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Abstract

The Scar/WAVE-complex links upstream Rho-GTPase signaling to the activation of the conserved Arp2/3-complex. Scar/
WAVE-induced and Arp2/3-complex-mediated actin nucleation is crucial for actin assembly in protruding lamellipodia to
drive cell migration. The heteropentameric Scar/WAVE-complex is composed of Scar/WAVE, Abi, Nap, Pir and a small
polypeptide Brk1/HSPC300, and recent work suggested that free Brk1 serves as a homooligomeric precursor in the assembly
of this complex. Here we characterized the Brk1 trimer from Dictyostelium by analytical ultracentrifugation and gelfiltration.
We show for the first time its dissociation at concentrations in the nanomolar range as well as an exchange of subunits
within different DdBrk1 containing complexes. Moreover, we determined the three-dimensional structure of DdBrk1 at 1.5 Å
resolution by X-ray crystallography. Three chains of DdBrk1 are associated with each other forming a parallel triple coiled-
coil bundle. Notably, this structure is highly similar to the heterotrimeric a-helical bundle of HSPC300/WAVE1/Abi2 within
the human Scar/WAVE-complex. This finding, together with the fact that Brk1 is collectively sandwiched by the remaining
subunits and also constitutes the main subunit connecting the triple-coil domain of the HSPC300/WAVE1/Abi2/
heterotrimer to Sra1(Pir1), implies a critical function of this subunit in the assembly process of the entire Scar/WAVE-
complex.
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Introduction

Cells harness the power of actin polymerization for the

formation of protruding membrane sheets filled with a dense

actin filament network at the leading edge referred to as

lamellipodia (or pseudopodia in Dictyostelium) to drive cell

migration [1–3]. According to the current knowledge, actin

nucleation in lamellipodia and ruffles is accomplished by the

Arp2/3-complex [4–6]. However, since purified Arp2/3-complex

is intrinsically inactive [7,8], it requires activation by so-called

‘nucleation promoting factors’ (NPFs), such as WASP or WAVE

proteins [9–12]. The first member of WAVE family proteins was

initially identified in Dictyostelium as a suppressor of a cyclic AMP

receptor mutant and was for that reason named Scar [13]. The

Scar/WAVE NPFs are required for plasma membrane projections

in diverse processes such as lamellipodia formation in migrating

animal cells [14,15], dendritic spine morphology in neurons [16]

or trichome morphogenesis in plant cells [17,18]. Genetic

inactivation of WAVE genes in the mouse or in several commonly

used cell lines severely impedes the formation of lamellipodia

[5,14,15,19], corroborating their critical role in the activation of

the Arp2/3-complex during cell migration. In contrast to WASP-

proteins, which remain inactive by intramolecular autoinhibition

until activation by Rho GTPases, isolated Scar/WAVE proteins

are fully active outside the Scar/WAVE-complex [20,21]. The

Scar/WAVE subunit is kept inactive by various interactions within

the Scar/WAVE-complex, which consists of the five subunits

Nap/Hem, Pir/Sra/CyFip, Abi, Scar/WAVE and Brk1/

HSPC300, in a 1:1:1:1:1 stoichiometry [21–23]. The Scar/

WAVE-complex has been recently reported to be activated by

multiple factors including active Rac and acidic phospholipids, by

releasing the C-terminal VCA domain of Scar/WAVE to activate

the Arp2/3-complex, and linking upstream Rho-family GTPase

signaling to the activation of the Arp2/3-complex in different

organisms [21,23–25]. Recent exciting work reporting on the

structure of the human heteropentameric Scar/WAVE-complex,

revealed details of its inactive state and how Rac binding could

lead to the release of the masked VCA domain, hence activating

the Scar/WAVE-complex [23]. Moreover, and contrary to

previous assumptions, Brk1 instead of Abi is forming the core

subunit of the complex [23]. Despite considerable knowledge

about activation of the Scar/WAVE-complex, its assembly process

remains elusive. In order to further our knowledge, of how the

Scar/WAVE-complex is assembled, it is instrumental to obtain

structural information of precursor and intermediate subcom-

plexes. Interestingly, in vertebrates, Brk1 forms homooligomers

that remain stable as a free subcomplex in the absence of other

Scar/WAVE-complex subunits [22,26]. This is remarkable, as the
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depletion of one subunit commonly leads to degradation of at least

the Scar/WAVE and Abi proteins [26–30]. After depletion of

Brk1 in mammalian and Dictyostelium cells Scar/WAVE proteins

are almost undetectable, whereas the level of PirA in Dictyostelium

Brk1-null, Scar-null and AbiA-null mutants seems nearly unaf-

fected [31,32]. However, depletion of NapA in Dictyostelium caused

a marked reduction of PirA [31]. Expression of tagged or untagged

Brk1 in Dictyostelium Brk1-null cells restores Scar protein levels

almost completely, pointing out that Brk1 is required for stability

of Scar/WAVE proteins [26,32]. Notably, electroporation of

recombinant oligomeric Brk1 into Brk1-depleted HeLa S cells not

only restored protein levels of other Scar/WAVE-complex

components, but also incorporated into the heteropentameric

Scar/WAVE-complex [26], suggesting its potential role as a

precursor of the Scar/WAVE-complex [33]. Dictyostelium Brk1 was

first identified as an ortholog of human HSPC300 and was

accordingly named DdHSPC300 [32]. However, since human

HSPC300 apparently originates from an erroneously annotated

cDNA, corresponding to human Brk1, carrying a point mutation

in its stop codon and therefore encompassing 35 extra amino acid

residues, the Dictyostelium protein is more closely related to human

Brk1. Thus, herein we refer to the proteins as DdBrk1 and

HsBrk1, respectively. Here we present the high resolution

structure and a biochemical analysis of DdBrk1, which provides

new insights on the question of how Brk1 may function as a

precursor during the assembly of the mature Scar/WAVE-

complex.

