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Abstract

Local field-potentials (LFPs) are generated by neuronal ensembles and contain information about the activity of single
neurons. Here, the LFPs of the cerebellar granular layer and their changes during long-term synaptic plasticity (LTP and LTD)
were recorded in response to punctate facial stimulation in the rat in vivo. The LFP comprised a trigeminal (T) and a cortical
(C) wave. T and C, which derived from independent granule cell clusters, co-varied during LTP and LTD. To extract
information about the underlying cellular activities, the LFP was reconstructed using a repetitive convolution (ReConv) of
the extracellular potential generated by a detailed multicompartmental model of the granule cell. The mossy fiber input
patterns were determined using a Blind Source Separation (BSS) algorithm. The major component of the LFP was generated
by the granule cell spike Na+ current, which caused a powerful sink in the axon initial segment with the source located in
the soma and dendrites. Reproducing the LFP changes observed during LTP and LTD required modifications in both release
probability and intrinsic excitability at the mossy fiber-granule cells relay. Synaptic plasticity and Golgi cell feed-forward
inhibition proved critical for controlling the percentage of active granule cells, which was 11% in standard conditions but
ranged from 3% during LTD to 21% during LTP and raised over 50% when inhibition was reduced. The emerging picture is
that of independent (but neighboring) trigeminal and cortical channels, in which synaptic plasticity and feed-forward
inhibition effectively regulate the number of discharging granule cells and emitted spikes generating ‘‘dense’’ activity
clusters in the cerebellar granular layer.
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Introduction

The local field potentials (LFP) contain information about the

underlying cellular activity and have extensively been used to

investigate central circuit functions. In the cerebellum, the LFP

evoked in the of the granular layer by mossy fiber activity was

supposed to originate from granule cell spike currents, so that it

could be used to gain information about the discharge of these

neurons in several functional conditions [1,2]. Micromapping

experiments have suggested that granule cell activation occurs in

clusters reflecting connections with different afferent fibers [3]. In

response to punctate facial stimulation, the LFP is comprised of an

earlier response conveyed through the trigeminal pathway (T

wave) and a secondary response (C wave) conveyed through the

thalamo-cortico-pontine circuit [4,5], which could as well reflect

activation of separated clusters. Interestingly the LFP can be

persistently modified following patterned sensory stimulation with

properties compatible with long-term synaptic plasticity (long-term

potentiation and depression: LTP and LTD) at the mossy fiber –

granule cell synapse [5]. However, a direct assessment of the

mechanisms generating the LFP as well as of its modifications

during long-term synaptic plasticity were missing.

Detailed cellular and circuit investigations have recently revealed

how the granule cells respond to mossy fibers and how their output

spike pattern is regulated by the number of active synapses and by

the local inhibitory circuit [6,7,8,9,10,11,12,13,14,15,16]. The

granule cells generate spike bursts limited in time by feed-forward

inhibition (‘‘time-windowing’’) and in space by lateral inhibition

(‘‘center surround’’) caused by the Golgi cells. Moreover, the bursts

are modified during LTP and LTD at the mossy fiber – granule cell

synapse through multiple expression mechanisms involving changes

both in release probability and intrinsic excitability [17,18,19,20].

Relevant information has also been provided about Golgi cell

activation in vitro and in vivo [21,22,23,24], showing short burst

responses well suited for rapid and intense granule cell inhibition.

These granule cells [14,25,26,27,28] and Golgi cells [29,30] have

been modeled [14,25,26,27,28] and this has allowed to integrate the

various mechanisms into functional network hypotheses [31,32,33,

34,35,36,37].

It should be possible in principle to use the extended knowledge

on granule cell physiology to interpret the LFP, in particular to

predict the proportion of granule cells activated in a cluster and

the mechanisms through which the LFP changes during LTP and
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LTD. In this work we have reconstructed the LFP through a

repetitive convolution of the extracellular signal generated by a

detailed granule cell multi-compartmental model [26,27,28]. This

mathematical reconstruction supports the prediction that the

granular layer LFP reflects granule cell spikes, with the main

current sink located in the granule cell axon initial segment. Both

changes in mossy fiber - granule cell release probability and in

granule cell intrinsic excitability are required to explain LTP and

LTD in the LFP. The percentage of discharging granule cells in a

cluster is tuned between 3% and 21% by LTP and LTD and can

raise over 50% by reducing Golgi cell inhibition. These

simulations allow therefore to interpret the LFP on the basis of

the main cellular processes occurring in the granular layer in

response to peripheral stimulation and demonstrate that LTP and

LTD depend on the same blend of mechanisms revealed in vitro.

The high percentage of discharging granule cells in the active

clusters does not support the concept of sparseness anticipated by

early theoretical models [38,39,40], while it is compatible with a

congruent organization of granular and molecular layer activity

along vertical transmission lines [41,42,43].

Methods

The LFP is an ensemble signal and its interpretation involves

extracting information about the constituent single neuron

sources. This can be done in principle through a model containing

prior information about circuit organization and about the

mechanisms of extracellular current generation [44]. In this work,

the LFP of the cerebellum granular layer was reconstructed

through a repetitive convolution (ReConv) of the extracellular

currents generated by a detailed granule cell multi-compartmental

model [27]. ReConv was designed to identify salient properties of

the underlying neuronal circuit on an information theoretical basis

making use of a limited set of network parameters. This is indeed a

novel approach. While methodological elements have been

previously developed in signal theory (see below), their combina-

tion and application to LFPs generated in the brain has never been

tested before. The main predictions of ReConv on network

activity have been counter-tested using the available large-scale

network model of the cerebellum granular layer [14] in order to

independently derive the statistical parameters of network

connectivity (see Appendix S1). The ReConv source codes are

provided in ModelDB.

