily emerged as workers (74%, versus ,22% with

intercastes characteristics) while those that received PTEN dsRNA

failed to complete development (Fig. S2 A and B; a Chi-square test

on these character distributions was not performed due to the

missing adult data on the PTEN dsRNA fed group). Bars represent

mean 6 s.e, different letters (a, b or c) denotes significantly

different groups (A and B, Kruskal-Wallis test followed by post hoc

Mann-Whitney U test, p,0.001).

(TIF)
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Figure 6. Possible tissue-specific PTEN functions in a regulatory network of honey bee behavior. In brain and ovary, PTEN (red circles)
isoforms A, B and C, which could potentially down-regulate insulin/insulin-like signaling (IIS), are more abundant in foragers than in nurses. However,
foraging behavior is positively associated with IIS via the release of insulin-like peptide 1 (ilp-1, orange ellipse) in the brain (pink) [32]. Ilp-1 may cause
juvenile hormone (JH, green ellipse) levels to increase [91]; JH is also positively correlated with foraging behavior [94] and may enhance IIS by
feedback suppression of vitellogenin (Vg, violet ellipse), a proposed negative regulator of IIS [34],[86],[92],[93]. These relationships contradict the
repression of IIS by elevated PTEN in forager brain tissue. In contrast, suppressed IIS by PTEN in ovary tissue is consistent with the reduced
reproductive propensity of foragers [31]. In fat body (yellow), PTEN isoform B, ilp-1 and insulin-like peptide 2 (ilp-2) are elevated in nurses compared to
foragers (K. Ihle, unpublished data; and results in this paper), but effects on metabolic biology are currently unclear. The ilp gene products from fat
body or brain may also take part in remote signaling to other organs [32]. In this illustration, larger-size circles/ellipses, and thicker arrows (positive)/
blocked arrows (negative) denote higher levels of expression, enhancement and suppression, respectively. Dotted arrows indicate the yet unresolved
effects on worker phenotypes.
doi:10.1371/journal.pone.0022195.g006
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