Results and Discussion

Brk1 is stable outside the functional Scar/WAVE-complex
Brk1 is important for the stability of the Scar/WAVE subunit in

different organisms [26,32,34,35], and was proposed to function as

a precursor for Scar/WAVE-complex assembly in Hela S cells

[26]. Dictyostelium DdBrk1 encompasses 68 residues and shares

37% sequence identity and 52% similarity with human Brk1/

HSPC300 (HsBrk1) (Fig. 1A). To test whether DdBrk1 remains

stable without functional Scar/WAVE-complex and therefore

could potentially function as a precursor of the Scar/WAVE-

complex in D. discoideum, we raised antibodies against recombinant

DdBrk1 (Fig. 1B), and compared the protein levels in Dictyostelium

wild-type and Scar-null cells by Western-blotting. Analysis of the

stained bands revealed that the DdBrk1 level in the Scar-null

mutant was reduced by about 40% when compared to wild-type

cells (Fig. 1C). In agreement with previous results, the PirA subunit

also remained stable in the absence of Scar and/or Abi [32,36],

supportive of mutual stabilization of Nap and Pir proteins by

heterodimerization [22,23]. Consistently, Pir/Sra is instable after

elimination or depletion of Nap in different systems and cell lines

[5,31,37]. Taken together, these findings suggest that Brk1 is the

subunit of the Scar/WAVE-complex that shows least pronounced

degradation in the absence of any other subunit [26], and can

abundantly persist in the absence of any other subunit of this

complex. Notably, in DdBrk1-null cells Scar is undetectable,

however, its level could be fully restored by the expression of either

recombinant tagged or untagged DdBrk1 [32]. Therefore DdBrk1

potentially acts as a precursor of the Scar/WAVE-complex in

Dictyostelium cells. This assumption is further supported by the fact

that, in addition to the Scar/WAVE-complex, an excess of Brk1 is

found in the cytosol of HeLa S cells [22].

DdBrk1 forms homotrimers in solution
In order to further characterize DdBrk1, we expressed it as a

GST-fusion protein in E. coli. After removal of the GST-tag and

additional purification (see Material and Methods) DdBrk1 was

subjected to sedimentation equilibrium experiments in the

analytical ultracentrifuge to determine the molar mass in solution.

Equillibrium concentration gradients of 43 mM and 171 mM

DdBrk1 obtained at two different rotor speeds could be globally

fitted with a single molar mass of 24.7 (62) kg/mol (for 43 mM, see

Fig. 2A). Since the molar mass of the protein calculated from its

amino acid composition is 8.61 kg/mol, these data clearly show

that under these conditions DdBrk1 forms homotrimers in

solution.

To further characterize its hydrodynamic properties, DdBrk1

was examined in sedimentation velocity experiments in a

concentration range of 15 mM to 340 mM. The c(s) distributions

showed a single species with s20,W = 2.1 S (for an example see

Fig. 2B), and no indication of aggregation or dissociation in the

concentration range used. As expected for a system that does not

change its oligomerization state with protein concentration, s20,W

was slightly decreasing with increasing protein concentration (data

not shown) [38]. Therefore, DdBrk1 forms stable trimers at

concentrations in the micromolar range. From the molar mass of

the homotrimer and the obtained sedimentation coefficient a

frictional ratio f/f0 = 1.5 and a hydrodynamic radius rH = 2.9 nm

were calculated. Since for hydrated spherical proteins f/f0 is

expected to be in the range of 1.1 to 1.2 [39], the shape of the

DdBrk1 trimer appears to deviate substantially from a sphere. This

suggests an elongated shape and/or the presence of unstructured

loops.

Crystal structure of DdBrk1
To learn more about the structure of the trimeric DdBrk1-

complex we crystallized DdBrk1 and determined the structure by

X-ray crystallography. As DdBrk1 does not contain any

methionines that could be used for selenomethionine substitution,

and no molecular replacement model was available, we co-

crystallized DdBrk1 in presence of heavy atom salts and collected a

1.5 Å resolution data set of platinum soaked crystals at Pt-peak

wavelength. Phasing using SHELX [40] yielded two well defined

anomalous sites and well-interpretable electron density for the

protein chain (Fig. 3A). The first automatically built model [41]

obtained from this anomalous dataset was used to phase a high-

multiplicity native dataset which then was used in further

refinement steps. However, during the refinement process it

turned out that the native crystal contained two anomalous sites,

indicating that these sites were possibly not occupied by platinum

in the soaked crystals. As DdBrk1 was crystallized in presence of

0.2 M Ca2+-ions, it is very likely that the anomalous signal of

calcium at platinum peak-wavelength was sufficient for phasing of

the relatively small protein due to the high resolution data and

high multiplicity of the measurement. Thus, the refinement of the

dataset of the native crystal was performed including two Ca2+-

ions (Table 1). The final model depicted in Figure 3A–C

containing one DdBrk1-molecule in the asymmetric unit (residues

3–65), two molecules of MPD, two Ca2+-ions and 107 solvent

molecules was refined to an R-value of 0.159 (Rfree = 0.182) and

showed very good geometry.