Extracellular current and potential generated by a
granule cell multicompartmental model

The two main neurons characterizing the granular layer

response are the granule cells and the Golgi cells, and it is

therefore important to determine their relative contribution to the

LFP evoked response. The field potential [45] depends on the

relative surface of the electrogenic elements of the granular layer

(V!C
Ð

Imdt, with membrane capacitance C being proportional

to cell surface; [45]). The granule cell:Golgi cell ratio is 500:1 for

number of cells [2,46] and 3:50 for cell surface [18,47]. This yields

a 30 times larger electrogenic surface for granule cells, which

therefore determine most of the signal (this is indeed a lower limit

since some Golgi cells could be silent [21]). Thus, most of the

current generating the LFP response depends on the granule cells.

The Golgi cells, beside their central in determining network

activity, would play a minor role in generating the LFP [10].

Conversely, current-source density analysis (CSD), which reveals

oriented current flows ({I~sx
d2V

dx2
zsy

d2V

dy2
zsz

d2V

dz2
, with s

being the medium conductivity along orthogonal axes in a 3D

space) would be unable to reveal synaptic granule cell currents due

to the random orientation of dendrites but could reveal synaptic

Golgi cell currents in the apical dendrite [22].

Multi-compartmental neuron models have been successfully

used to explain LFP generation in the olfactory bulb [41,48,49,50]

and in the hippocampus [51,52,53,54]. Here we have used a

detailed granule cell multi-compartmental model composed of 52

active compartments including the soma with four dendrites and

an axon [27] to explain LFP generation in the cerebellar granular

layer. And since all the granule cells are very similar (e.g. see

[9,55]), a single model could represent all their activities both for

the T and C waves of LFP.

The model, which incorporates a detailed biophysical recon-

struction of membrane mechanisms [26,27,28], accounts for the

known electrophysiological properties of the granule cell. The Na+

channels include the transient, persistent and resurgent properties

and are concentrated in the axon [56,57] (a fourth property, slow

inactivation, was not included [58], but it should have little

relevance on the on the time-scale of these simulations). Mossy

fiber - granule cell synaptic transmission was modeled using a 3-

state cycle regulated by the probability of release, p [20,28]. LTP

and LTD were simulated by changing p as well as intrinsic

excitability (IE) in granule cells [17]. While p was varied over a

continuous range of values, IE was changed step-wise (increased

for LTP or decreased for LTD with respect to the control state). In

a previous work [28], a systematic analysis of the potential factors

involved in IE changes suggested a critical role for the Na+

current. Here, in order to model IE changes, the sodium current

steady-state inactivation curve was shifted along the voltage axis

(to increase IE, Con was decreased to 20% and Oon was decreased

to 66.7% of the control value; to decrease IE, Con was increased to

200% and Oon was increased to 133.3% of the control value –

compare the kinetic scheme reported in [56,57]).

The extracellular currents generated by the model were

computed using the ‘‘extracellular mechanism’’ implemented in

NEURON [59]. Then these currents were used to compute the

extracellular potentials using a Line Source Approximation (LSA)

[59] assuming a purely resistive and homogenous extracellular

medium. In the case of an electrode with finite size, several

compartments lay at nearly the same distance from it. Thus, the

typical LFP was simply generated by summing the contribution of

all somatodendritic compartments, including dendrites, soma and

axon hillock (a similar reasoning applies to axonal compartments

when the electrode is positioned within an axon bundle).

The extracellular potentials generated by activating the granule

cell model with various synaptic combinations were used as the

‘‘kernels’’ for reconstructing the LFP evoked response (simply

called ‘‘LFP reconstruction’’ throughout). With 1–4 mossy fiber

synapses and 0–4 Golgi cells there are 20 independent input

combinations. Following a preliminary exploration, several

patterns looked very similar (redundancy). Thus, certain combi-

nations of mossy-fiber/Golgi cell synapses (1/4, 2/3, 3/2, 4/1)

were considered representative and were used for generating the in

vivo LFP responses.

Field potential reconstruction by repetitive convolution
(ReConv)

LFP reconstruction consisted in accounting for all relevant

combinations of extracellular response in a cluster of granule cells

detected by the recording electrode. These responses were

combined through a convolution algorithm (ReConv) taking into

account the geometry and dynamics of the active granule cell

cluster.

Cerebellar Local Field Potential Modeling
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The mossy fibers were activated with short high-frequency

trains (10–20 spikes/burst at 300 Hz) to mimic punctate sensory

stimulation in vivo [6,7,8]. According to experimental analysis,

inhibitory synapses were activated 4 ms after the mossy fibers

accounting for the delays introduced by Golgi cell activation and

transmission to granule cells [10,16] (it should be noted that Golgi

cells were not simulated explicitly). The proportions of active

mossy fibers per granule cell was that obtained using BSS (see

below). Granule cell activation was scattered using a normal

distribution with 3 ms mean and 1 ms standard deviation based

on experimental presynaptic neurotransmission delays [60].

Moreover, the granule cells were assumed to be homogeneously

distributed in space and their contribution to the LFP was scaled

depending on the distance from the recording electrode. The time

delays and the different distance from the electrode cause temporal

and spatial ‘‘jitter’’ of granule cell activity in the cluster (see below).

The number of granule cells in a cluster was derived from previous

works, indicating ,600 granule cells in LFP in vitro [10] and ,200

granule cells in LFP in vivo [5].