The DdBrk1-chain forms a single continuous a-helix (Fig. 3B)

and assembles into a triple-coiled-coil (left handed superhelix) with

its symmetry molecules (Fig. 3C) along a conserved hydrophobic

patch (Fig. 3D–E). This triple-helix is stabilized via typical knobs-

into-holes interactions with heptad-repeats of lysine residues [42]

with an interface area of 935Å2 between the single helices.

Hydrogen bonds between Q55 of one chain and D57/E60 in the

neighboring chain further stabilize the C-terminal triple-coil

domain like a ring (Fig. 3F), as also observed in the structure of

High-Resolution Structure of Brk1
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the actin-binding protein coronin 1 [43]. As the helix shows an

approx. 20u bend at K33, residues 3–32 are opening up the triple-

coil to form a funnel shaped N-terminal region. The entry into the

triple-coil structure is highly hydrophobic and occupied by larger

hydrophobic residues with additional stacking interactions (F30,

F34). Residues 33–65 fold into a compact triple-coil structure

whereas the missing residues of the N-terminus are probably

flexible and thus can not be seen in the electron density.

As the crystal packing showed two Ca2+-ions coordinated by

three chains in the head-to-tail arrangement in the lattice (Fig. 3G),

also involving residues of the stabilizing ring at the C-terminus of

DdBrk1 (Q55, D57/E60), we also tested whether ions may play a

role in oligomerization behavior of DdBrk1-trimers. For this

reason we examined DdBrk1 in the presence or absence of Ca2+-

ions by sedimentation velocity experiments in the analytical

ultracentrifuge. However, under all conditions examined, DdBrk1

formed a stable trimer independent of the Ca2+-concentration

(data not shown), indicating that this interaction is more likely a

crystallographic phenomenon. This is consistent with the recently

solved structure of human Scar/WAVE-complex [23], since

neither Ca2+-ions nor chelating side chains in the neighboring

subunits are present. A more detailed analysis of this hetero-

pentameric complex with focus on the triple-coil domains of the

HsBrk1(HSPC300)/WAVE1/Abi2-subcomplex (pdb code: 3P8C)

suggests that Sra1(Pir1) largely serves as a binding platform for the

heterotrimeric triple-coil complex, with additional contacts

between the C-terminus of Abi2 and Nap1. The superposition

of homotrimeric Dictyostelium DdBrk1-structure with the triple-coil

arrangement of human Brk1/WAVE1/Abi2-subunits shows a

reasonable good fit (Fig. 4). The interaction of the hetero-trimeric

triple coiled-coil domain with the platform Sra1 is mainly

mediated by HsBrk1 (Fig. 4B). As HsBrk1 and DdBrk1 are highly

homologous in sequence (Fig. 1) and structure (Fig. 4D), we

propose a similar arrangement of the complex in Dictyostelium. The

Figure 1. DdBrk1 and PirA remain stable in the absence of Scar. (A) DdBrk1 is evolutionary conserved. Multiple sequence alignment of Brk1
from different species using the MUSCA algorithm [56]. Black letters show non-similar residues; letters in identical color display amino acids with
similar hydropathy; stars on top depict blocks of conserved amino acids and open circles below indicate identical residues. At: Arabidopsis thaliana
(NP_179849); Dd: Dictyostelium discoideum (XP_641829); Dm: Drosophila melanogaster (NP_726400); Hs: Homo sapiens (AAF28978). (B) The specificity
of anti-DdBrk1 polyclonal antibodies was assessed by Western blotting. (Left) MBP and MBP-DdBrk1 were separated by a 10% SDS-PAGE and
visualized by Coomassie-blue stain. (Right) Immunoblot analysis of the same proteins after transfer onto a PVDF membrane and detection with anti-
DdBrk1 antibodies. The antibodies specifically detected the DdBrk1 containing sample, but did not bind to the MBP moiety, which served as a
negative control. (C) DdBrk1 and PirA remain stable in Scar-null cells. Total cellular proteins corresponding to 26105 wild-type or Scar-null cells were
separated by SDS-PAGE using 16% Tris-Tricine or 10% Tris-Glycine gels, transferred to a PVDF membrane and labelled by anti-DdBrk1 antibodies. The
same samples were also probed with anti-PirA antibodies. The Western blot with anti-actin antibody mAb 224–236–1 [45] shows equal sample
loading. Densitometric analysis of stained bands revealed that DdBrk1 was moderately reduced while the PirA level was unchanged in the absence of
Scar.
doi:10.1371/journal.pone.0021327.g001
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a-helical regions within WAVE1 (helix 1) and Abi2 (helix 2)

interacting with the human Brk1 subunit have a very similar

length when compared with the DdBrk1 subunit (Fig. 4C). Coiled-

coil regions of similar length were also predicted for AbiA and Scar

from Dictyostelium using PCOIL (http://toolkit.tuebingen.mpg.de/

pcoils, data not shown), indicating a conserved mechanism of the

assembly process even across evolutionary distinct species. The

fact that Brk1 proteins are found only in one copy in the

pentameric Scar/WAVE-complex raised the interesting question

of how Brk1, Scar/WAVE and Abi proteins assemble into a

heterotrimeric subcomplex, which must be accompanied with

breaking up symmetry of the homotrimeric DdBrk1 assembly

observed in our crystal structure. In the structure of the human

complex (pdb code: 3P8C) WAVE1 is additionally binding to Sra1

via its C-terminal domain and Abi2 is contacting the surface of

Nap1 via its C-terminus. These additional contacts might very well

support heterotrimer formation as they introduce asymmetry and

contribute to the binding energy, and would be not possible if a

homotrimeric Brk1 binds to the Sra1/Nap1 platform.

Trimeric DdBrk1 is in dynamic equilibrium with its
monomeric form

To address the issues, whether DdBrk1 homotrimers dissociate

at nanomolar protein concentrations, exchange subunits with each

other or a Scar/AbiA/DdBrk1 subcomplex from Dictyostelium, we

designed and purified DdBrk1 mutant M1C, in which the first

methionine was replaced by cysteine, allowing labeling with Alexa

488 to obtain fluorescent DdBrk1_488. Additionally, we purified

DdBrk1 as a fusion with maltose-binding protein (MBP-DdBrk1).

The 43 kg/mol MBP moiety of the fusion protein drastically

increased the hydrodynamic radius (rH) of the DdBrk1 trimer,

which allowed us to monitor changes in the composition of the

complex, after incubation with DdBrk1_488. After mixing of

100 nM DdBrk1_488 and 1.4 mM MBP-DdBrk1, and incubation

for two hours on ice, the reaction mixture was subjected to

gelfiltration during which DdBrk1_488 was detected by absor-

bance at 488 nm (Fig. 5A; compare blue and yellow lines), while

elution of all proteins was simultaneously tracked by absorbance at

280 nm (Fig. 5B). While MBP-DdBrk1 was undetectable by

absorbance measurement at 488 nm, it was clearly visible at

280 nm (Fig. 5A,B; black lines). Notably, a species with an elution

volume similar to MBP-DdBrk1 appeared in the presence of

DdBrk1_488 (Fig. 5A; blue line), demonstrating incorporation of

labeled protein into a complex with a significantly increased rH

when compared to DdBrk1_488 alone (Fig. 5A, B; yellow line).

The slightly smaller rH of the MBP-DdBrk1/DdBrk1_488

complexes in comparison to MBP-DdBrk1 (Fig. 5B; black and

blue lines) was caused by replacement of either one or two MBP-

DdBrk1 subunits by DdBrk1_488, and excludes possible associ-

ation of DdBrk1_488 with trimeric MBP-DdBrk1, which would

have lead to an increase of rH. This experiment demonstrates

dynamic exchange of subunits within DdBrk1 complexes at low

micromolar concentrations, pointing out that homotrimeric

DdBrk1 is not static, but rather dynamically exchanges subunits.

Next, we coexpressed and purified GST-DdBrk1/Scar(1-225)/

AbiA(1-149) from bacterial extracts by affinity chromatography.

After removal of the GST-tag and subsequent purification the

proteins were also incubated with 100 nM DdBrk1_488 and

subjected to gelfiltration. The elution profile monitored by the

absorbance at 488 nm clearly showed an increased rH for

DdBrk1_488 (Fig. 5A; red line), indicating the exchange of

DdBrk1 by DdBrk1_488 in the Scar(1-225)/AbiA(1-149)/

DdBrk1-complex (Fig. 5A,B; yellow and red lines). These findings

suggested that the DdBrk1 trimer may be in a dynamic

equilibrium with its monomeric form.