Mathematically, the LFP was treated as a temporal population

code generated by multiple sources (signals) disturbed by jitter

(noise). This case is known in signal analysis theory as ‘‘convolution

of signals with noise’’ and uses repetitive convolution methods

(ReConv) [61] that were successfully applied to SONAR and

RADAR data analysis. In order to compute the LFP from multiple

compartments of a single neuron model, two convolutions are

performed sequentially. The first convolution averages the various

possible activation patterns to generate a mean local field outside a

single neuron and incorporate temporal jitter. The second

convolution uses the single neuron field to estimate the LFP in the

region of interest by accounting for spatial jitter caused by the

localization of cells in different points of the extracellular space. The

model estimates the LFP in a small region (a sphere of ,15 mm

radius), whose size was chosen by the approximate volume occupied

by the cells forming the cluster. The extracellular resistivity was

assumed at the standard value of 0.1 MV/cm (cf. [62] reporting

pyramidal layer resistivity of 0.26 MV/cm.; see also [54]).

The ReConv algorithm consists of the following steps:

1. Sum the extracellular signals extracted from a group of

compartments in neuron i (e.g. see Fig. 3). Repeat this

operation for different mossy fiber combinations obtaining

single neuron kernels, Ximf
.

2. Convolve the single neuron kernels, Ximf
, with temporal jitter,

ftime: X 0imf
~ftime0Ximf

3. Weight and sum the traces (X 0imf
) to get the prototypical filed

response generated by a single neuron: XGC~
P

wi �X0imf

4. Iteratively, convolve using spatial jitter for the jth of n cells in

the region of interest: YGCj
~gspace0Ynj

. Each YGCj
corre-

sponds to a granule cell in the region of interest.

5. Weight and sum the traces to get the field LFP signal,

YLFP~
P

YGCi

Definition of natural activation patterns by Blind Source
Separation (BSS)

Although recordings showing single mossy fiber activity have

been reported [8,23,63,64,65], the distribution of mossy fiber

activity to granule cells remained unknown. A Blind Source

Separation (BSS) algorithm was used to estimate which proportion

of granule cells, wi, is activated by a given number of fibers, 1,nmf

,4 [66]. BSS was performed using JADE (Joint Approximate

Diagonalization of Eigen-matrices, [67]) and allowed to identify

four independent LFP components. In order to correlate the wi of

each component with a specific nmf, a data mining procedure

called ‘‘cross-validation’’ was performed [68]. In brief, the

ReConv algorithm was used to generate LFPs with the computed

wi and nmf values in all possible combinations. Then the LFPs were

processed with CLAMPFIT in the same way as the experimental

traces (see [5]). The comparison of the simulated data with the

experimental waveform allowed to identify the best wi and nmf

combination (2 fold cross-validation, n = 10; MSE = 0.25%;

Table 1 and see Appendix S1).

In vivo LFP recordings
The experimental procedures adopted in this work were

approved by the Ethical Committee of the University of Pavia

under the protocol ‘‘Bioelectric activity in the cortico-cerebellar

circuit’’ (9194/A of 01.08.94 renewed as 68/97-A on 23.10.97,

art. 12 D.L. n.116/92) and details are fully reported in a previous

paper [5]. Briefly, LFPs were recorded from Crus-IIa in urethane-

anesthetized P20-P25 rats following air-puff stimulation. The 30-ms

air-puffs were delivered under electronic control through a 100 mm

diameter nozzle positioned about 2 mm from the skin. In order to

activate different receptive fields, the nozzle was moved over the

whisker pad. On each point, stimulation was repeated 50 times and

the average response was taken. In some experiments, a second

recording electrode was placed in the somato-sensory cortex (SI).

Local cortical inactivation was obtained by pouring ice-cold saline

over SI. The induction of long-term synaptic plasticity using theta-

stimulation patterns followed the same paradigms reported in [5].

Usually, 10-16 consecutive traces were averaged and filtered

(100 Hz high-pass, 2 kHz low-pass; the high-pass was required to

stabilize the baseline avoiding slow oscillations without otherwise

altering the evoked response shape). The main parameter measured

in the LFP was the amplitude of the T and C waves relative to

baseline (the measure was taken at peak of the two waves relative to

the average value in the 100 ms preceding stimulation). Data were

recorded and processed using a Multiclamp amplifier and PClamp

10 software (Molecular Devices Inc, USA).

These data were used (i) to define the aggregation in clusters of

the granular layer LFP, (ii) to determine the mossy fiber input

pattern, (iii) to provide the template for LFP reconstruction and (iv)

to determine the LFP changes during long-term plasticity. Noisy or

unstable recordings were not considered further. The recordings

showing Golgi cell activity (less than 10%, characterized by large

theta-frequency spikes in the granular layer), which indicates close

vicinity of the electrode to a Golgi cell soma [23,24,69], were

likewise discarded from the analysis.

Table 1. Cross-validation of BSS on LFPs.

Nmf wi (%) simulations wi (%) BSS values wi (%Error)

1 15 13.4 0.51

2 35 36.6 0.22

3 35 34.41 0.08

4 15 15.59 0.19

The table reports the relative percentage wi of granule cells receiving 1 to 4
different mossy fibers (Nmf). The values used for simulation are approximations
of those calculated by BSS. Note that the largest wi error occurs for single
connections, which make a minor contribution to the LFP.
doi:10.1371/journal.pone.0021928.t001

Cerebellar Local Field Potential Modeling
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Data processing and simulation tools
Experimental and model traces were processed (filtering and

averaging) using CLAMPFIT (PClamp 10, Molecular Devices Inc,

USA). LFP measurements on the simulated signals were usually

performed after averaging 10–16 traces and low-pass filtering at

2 kHz in agreement with the experimental case [5,10]. The single cell

model was run in NEURON [59]. All other algorithms (including

those of ReConv and BSS) were developed in MATLAB (Math-

works, Gatwick, USA), which was also used for data processing.