To test whether DdBrk1_488 trimers tend to dissociate at

concentrations in the nanomolar range, 8 to 800 nM DdBrk1_488

were analyzed in sedimentation velocity experiments in an

analytical ultracentrifuge monitoring the fluorescence of the Alexa

488 dye. At the highest concentrations examined, DdBrk1_488

sedimented slightly faster than the unlabelled protein (s20,W = 2.3 S

compared to 2.1 S for DdBrk1, Fig. 5C; red line) most likely due to

Figure 2. DdBrk1 forms stable trimers in solution. Analytical ultracentrifugation experiments of 43 mM DdBrk1 in PBS at a detection
wavelength of 280 nm. (A) Sedimentation equilibrium gradients were measured at rotor speeds of 18,000 rpm and 26,000 rpm at 10uC. Global fitting
of the data with a model of a single species using the program BPCfit [46] yielded a molar mass of 24.7 (62) kg/mol (solid lines) indicating that the
protein forms trimers in solution. (B) Sedimentation coefficient distribution as obtained from a sedimentation velocity experiment at 20uC using the
program SEDFIT [48]. DdBrk1 sediments as a single species with a sedimentation coefficient s20,W = 2.1 S. Experiments performed in a concentration
rage of 15 mM to 340 mM DdBrk1 gave no indication of aggregation or dissociation of the DdBrk1 trimers, as indicated by a slight decrease of the
sedimentation coefficient with increasing protein concentration (data not shown). The inset shows a Coomassie stained 16%-Tris/Tricin SDS-PAGE of
the DdBrk1 sample used in these experiments.
doi:10.1371/journal.pone.0021327.g002
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Figure 3. X-ray Structure of DdBrk1. (A) Portions of experimental (left) and final refined 2fo-fc electron density shown with residues (right) of the
region F30-L31 contoured at 1s. (B) Cartoon model of the completely a-helical DdBrk1-molecule in the asymmetric unit. The approximately 20u kink
at K-33 creates the N-terminally funnel shape in the trimer. (C) Two orthogonal views of the trimeric DdBrk1, built up from symmetry mates from the
3-fold symmetry axis. Whereas the C-termini are tightly packed, the N-termini seem to open up and create a funnel-like shape. (D) Solvent accessible
electrostatic surface potential of one DdBrk1-chain (ranging from blue = 3kT/e to red = -3kT/e) calculated with APBS/PyMol [57]. The other two chains
of the trimer are shown as cartoon representations in green and orange. The helix-helix-interaction surface is neutral whereas the outside of the
supercoil is clearly hydrophilic and shows negatively charged patches at the N- and C-termini and a positive patch in the central part. (E) Most of the
highly conserved residues are located in the hydrophobic interface (e.g. cross-section with F30, L31, F34), but charged residues on the surface-
patches are also highly conserved. Identical residues depicted in Figure 1A are shown in yellow and highly conserved residues are shown in green.
(F) Section of the triple-coil showing a typical leucine heptad-repeat (L52, L59, shaded in grey) and the ring-like stabilization between Q55 and D57/
E60 (shown as sticks) of the neighboring chain. (G) The crystal lattice of DdBrk1-crystals is stabilized by two Ca2+-ions in a head-to-tail orientation of
the Brk1-chains. The two ions are coordinated by one N-terminal charged patch (W11, E15, E18)chain 1 and two C-terminal patches from two chains

High-Resolution Structure of Brk1
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the mass increase caused by the addition of the fluorescent dye. At

lower protein concentrations this peak shifted to lower s-values and

a second peak with an s20,W of about 1.2 S appeared in the c(s)

distributions (Fig. 5C). These results clearly show that

DdBrk1_488 trimers dissociate at protein concentrations in the

lower nanomolar range. The fact that the s-value of the faster

sedimenting boundary decreases with decreasing protein concen-

tration is an indication that the dissociation of the homotrimer is

fast compared to the time scale of the sedimentation experiment.

For a fast reaction the formation of a reaction boundary is

expected in which a coupled sedimentation of the different

oligomeric states takes place [44]. The s-value of this reaction

boundary reflects the fractional time the molecule spends in the

complex state and therefore depends on the total concentration of

the protein. The species sedimenting with about 1.2 S most likely

reflects monomeric DdBrk1_488 and comprises more than half of

the total protein at a concentration of 8 nM, provided the

quantum yield of DdBrk1_488 does not depend on its oligomeric

state. To check whether the dynamics of the DdBrk1_488

homotrimer formation allows for subunit exchange between

different variants of DdBrk1, a mixture of 1.4 mM MBP-DdBrk1

(see above) and 100 nM DdBrk1_488 was examined in a

sedimentation velocity experiment monitoring the fluorescence

of DdBrk1_488. In this reaction mixture most of the DdBrk1_488

sedimented faster than the homotrimer yielding a maximal s20,W of

about 6 S (data not shown). This clearly shows that even at a

concentration of 100 nM DdBrk1_488 and in presence of 1.4 mM

MBP-DdBrk1 subunits are able to swap between different

complexes, which is in line with the results of the gelfiltration

experiments described above.

Conclusions
Based on these results and previous findings, in particular the

observed incorporation of exogenously added oligomeric human

Brk1 into the mature Scar/WAVE-complex in vivo [26], we suggest

that a constant pool of Brk1 homotrimers allows for formation of a

given number of monomers, which directly bind and stabilize de

novo synthesized Scar/WAVE and Abi subunits (Fig. 6A,B). Since

the activation of the Arp2/3-complex is a highly regulated process

in vivo, we assume that heterotrimeric Scar/AbiA/DdBrk1-

complexes immediately associate with the heterodimeric Nap/

Pir platform to mask the VCA domain of Scar/WAVE proteins to

prevent the unregulated activation of the Arp2/3-complex

(Fig. 6C,D). This is consistent with previous observations showing

that stability of Nap and Pir proteins is apparently not affected in

the absence of Scar/WAVE, Abi or Brk1 proteins in vivo, and by

the fact that heterodimeric Nap/Pir remains stable after

coexpression in insect cells [21,23,31,32,36]. Notably, Brk1 forms

the majority of the surface contacts between heterotrimeric

HsBrk1/Abi2/WAVE1 and Nap/Pir platform within the trimeric

coiled-coil region (Fig. 4A,B). We therefore propose that in the

final assembly step, Brk1 serves as an adapter protein to stabilize

and coordinate the assembly of the heterotrimer and the binding

to the Pir/Nap platform to assemble the mature Scar/WAVE-

complex.

Methods

Expression construct
The coding sequences of all Dictyostelium discoideum proteins of this

study were amplified from a lgt11-cDNA library. For DdBrk1 the

following primers were used: DdBrk1_BU GCGGGATCCATGT-

CAACAAAAACAAATATTCAA and DdBrk1_SD CGCGTCG-

ACTTATTCTTGTACAGTCTTGAATGT. The DdBrk1 M1C

mutant was amplified using the primers DdBrk1_M1C_BU

GCGGGATCCTGTTCAACAAAAACAAATATTCAAAA and

DdBrk1_SD CGCGTCGACTTATTCTTGTACAGTCTTGA-

ATGT. These primers contain BamHI and SalI sites to facilitate

cloning. The digested PCR fragments were inserted into the

corresponding sites of the E. coli expression vectors pGEX-6P1

(GE-Healthcare) and pMal-c2x (New England Biolabs). Scar (aa1-

225) and AbiA (aa1-149) fragments were amplified using the primers

Scar_NcoU GCGCCATGGTATTAATTACAAGATATTTAC-

CATC and Scar_*SD GCGGTCGACTTATGGACTTTCAA-

Table 1. Data collection, phasing and refinement statistics.

Native Anomalous

Beamline ESRF ID23-2 SLS-X06DA

Spacegroup P63 P63

Cell dimensions (Å) 39.14, 39.14, 118.19 38.89, 38.89, 117.76

Wavelength (Å) 0.8726 1.0722

Resolution (Å) 20–1.5 50–1.5

Rmeas (%) 5.2 (28.1) 4.1 (55.7)

I/s 30.35 (8.95) 24.46 (3.07)

Completeness 98.6 (97.4) 98.9 (97.3)

Multiplicity 12.49 (12.09) 4.76 (4.62)

Refinement

Resolution (Å) 20–1.5

Number of unique
reflections

16152

Rwork/Rfree (%) 15.89/18.17

Protein non-hydrogen
atoms

595 (DdBrk1 residues 3–65)

MPD 16 (2 molecules of MPD)

Ca2+ 2

Water 107

B-factors (average)

Protein 22.74

Ca2+ 9.69

MPD 38.18

Water 39.87

RMSD

Bond lengths (Å) 0.013

Bond angles (u) 1.245

PDB code 3PP5

Values in parentheses are for highest resolution shell.
*Rfree is calculated for a randomly chosen 5% of reflections.
doi:10.1371/journal.pone.0021327.t001

(D53, D57, E60)chain 2 and (Q55)chain 3. The picture depicts an exemplary part of the crystal lattice (right part, some molecules were omitted for clarity)
and a cross-section (left part) to visualize the coordinated Ca2+-ions (yellow spheres). DdBrk1 chains are shown as cartoon representations and
colored as biological units.
doi:10.1371/journal.pone.0021327.g003
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Figure 4. Comparison of DdBrk1 with human WAVE-complex. (A) Superimposition of homotrimeric DdBrk1 with the human hetero-
pentameric Scar/WAVE-complex [23] (pdb code: 3P8C). The subunits HSPC300/HsBrk1 (yellow), WAVE1 (purple) and Abi2 (orange) are shown as
cartoon representations using the same color code as in [23], Nap1 and Sra1 (also known as Pir1) are shown as surfaces in grey and beige. The
DdBrk1-triple helix (blue cartoon) was superimposed onto the HsBrk1/WAVE1/Abi2-subcomplex to illustrate the structural similarity between
homotrimeric DdBrk1 and the heterotrimeric subcomplex within the mature Scar/WAVE-complex (RMSD = 1.055Å). (B) Contact surface of the human
triple-coil assembly to the Nap1/Sra1-platform as shown in (A). The triple-coil assembly is shown from the binding interface side, obtained by rotation
of 180u around the horizontal axis. Residues within 5Å of the platform are shown with their surfaces (for reason of clarity the surface of HsBrk1-
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TATTGATAGTAAT carrying NcoI and SalI sites, and AbiA_B-

glII+1 GCGAGATCTCATGAGTGAATCAATCGATATTAA-

CGTTTATT and AbiA_*XhoI GCGCTCGAGTTAAATACCA-

TAAGAAATTGGTTTATG carrying BglII and XhoI sites for

insertion into expression vector pRSF-Duet-1 (Merck). The coding

sequence of GST-DdBrk1 was amplified from pGEX-6P1_DdBrk1

using the primers GST_RU+1 CGCGAATTCGATGTCCCCTA-

TACTAGGTTATTG and DdBrk1_SD CGCGTCGACT-

TATTCTTGTACAGTCTTGAATGT carrying EcoRI and SalI

sites and inserted into the same site of pET-Duet-1 (Merck). All

constructs were verified by sequencing.

Protein purification
D. discoideum Brk1 and DdBrk1_M1C mutant were purified from

E. coli host BL21 DE3 as N-terminally GST- or MBP-tagged fusion

proteins. Briefly, the GST-fusion proteins were purified on

glutathione sepharose (GE Healthcare), eluted with buffer A

containing 20 mM Tris/HCl pH 7.3, 220 mM NaCl, 1 mM

EDTA, 10% glycerol (v/v) supplemented with 30 mM reduced

glutathione (Sigma) and subsequently cleaved with PreScission

protease (GE Healthcare) at a molar ratio of 500:1. The resulting

DdBrk1 protein carries the extra amino-acids GPLGS at its N-

terminus. After cleavage, the proteins were separated by anion

exchange chromatography using a Mono Q 4.6/100 PE column

(GE Healthcare) as the GST moiety remained in the flow through.