Results

Cluster activation in the granular layer local field
potential in vivo

Although the local field potentials (LFPs) elicited by mossy fiber

activity in the cerebellum granular layer in vivo have been described

in several works [1,2,4,5,70], some critical aspects remained unclear.

It has been proposed that the granular layer LFP elicited by

punctate tactile stimulation is composed by two main waves: T

Figure 1. Origin of T and C waves from trigeminal and cortical pathways. (A) On the left, a schematic representation of the somatosensory
circuit: tr.n. = trigeminal nucleus; VB = ventro-basal thalamus; SI = primary somatosensory cortex (controlateral); a.p. = air-puff. On the right, two
simultaneous recordings (black traces) from SI and Crus IIa are shown: the evoked field potentials were obtained by stimulating the same whisker pad
region. In Crus-IIa, T is the first to appear. Note that SI precedes C and that SI inactivation with ice-cold extracellular Krebs solution leads to a selective
and reversible reduction of C but not of T (grey trace) amplitude. These observations support the model in which T derives from the direct trigeminal
pathway (blue), while C has a cortical origin (red). Each trace is the average of 20 responses. The inset shows the time-course of the cooling solution.
(B) Responses recorded from an electrode positioned in Crus-IIa granular layer and elicited by moving the air-puff stimulus in different positions (the
corresponding facial coordinates of the rat whiskers are shown in the inset). The changes in wave amplitude and shape indicate different receptive
fields for each location. It should be noted that, in some cases, wave polarity is inverted while changing the stimulus position. Each trace is the
average of 60 responses. The plot shows the amplitude of C relative to T peak (amplitude values are normalized to the average of the responses);
data are obtained from 5 different experiments with stimulation in at least 4 different whisker-pad regions. The linear fit is C = 0.08+1.08T, with
R2 = 0.012. The T-C amplitude changes are therefore not correlated, indicating that two different clusters of granule cells are involved in generating T
and C.
doi:10.1371/journal.pone.0021928.g001
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(corresponding to direct trigeminal afferents) and C (correspond-

ing to inputs passing through the thalamus, cerebral cortex and

pontine nuclei). In a series of experiments the LFP evoked by

sensory stimulation was simultaneously recorded from the somato-

sensory cortex (SI) and from Crus-IIa of the cerebellum

(Figure 1A). The SI response consisted of a first wave (SI1) arising

at 18.560.6 ms (n = 13) and peaking at 26.961.1 ms (n = 13)

followed by slower waves. SI1 anticipated C by 7.261.9 ms at the

beginning and 6.361.4 ms at peak (n = 13), accounting for the

time needed for spike propagation through the cortico-ponto-

cerebellar pathway. SI inactivation with ice-cold saline led to a

reversible reduction of C (241.466.0%, p,0.05 n = 4), while T

was almost unaffected (213.8611.5% n = 4, p = 0.18). The

difference of changes in T vs. C was statistically significant, with

T decreasing 3.060.4 times less than C (p,0.001, n = 4). Thus, C

and T depended on signals conveyed by different afferent circuits

and C required signal retransmission through the cerebral cortex.

A relevant issue is whether T and C waves are generated by the

same or by two independent granule cell populations [4,5]. In

order to test this issue we have exploited the fact that moving the

air-puff pipette over the whisker-pad allows activating different

receptive fields and so different granular layer sub-fields

(Figure 1B). If T and C were generated by the same granule cell

population, then moving the air-puff pipette would proportion-

ately scale their amplitude. Conversely, if different populations

were involved, T and C should change independently. In fact, by

changing the air-puff pipette position, T and C changed

independently, so that one could increase while the other could

decrease or even invert polarity. The plot of normalized C vs. T

values showed points distributed around 1 with negligible slope

(C = 0.08+1.08T) and a regression coefficient R2 = 0.012, indicat-

ing that the two parameters were statistically independent. Thus,

T and C had to be generated by independent granule cell clusters.

Finally, the number of mossy fibers taking part to the excitation

of individual granule cells in the local clusters is unknown. The

proportion of active mossy fibers per granule cell during afferent

sensory bursts was determined by BSS (see Methods) under the

assumption that release probability was the same for all synapses

and equal to the value measured in vitro (p = 0.42; [20,71]). In 14

Figure 2. LTP and LTD of the T and C waves. (A) LFPs recorded from Crus IIa before (black) and after the induction of plasticity with theta-
sensory stimulation (16 air puffs at 4 Hz). Left, recording in control. Right, recording in the presence of gabazine. Each trace is the average of 20
responses. (B) Time-course of LFP variations for the peak T and C wave amplitudes measured relative to baseline before stimulation. The data are
taken either in control (open symbols) and in the presence of gabazine (filled symbols). Note that LTP and LTD are similarly expressed both in the T
and C wave. Data are reported as mean 6 MSE (n = 5 in all series).
doi:10.1371/journal.pone.0021928.g002

Table 2. Field potential changes after TSS.

TSS TSS with gabazine

T C T C

Experiments 233.968.9
n = 5
p,0.01

225.267.0
n = 5
p,0.01

24.265.2
n = 6
p,0.005

18.766.0
n = 4
p,0.05

Model 213.9 241% 18.21 34.9

The field potential changes after TSS were recorded either in control conditions
or with gabazine superfusion (t = 30 minutes after induction). Both T and C co-
vary during LTD and LTP with gabazine.
doi:10.1371/journal.pone.0021928.t002

Cerebellar Local Field Potential Modeling
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field potentials (taken from [5]), BSS yielded approximately 15%

of 1 fiber (range 1.08 to 21.39), 35% of 2 fibers (range 14.69 to

44.91), 35% of 3 fibers (range 23.15 to 50.0), 15% of 4 fibers

(range 6.89 to 22.46).