After washing of the column with 2 column volumes of buffer A,

bound DdBrk1 was eluted with buffer B, containing 20 mM Tris/

HCl pH 7.3, 500 mM NaCl, 1 mM EDTA, 10% glycerol (v/v).

The resulting DdBrk1 fraction was dialyzed against PBS containing

2.7 mM KCl, 1.8 mM KH2PO4, 10 mM Na2HPO4, 140 mM

NaCl, pH 7.3, and was further purified by size-exclusion chroma-

tography on a Superdex-S75 10/300 column (GE Healthcare)

equilibrated with PBS. The protein was then dialyzed three times

against PBS for analytical ultracentrifugation experiments or buffer

C containing 20 mM Hepes pH 7.3, 50 mM NaCl, 1 mM DTT,

0.1 mM EDTA, 0.01% NaN3 for crystallization. MBP-DdBrk1 was

purified using buffer D containing 20 mM Tris/HCl pH 8.0,

300 mM NaCl, 1 mM EDTA on amylose sepharose resin (New

England Biolabs). The protein was eluted with buffer D supple-

mented with 30 mM maltose. The resulting MBP-DdBrk1 protein

was subsequently dialyzed three times against PBS and further

purified by size exclusion chromatography on a Superdex-S200 26/

60 column (GE Healthcare) equilibrated with PBS using an Äkta

purifier system (GE Healthcare).

Scar(aa1-225)/AbiA(aa1-149)/GST-DdBrk1 were coexpressed

in E. coli host BL21 DE3 using pET-Duet_GST-DdBrk1 and

pRSF-Duet_Scar(aa1-225)/AbiA(aa1-149) constructs and purified

by glutathione sepharose affinity chromatography. After elution of

GST-tagged DdBrk1 in complex with untagged Scar and Abi

fragments as described above using PBS supplemented with

30 mM reduced glutathione (Sigma), the GST tag of DdBrk1 was

cleaved with PreScission protease and removed by size-exclusion

chromatography on a Superdex-S75 26/60 column (GE Health-

care) equilibrated with PBS. Purity of the samples was assessed by

SDS-PAGE and Coomassie blue staining.

Protein labeling
Purified DdBrk1-M1C was dialyzed three times against PBS

and mixed with a 5-fold molar excess of Alexa-488 Fluor C5

maleimide (Invitrogen). The reaction was carried out in a degassed

solution under protective nitrogen atmosphere on an end-to-end

shaker for 3 h at 21uC. Free dye was removed by size exclusion

chromatography on a Superdex-S75 10/300 column (GE

Healthcare) equilibrated with PBS and subsequent dialysis. The

degree of labeling was estimated by absorption spectrum

measurement on a Jasco V-560 UV/VIS-spectrophotometer

according to the instructions of the manufacturer (Invitrogen)

using an extinction coefficient at 488 nm of the dye

e= 73,000 cm21M21.

Generation of antibodies
Polyclonal antibodies were obtained by immunizing female

white New Zealand rabbits with either recombinant GST-tagged

DdBrk1 or two PirA peptides SGFEPAEAVPNKKSKEVEEKV-

QIPAR (aa 526–551), DKPYKTQLELAHFNGKLHTPKSRFD

(aa 715–739) coupled to KLH (Thermo Scientific) together with

complete Freund’s adjuvant (Sigma) following standard proce-

dures. Specificity of the anti-DdBrk1 antibodies was assessed by

Western blotting comparing reactivity with MBP or MBP-fused to

DdBrk1 (see Fig. 1B). Monoclonal anti-actin antibody 224–236-1

was previously described [45].

Western blotting
For immunoblot analysis, total cellular proteins of D. discoideum

cells were incubated in reducing SDS sample buffer and separated

using 16% Tris-Tricin or 10% Tris-Glycin SDS-PAGE gels. After

semi dry blotting onto PVDF membranes (GE-Healthcare), the

membranes were blocked with 4% BSA (Sigma) in NCP

containing 10 mM Tris/HCl pH 8.0, 150 mM NaCl and 0.05%

Tween-20 for 20 min at room temperature (RT). After washing

three times with NCP, the membranes were incubated at RT

overnight with polyclonal antibodies (0.5 mg/ml in NCP). The

membranes were subsequently washed three times in NCP and

incubated for 2 h at RT with alkaline phosphatase-conjugated

goat anti-rabbit antibodies (Dianova) diluted 1:3,000 in NCP.

After washing three times in NCP, the blots were developed using

5-bromo-4-chloro-3-indolyl phosphate (BCIP) (Carl Roth).

Analytical Gelfiltration
Gelfiltration experiments were carried out on an Äkta Purifier

HPLC-system (GE-Healthcare) using 500 ml sample volumes on a

Superdex-S200 10/300 column (GE-Healthcare) at a flow rate of

0.5 ml/min at 4uC in PBS. Absorbance was measured with an UV-

900 module (GE-Healthcare) at 280 nm and 488 nm oscillating

with an averaging time of absorbance measurement of 1.28 s.