Long-term synaptic plasticity in the granular layer local
field potential in vivo

It was recently shown that the granular layer LFP can be

persistently modified by theta-sensory stimulation (TSS) [5]. The

analysis of the T wave showed that TSS caused LTD in control,

while TSS caused LTP in the presence of the GABA-A receptor

antagonist, gabazine, applied to the cerebellar cortex. Here, the

analysis of TSS effects was extended to the C-wave either in

control conditions (n = 5) or during perfusion of the GABA-A

receptor antagonist, gabazine (TSS+gabazine, n = 5). Both T and

C showed LTD in control and LTP with gabazine (Figure 2), so

the two waves co-varied. The T and C wave changes (both

measured relative to baseline) are reported in Table 2.

Local field potential reconstruction by repetitive
convolution techniques

The hypothesis on the generation of the local field potential of

the granular layer dates back to the original observations of Eccles

et al. [1,2], who proposed that the LFP was determined by granule

cell discharge with the spike current sink in the granular layer and

current source in their axons (the parallel fibers). Accordingly, the

polarity of the LFP reversed when the electrode was moved from

the granular to molecular layer. The mechanism generating the

LFP was reconstructed here by using a granule cell multi-

compartmental model (Figure 3A–B). These simulations showed

that spikes made the largest contribution to the field potential with

the major current sink in the axon hillock where Na+ channels are

concentrated [56]. Synaptic currents gave a smaller contribution

with the sink in the dendritic tip. This arrangement differentiates

granule cells from neurons like pyramidal cells, in which the

extended dendritic tree endowed with synapses and Na+ channels

causes a prevalent sink in the dendrites [31,72].

In order to reconstruct the LFP, the mossy fibers were activated

using either a single pulse to mimic electrical stimulation for in vitro

simulations or short high-frequency trains mimicking punctate

sensory stimulation for in vivo simulations (Figure 4) [6,7,8]. The

proportions of mossy fiber – granule cell connections were

identified by BSS (Table 2). Golgi cell inhibition was assumed to

occur synchronously after 4 ms on all the granule cells

[10,16,73,74]. The LFP was then reconstructed by convolving

granule cell responses evoked by mossy fiber activity in time and

space through jitter functions (ReConv, see Methods). Since the

granule cells emit ascending axons bifurcating into the parallel

fibers as they reach the molecular layer, an electrode located into a

granule cell cluster would detect the signal from the spike current

sink, while an electrode located into the axon bundle would be

recording from the source [2]. Accordingly, the sign of the

simulated field potential was inverted in the two cases explaining

the experimental observations (Figure 4). In particular in vivo, by

moving the stimulation point on the whisker pad, the T and C

Figure 3. Extracellular field potential generated by a single granule cell. (A) Schematic representation of a granule cell according to the
model of Diwakar et al. [27]. The granule cell generates synaptic responses in the dendritic endings and action potentials in the axon hillock. This
forms two current sinks, with the axon hillock giving by far the major contribution. The broken arrows depict the current flow, colors indicate the
major neuronal comportments. The Na+ channels are concentrated in axon hillock, as indicated by immunohistochemistry [43], the excitatory and
inhibitory synaptic channels are located in the terminal dendritic compartments. The circuit schematics on the left shows the flow of transmembrane
current over the extracellular resistance. The extracellular potentials generated by different compartments of the granule cell model are shown to the
left (same colors as in the neuron compartments). Notice that the extracellular potential is the largest in correspondence of the hillock, where Na+

channels have the highest density. (B) Extracellular field potential generated by a single granule cell ‘‘seen’’ from an electrode covering soma,
dendrites and axon hillock (corresponding to a granular layer sink). Both in A and B, the neuron responds to the synchronous activation of all four
mossy fibers (and all four inhibitory synapses, when active). Both in A and B, the neuron generates a single spike when synaptic inhibition is active,
while it generates a doublet when synaptic inhibition is turned off.
doi:10.1371/journal.pone.0021928.g003

Cerebellar Local Field Potential Modeling

PLoS ONE | www.plosone.org 6 July 2011 | Volume 6 | Issue 7 | e21928



waves recorded from the granular layer change disproportionately

and can even assume opposite sign. This could be easily explained

if T and C, which depend on the trigeminal and cortical input,

were generated by different granule cell clusters contributing

either to sink or source signals (cf. Figure 1B).

Modeling the LFP response to single mossy fiber pulses:
in vitro case

In the circuit used for field potential reconstruction in vitro

(Figure 5A), the mossy fibers were activated with a single pulse and

the granule cells composed a single homogeneous cluster.

Depending on the different combinations of active mossy fibers

and granule cells, different responses could be obtained (Figure 5A,

inset). The proportion of active mossy fibers per granule cell was

determined by using BSS from 20 LFP recordings from brain slices

yielding, approximately: 5% 1 fiber (range 1.99 to 9.08), 45% 2

fibers (range 37.70 to 50.0), 35% 3 fibers (range 26.14 to 45.50),

15% 4 fibers (range 7.21 to 20.21). With these parameters and 700

granule cells in the cluster, the model reproduced the field

potential measured in vitro showing an appropriate proportion

between N2a and N2b waves (Figure 5B).

In addition, the model generated three major predictions

(Figure 5B–C). First, spike doublets in granule cells were the cause

of N2a and N2b in the LFP. Secondly, synaptic inhibition, because

of its delayed activation, controlled generation of the second spike

in the doublet thereby regulating N2b amplitude. Thirdly, the

NMDA component, because of its slow raise, was the main

responsible for generating the second spike and N2b. Collision of

NMDA receptor-mediated depolarization with Golgi cell inhibi-

tion regulated doublet generation. The model captured, therefore,

the main mechanistic properties of LFPs revealed by simultaneous

multi-electrode array, patch-clamp and pharmacological analysis

in acute cerebellar slices [15].

Figure 4. Mathematical reconstruction of local field potentials by repetitive convolution. (A) LFP simulating in vitro recordings in
response to a single stimulus. The N2a and N2b waves are generated by a single cluster composed of 600 granule cells and are caused by spike
doublets in granule cells in the absence of inhibition. The shape of the waveforms is expression of the temporal and spatial jittered convolution of
several individual responses (cf. Figure 3). (B) LFP simulating in vivo recordings in response to a train of 3 stimuli at 300 Hz. The T and C waves are
generated by different granule cell clusters with inhibition arriving 5 ms after the beginning of the stimulus. When both clusters surround the
electrode, the two waves show negative polarity. However, C is inverted once the activated cluster moves proximally and the electrode records from
axons. (C) The different time-scale of the response to a single stimulus and to bursts of stimuli is shown for comparison.
doi:10.1371/journal.pone.0021928.g004

Cerebellar Local Field Potential Modeling

PLoS ONE | www.plosone.org 7 July 2011 | Volume 6 | Issue 7 | e21928



Modeling the LFP response to single mossy fiber pulses:
in vivo case

In vivo field potentials were reconstructed by activating the

mossy fibers with short spike bursts generating EPSPs and spikes in

granule cells [6,7,8]. T and C waves were generated independently

using 500 Hz trains, with C delayed by 10 ms to respect the

timing observed in vivo. The inhibition coming from Golgi cells

arrived with 4 ms delay and consisted of a short IPSP burst (3

IPSPs at 100 Hz) in the granule cell (Figure 6A; [23,29,30]). By

using the mossy fiber proportions reported above and 220 granule

cells in the cluster, ReConv generated T and C waveforms with

appropriate timing and shape (Figure 6B). The simulations were

carried out with independent inhibition over the two granule cell

populations.

The simulated field recordings showed the typical pharmacolog-

ical changes observed experimentally (Figure 6C; cf. [5]). Blocking

GABA-A receptors increased and protracted the T and C waves and

raised the proportion of cell making spikes from 12.5% to 50.1%.

Blocking NMDA receptors strongly reduced the waves almost

abolishing the ability of making spikes ([9]; see also the recent

demonstration in NR2A knock-out mice, [75]), and no further

changes were determined by subsequent blockage of GABA-A

receptors [10]. These results demonstrate that the reconstruction of

granular layer field potentials can capture the main properties of the

underlying cellular mechanisms, estimating at the same time the

proportion of active granule cells in responding clusters in vivo.

Prediction of the effects of long-term synaptic plasticity
on the LFP in vivo

The LFP undergoes plastic changes in vivo in the form of LTP

and LTD [5]. In order to simulate the impact of long-term

synaptic plasticity on the LFP, we have systematically changed

release probability (p), which has been reported to increase during

LTP and to decrease during LTD in vitro [15,19,20]. As the natural

distribution of p values is unknown, we have assumed that the p

value is the same for all the fibers. Since the T wave is of easier

interpretation [5], simulations were first carried out to investigate

the effect of p on the T wave (Figure 7, Table 2).

In these simulations, T changed with p but the T amplitude was

highly sensitive to p changes only for p values lower than 0.4. Thus,

the LFP plasticity curve based on p changes was asymmetric. This

raises an issue on what the LFP can reveal about plasticity, since LTP

and LTD are nearly symmetric and bidirectional in nature [5,19].

One possibility is that the average resting p value is lower in vivo than

in vitro. Alternatively, LTP may occur mostly at synapses with low

initial p and LTD at synapses with high initial p [20]. Yet another

Figure 5. Mechanism of local field potential generation in vitro. (A) Granule cell (GrC) responses generated by combining the input from 1 to
4 mossy fibers with inhibition from 0 to 4 Golgi cells (GoC). This gives rise to 20 fundamental combinations. Excitation and inhibition consist of a
single pulse, with inhibition occurring 4 ms after the beginning of excitation. N2a is generated by the first and N2b by the second spike in a doublet.
Schematics of the circuit are shown at the top. (B) The LFP in vitro is generated by jittered convolution of different responses in a 600 granule cell
cluster, four of which are shown at the top. (C) The LFP control by synaptic receptors accounts for experimental observations: N2b, but not N2a, is
increased by GABA-A receptor switch-off and reduced by subsequent NMDA receptor switch-off.
doi:10.1371/journal.pone.0021928.g005
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possibility is that p changes are not sufficient to explain the long-term

synaptic plasticity of LFPs in vivo. It has been reported that changes in

granule cell intrinsic excitability (IE) usually occur during LTP in vitro

and enhance spike generation [17]. We have therefore simulated a

bidirectional change in IE, as reported in hippocampal neurons [76].

The excitability of granule cells was modulated by changing the

activation and inactivation time constants of the sodium current (see

Methods). By combining pre- and postsynaptic changes, amplitude

sensitivity was extended symmetrically over the whole p range

(Figure 7) so that, by moving from the resting state (p = 0.4) by 0.2 p

units allowed to obtain an LFP amplitude change comparable to LTP

and LTD measured experimentally on the T wave ([5]; cf. Table 2).