Analytical ultracentrifugation
Sedimentation equilibrium experiments were carried out in a

Beckman Optima XL-A analytical ultracentrifuge at 18,000 and

26,000 rpm in an An-60 Ti rotor at 10uC until no further change in

absorbance could be detected for at least 12 h. Scans from these 12 h

were averaged and molar mass determination was performed using a

model of a single species, as described previously [46]. Standard

3 mm or 12 mm double sector centerpieces filled with 40 ml or

150 ml samples, respectively were used and absorbance was detected

at 280 nm using the UV/Vis scanning optics of the centrifuge.

contact residues is shown in transparent grey to enhance contrast). HsBrk1 is responsible for the majority of contacts between the triple-coil
arrangement and the Nap1/Sra1-platform. (C) Isolated superimposition of the triple-coil domains from the heterotrimer HsBrk1/WAVE1/Abi2/ (purple,
orange, yellow) and the DdBrk1 homotrimer (blue) in two orthogonal projections. (D) A detailed superposition with exemplary labeled side chains of
HsBrk1 (grey) and DdBrk1 (orange) underlining the high similarity both in sequence and structure of the two adapter-proteins.
doi:10.1371/journal.pone.0021327.g004
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Sedimentation velocity experiments were performed at

50,000 rpm in a Beckman/Coulter ProteomeLab XL-I equipped

with a fluorescence detection system (AU-FDS, Aviv Biomedical)

at 20uC using an An-50 Ti rotor. Measurements using the

absorbance optics of the centrifuge were carried out in 3 mm or

12 mm standard double sector cells filled with 100 ml or 400 ml

Figure 5. DdBrk1 chains swap within DdBrk1-containing complexes. MBP-DdBrk1 homotrimers and Scar(1-225)/AbiA(1-149)/DdBrk1-
complexes were incubated with DdBrk1_488 and subjected to gelfiltration. (A) The elution of 200 nM DdBrk1_488 alone and 100 nM DdBrk1_488
after incubation with other DdBrk1 containing complexes was monitored at 488 nm. 100 nM DdBrk1_488 showed an increased rH in the presence of
1.4 mM MBP-DdBrk1- and Scar(1–225)/AbiA(1–149)/DdBrk1-complexes, confirming an exchange of subunits within these complexes. The unlabeled
complexes were undetectable in the absence of DdBrk1_488 at 488 nm absorption. (B) Simultaneously recorded elution profiles at 280 nm showed
slightly decreased hydrodynamic radii of the MBP-DdBrk1 fusion construct after incubation with DdBrk1_488, indicating different stoichiometries of
trimeric MBP-DdBrk1/DdBrk1_488-complexes. The inset shows a 16% Tris-Tricine SDS-PAGE stained with Coomassie blue of copurified Scar(1–225)/
AbiA(1–149)/DdBrk1 used in these experiments. For reasons of clarity, the different complexes are schematically shown in addition to the elution
profiles. (C) Sedimentation velocity experiments of DdBrk1_488 showed dissociation of the homotrimer in the lower nanomolar range. The
decreasing s-value of the faster sedimenting boundary at decreasing protein concentrations indicates a fast dissociation of the homotrimer when
compared to the time scale of the experiment. The inset shows a 16% Tris-Tricine SDS-PAGE of DdBrk1_488 visualized by Coomassie-blue stain and
ultraviolet illumination.
doi:10.1371/journal.pone.0021327.g005
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samples, respectively and the signal was detected at 280 nm or

230 nm, depending on the protein concentration used. Concen-

tration profiles of DdBrk1_488 were measured with an excitation

wavelength of 488 nm and emission was detected through a pair

of long pass (.505 nm) dichroic filters using special cell housings

and standard 3 mm centerpieces as described previously [47].

Data were analyzed using the program package SEDFIT, which

provides a model for diffusion corrected differential sedimenta-

tion coefficient distributions (c(s) distributions) [48]. Partial

specific volume, buffer density and viscosity were determined

by the program SEDNTERP [49] and were used to correct the

experimental sedimentation coefficients to s20,W.

Concentration of unlabelled DdBrk1 was determined spectro-

photometrically, using an absorption coefficient e280 nm =

6990 M21 cm21 calculated from amino acid composition [50],

and is given in monomers throughout the text. All analytical

ultracentrifugation experiments were carried out in PBS except for

experiments designed to analyze potential changes of the multi-

merization state in the presence of Ca2+-ions. These experiments

were performed in 20 mM Tris/HCl pH 8.0, 150 mM NaCl and

varying concentrations of Ca2+ or EDTA.

Crystallization and Structure Determination
Crystals were obtained in hanging drop geometry using 40%

MPD, 0.2 M CaCl2 as reservoir solution. 1.5 ml of reservoir was

added to an equal volume of DdBrk1 (16 mg/ml) and incubated at

20uC. Hexagonal rod-shaped crystals appeared within a few days.

Crystals were backsoaked in mother liquor prior to flash freezing

in liquid nitrogen. Data collection at the synchrotron was carried

out at 100 K. Diffraction data were indexed, integrated and scaled

using the XDS-package [51]. Identification of anomalous sites and

phasing/density modification was done using the SHELXC/D/E-

program package [40] with the HKL2MAP-interface [52]. High-

resolution data allowed automatic model building using ARP/

WARP [41]. The preliminary model was refined in cyclic rounds

of manual model building in COOT [53] and refinement using

phenix.refine [54]. The final model showed no outliers in the

Ramachandran plot and reasonable R-factors and geometries.

Atomic coordinates and structure factors were deposited in the

Protein Data Bank with accession number 3PP5. The crystallo-

graphic parameters of the structure are listed in Table 1. All

figures were prepared with PyMOL [55].
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