The simulation were then used to analyze the C wave changes

during plasticity. When the model was used to simulate the effect

of TSS in control condition (LTD with decreased p and E/I), the

C amplitude decreased. When the model was used to simulate the

effect of TSS with inhibition blocked (LTP with increased p and

E/I), the C amplitude increased. Therefore, the model predicted

that the C wave changes had always to co-vary with the T wave, as

indeed observed in recordings in vivo (cf. Figure 2 and Table 2).

The other parameter sensitive to LTP and LTD is the lag to the

T wave. This lag is related to the spike delay shift caused by

changes in p and the consequent modification of the temporal

summation rate of EPSPs [28]. The lag was most sensitive to p

changes at low p and its sensitivity was extend over the whole p

range following changes in IE (Figure 8).

In the simulations, LTP and LTD were accompanied by

changes in the proportion of discharging granule cells. In naı̈ve

conditions (p = 0.4), following burst activation, spikes arose in

12.5% of the cells and the proportion became 21.25% with LTP

and 3.75% with LTD. Thus, the proportion of discharging granule

cells decreased or increased without either going to zero or

saturating.

Discussion

This paper explains the generation mechanisms of local field

potentials (LFPs) in the cerebellar granular layer and predicts the

LFP changes caused by LTP and LTD. The T (trigeminal) and C

(cortical) waves of the LFP in vivo reflected independent granule

cell clusters, whose activity was reconstructed using a mathemat-

ical simulation. LFPs reconstruction was based on repetitive

convolution (ReConv) techniques applied to extracellular currents

generated by a detailed multi-compartmental model of the granule

cell [27]. Simulations predicted that LFP changes occurring during

LTP and LTD had to be sustained by simultaneous changes in

both mossy fiber release probability (p) and granule cell intrinsic

excitability [28]. The same mechanism could be applied to both

Figure 6. Mechanism of local field potential generation in vivo. (A) Different granule cell responses generated by combining the input from 1
to 4 mossy fibers with inhibition from 0 to 4 Golgi cells (GoC). Excitation consists of a pulse train at 500 Hz and inhibition of 1 impulse occurring 4 ms
after the beginning of excitation. Due to redundancy, 4 out of 20 patterns (GrC/GrC = 1/4, 2/3, 3/2, 4/1; thicker lines) are sufficient to adequately
reconstruct the LFP. The T and C waves are generated independently (C has a delay of 10 ms) and then summed linearly. Schematics of the circuit are
shown at the top, illustrating independent circuits for T and C. (B) The LFP in vitro is generated by different combinations of responses, four of which
are shown at the top. (C) The LFP control by synaptic receptors accounts for experimental observations: T and C are increased by GABA-A receptor
switch-off and reduced by subsequent NMDA receptor switch-off.
doi:10.1371/journal.pone.0021928.g006
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the T and C waves of the LFP, suggesting that plasticity occurs in

different clusters with similar mechanisms independent from the

origin of afferent fibers. In the active granule cell clusters, the

percentage of granule cells emitting spikes in response to a

punctate somato-sensory stimulus was ,11% and, depending on

whether LTD or LTP were expressed, this values ranged from 3%

to 21%. However, in the absence of synaptic inhibition, the same

patterns activated more than 50% of the granule cells. These

simulations suggest therefore that, during natural stimulation,

long-term synaptic plasticity and feed-forward inhibition regulate

the number of active granule cells generating ‘‘condensed’’ activity

clusters in the cerebellum granular layer [33].

Reconstruction of the granular layer local field potential
The simulations allowed to reconstructing the granular layer

LFP both in vitro and in vivo. During spikes, the granule cell axon

hillock acted as a powerful sink of Na+ current while the rest of the

neuron acted as a passive source [27], providing most of the

extracellular current flow generating the LFP. Our simulations

thus support the original LFP interpretation put forward more

than 50 years ago [1,2]. In granule cells, the maximum synaptic

current is about 10 times smaller than the spike current [20,26,56],

so that the spike gives the major contribution to the LFP. This

situation is opposite to that observed in neurons of the olfactory

bulb [41,48,49,50] and cerebral cortex and hippocampus

[51,52,53,54], in which the contribution of synaptic currents to

the LFP is prevalent.

ReConv assumes that (i) several granule cell discharge patterns

are redundant and cannot be tied apart (i.e. a limited set of

patterns is representative for all possible patterns), that (ii) granule

cells are similar one to each other, that (iii) connectivity is the same

in the whole cluster, that (iv) LTP and LTD are homogeneously

distributed in the cluster, and that (v) the extracellular matrix of

the cluster is isotropic. BSS assumes that the number of active

mossy fibers per granule cells is the main determinant of response

pattern generation in the LFP. The marked adherence of

simulations to experimental results suggests that the assumptions

used for ReConv and BSS are not critical to interpret the LFP,

and this conclusion is fully supported by the large-scale model

simulations reported in Appendix S1. This implies that the

ReConv and BSS provides an effective ‘‘mean-field’’ approxima-

tion of granular layer cluster activity. This probably reflects the

Figure 7. Simulations of the effects of long-term synaptic plasticity -I. (A) Simulated intracellular changes (top) and LFP changes (bottom) in
vivo obtained by changing release probability (p) alone (left) or together intrinsic excitability (IE) (right). (B) The plots show the LFP T-wave and C-
wave peak amplitude changes caused by release probability, p. The three different curves represent levels of IE (low, normal and high). Note that LTP
and LTD changes similar to those observed experimentally occur when both p and IE change bidirectionally around the control value. Each trace is
the average of 15 simulations.
doi:10.1371/journal.pone.0021928.g007
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fact that granule cells have indeed a stereotyped firing pattern and

tend to discharge in a restricted time window [9,55,77,78] due to

the almost synchronous feed-forward inhibition through Golgi

cells, which is enforced by network connections and gap-junctions

[10,16,73,74]. Moreover, the extracellular matrix has a nearly-

random organization characterized by dendrites and axons

traveling in various directions (e.g. see histological preparations

in [1,2,44]).

Prediction of activity in the granular layer clusters
The results reported in Figure 1 and in subsequent simulations

indicate that, in the granular layer circuit, specific receptive fields

activate granule cells clusters segregated (but not far) from those

receiving the corresponding signals coming from cerebro-cortical

loops. It is thus possible that these clusters are synchronized

through a common Golgi cell inhibitory network [73,74] and

project to the same (or to the same group of) Purkinje cells [35].

Indeed simulation results were similar when a common inhibitory

pattern was used to inhibit both granule cell populations (data not

shown).

According to single cell recordings in vitro and in vivo, in the

simulations the granule cells responded with short spike bursts to

bursts in the mossy fibers [6,8] and the Golgi cells inhibited the

granule cells in 3–5 ms [10,16]. This mechanism, which limits the

number of output spikes [33], effectively determined the amplitude

and width of the T and C waves of the LFP. Thus the LFP is

sensitive to the number of spike and to the temporal pattern of

granule cell discharge.

By using the number of cell in a cluster estimated from

morphological and imaging data (600–700 granule cells:

[12,79,80]) and a standard value for extracellular resistivity

(0.1 MOhm/cm) [54,62], the LFP was 2–3 times larger than

observed experimentally (e.g. cf. Figure 4 to Figure 1). Thus, the

extracellular resistivity of the granular layer may be overestimated

and a realistic value may approach that reported for the cortical

pyramidal layer (0.26 MOhm/cm [54]). With 600–700 granule

cells and a proportion of activation of 11%, about 60–70 granule

cells in a cluster would emit spikes following a punctate sensory

input. Due to the center-surround effect caused by lateral

inhibition [10], most of the active granule cells should be located

into the core. This conclusion is supported by simulations using a

large-scale granular layer model [14] (see Appendix S1) showing

that the probability of firing increases from an average value of

11% to 30% in the core. Therefore, when a cluster is activated,

firing should involve a high percentage of active granule cells

(actually 180–200) all condensed into the core.

Prediction of composite mechanisms of LTP and LTD in
vivo

These simulations show that the expression mechanisms reveled

in vitro can explain the LFP changes associated with LTP and LTD

in vivo [5]. The amplitude and delay of the simulated T-wave were

very sensitive to p changes [19,20] at low p but saturated at higher

p values typical of LTP. The proper sensitivity was restored by

raising intrinsic excitability during LTP [17], in agreement with

the fact that the LFP mostly reflects the number of spikes

generated by granule cells. As a corollary, intrinsic excitability may

be reduced during LTD (as observed in hippocampal neurons

[76,81]), although this hypothesis awaits for experimental

confirmation and is not strictly necessary to explain the results of

simulations. Alternatively (or in addition), p may be lower in vivo

than in vitro and LTP could occur more easily at synapses with low

initial p [20], bringing the LFP changes into the high sensitivity

region of the plasticity curve shown in Figure 7.

By using the same blend of plasticity mechanisms, simulations

predicted changes in the C-wave similar to those in the T-wave.

Although it cannot be excluded that additional plasticity may arise

before the cerebellum in the thalamo-cortico-pontine circuit or

that changes may occur the in the T-C through (which reflects

inhibitor process and spike AHP), these observations suggest that

the same mechanisms of induction and expression apply to mossy

fiber – granule cell synapses along both trigeminal and cortical

afferent pathways.

Figure 8. Simulations of the effects of long-term synaptic plasticity -II. (A) Simulated LFP changes in vivo obtained by changing release
probability (p) alone (top) or together intrinsic excitability (IE) (bottom). The rising phase of the LFP is shown on expanded time-scale. (B) The plot
shows the delay changes caused by p in T-wave. The three different curves represent levels of IE (low, normal and high). Note that appropriate LTP
and LTD changes like those observed experimentally occur when both p and IE change bidirectionally around the control value. Each trace is the
average of 15 simulations.
doi:10.1371/journal.pone.0021928.g008
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Conclusion
The emerging picture is that independent trigeminal and

cortical channels converge toward neighboring granular layer

regions of the cerebellum and, despite their different origin, make

use of similar mechanisms of synaptic excitation and plasticity

[41]. The high percentage of discharging granule cells in the active

clusters suggests that information transmitted through these

channels is ‘‘dense’’ rather than ‘‘sparse’’ (meaning that just a

limited number of neurons respond to the input, say ,1%, [39]:

the sparseness hypothesis was originally put forward in the Motor

Learning Theory to explain the expansion recoding process and

was through to be as a pre-requisite for efficient learning at the

parallel fiber – Purkinje cell synapse [38,40]). Multiple active

clusters, by causing the congruent activation of the overlaying

Purkinje cells [41,43], are expected to determine the dynamic

‘‘spot-like’’ activity of Purkinje cells observed in vivo [42].

Moreover, while Marr predicted that plasticity at the mossy fiber

– granule cell relay would ‘‘sooner or later saturate’’ being

therefore computationally irrelevant, these simulations suggest that

saturation is never attained in the cluster. Rather, long-term

synaptic plasticity together with synaptic inhibition, by controlling

the proportion of discharging granule cells and the number of

emitted spikes, could fine tune the delay and gain of transmission

in the clusters [33]. The experimental testing of these predictions

will require further electrophysiological and imaging investigations

of granular layer activity and computational modeling of the

cerebellum and of the cerebro-cerebellar control loops [39].
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