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Abstract

We examined the effect of rate on finger kinematics in goal-directed actions of pianists. In addition, we evaluated whether
movement kinematics can be treated as an indicator of personal identity. Pianists’ finger movements were recorded with a
motion capture system while they performed melodies from memory at different rates. Pianists’ peak finger heights above
the keys preceding keystrokes increased as tempo increased, and were attained about one tone before keypress. These rate
effects were not simply due to a strategy to increase key velocity (associated with tone intensity) of the corresponding
keystroke. Greater finger heights may compensate via greater tactile feedback for a speed-accuracy tradeoff that underlies
the tendency toward larger temporal variability at faster tempi. This would allow pianists to maintain high temporal
accuracy when playing at fast rates. In addition, finger velocity and accelerations as pianists’ fingers approached keys were
sufficiently unique to allow pianists’ identification with a neural-network classifier. Classification success was higher in
pianists with more extensive musical training. Pianists’ movement ‘‘signatures’’ may reflect unique goal-directed movement
kinematic patterns, leading to individualistic sound.
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Introduction

The production of auditory sequences such as music and speech

is generally fluent and accurate. One hallmark of fluency is the

performer’s ability to prepare for upcoming events. As musicians’

performance skill increases, their ability to anticipate upcoming

sequence events increases, as evidenced in performance errors

[1,2]. Skilled movements show evidence of preparation as well.

This can be observed in coarticulation effects in speech: contextual

influences of upcoming sequence elements on the production of

current elements, which aids the fluent production of movement

sequences [3,4,5]. Study of movement kinematics is likely to shed

light on motor and cognitive constraints underlying music per-

formance [5,6], and may distinguish among skill levels. There are

few studies devoted to movement kinematics in music performance

in relation to the sounded outcome of performance. The current

study investigates relationships between pianists’ finger movements

and characteristics of the resulting sound (timing and intensity of

tones) in performance.

Pianists’ fingers can approach their instruments by following

many different trajectories (the degrees of freedom problem) [7].

At the same time, finger movements are subject to constraints of

fine spatial and temporal control, which require performers to

produce correct pitches, accurate timing, and an intended expres-

sion. Cognitive constraints affect fluent performance as well;

individual differences in working memory constrain how many

and which pitch events can be anticipated in action planning prior

to production [2,8,9]. Biomechanical factors, such as the degree of

independence between fingers [10], also provide constraints on the

range of possible movements [11,12]. Thus, finger movements

in piano performance are likely to reflect both cognitive and

biomechanical constraints [5,6].

There are few studies of finger movement in piano perfor-

mance. Although the timing of hammer-string interaction in

acoustic grand piano mechanisms is well-documented [13,14,15],

most quantitative studies of piano performance, based on com-

puter-monitored MIDI instruments, do not measure performers’

movements. The recent advent of motion capture techniques

based on passive (non-interfering) markers has made it feasible to

measure motion in music performance. Using motion capture,

Engel et al. [3] recorded movements of pianists’ right wrist and

fingers while they performed musical pieces that contained iden-

tical beginnings but different continuations. Anticipatory move-

ment, measured by the divergence of finger movement trajectories,

occurred as much as 500 ms in advance of the last note shared by

the melodies. More recently, Loehr and Palmer [5] documented

with motion capture that pianists’ finger tapping movements

reached maximum height above the tabletop about 200 ms before

each tap (approximately one-half of the intertap intervals in that

study). They found that biomechanical constraints (finger cou-

pling), more than cognitive constraints (chunking), affected the

kinematics of the finger movements (i.e., velocity and acceleration

trajectories). In a further experiment in which pianists tapped at

different rates [6],finger motions that were preceded by a more

coupled finger’s tap showed larger timing error and change in

motion due to the preceding finger. This indicates that timing of

sequence elements is not independent of the motion trajectories

used to produce them. Effects of movement properties on the
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timing of subsequent events, and in particular on tactile feedback

has been recently documented in piano performance [16]. Using a

synchronization-continuation paradigm, pianists’ finger move-

ments were captured during performance of simple melodies at

different rates. Increased tactile information as fingers reached

piano keys (based on kinematic measures of acceleration peaks in

finger trajectories) was related to increased temporal accuracy of

the upcoming keystroke. In sum, these studies suggest that there

may be a tight relationship between fingers’ motion and temporal

properties of piano performance.

The principal aim of the present study was to examine the

effects of performance tempo on pianists’ finger movements and

on properties of the sounded tones (tone intensity and temporal

variability). Pianists tend to play louder and with greater temporal

variability at faster tempi [17,18,19,20], but it is not known how

finger movements bring about these effects. Interestingly, music-

pedagogical techniques usually promote a principle of economy of

finger movement on various instruments [21,22,23], in which

performers are encouraged to keep their fingers close to the keys

during fast passages in order to conserve energy. Studies showing

that faster rates of finger movements in the air (with no contact)

yielded smaller-amplitude movements in two-finger oscillation tasks

[24] confirmed this relationship between speed and movement

amplitude. Finally, Palmer and Pfordresher’s memory retrieval

model [2] predicts effects of tempo on movement preparation.

Although their model does not make explicit predictions for finger

movements, the finding that memory for a larger range of sequence

events is available during performance at slower tempi suggests that

movements should be prepared sooner at slower tempi than at fast

tempi [25]. In sum, based on pedagogical theories, models of inter-

limb coordination, and models of memory retrieval, we hypothe-

sized that pianists’ finger movements would have smaller movement

amplitudes and show less anticipation at fast tempi than at slow

tempi.

An additional goal was to test whether the kinematics of pianists’

finger movement associated with striking and releasing piano keys

are individualistic. Personal identification based on properties of

biological motion is revealed, for example, in studies on gait with

the point-light display technique [26,27]. It is noteworthy that gait

kinematics alone (velocity and acceleration patterns), when

structural information (e.g., size) and walking frequency are kept

constant, yields more than 80% correct identification of indivi-

duals [28,29]. In the auditory modality, it is likely that kinematic

features of pianists’ finger movements similarly give rise to indi-

viduated sound in performance, thereby reflecting artists’ musical

uniqueness. Note that some biomechanical constraints, such as

finger coupling, are largely shared by individuals [5,10]. For

example, pianists’ individual finger movements are often accom-

panied by movements of neighboring (physically adjacent) fingers

due to biomechanical constraints [5]. We propose that performers

may achieve spatial and temporal accuracy, two essential goals in

piano performance, by adopting different movement strategies

that in turn yield different sound outcomes. The possibility that

the uniqueness of a given pianist’s style is tied to idiosyncratic

kinematic properties of finger movement has not been examined

thus far.

In this exploratory study, four skilled pianists with different

levels of musical expertise performed short melodies on an elec-

tronic keyboard at different tempi while their finger movements

were recorded with motion capture techniques. We contrasted

pianists’ movements as fingers approached and stayed on the keys

with the same finger movements when they were ‘‘at rest’’ (while

other fingers struck keys). In particular, we examined the rela-

tionship between the properties of fingers’ movement (amplitude

and time of peak height) in the vertical direction (which affect how

strongly keys are struck and how loud the resulting sound is) and

their implications for the outcome of the performance (timing and

intensity of tones). In addition, we tested whether kinematic

properties of anticipatory movements are sufficient to identify the

pianists by training and testing a neural network classifier on

different time segments of the finger trajectories. We predict that

the pianists may adopt different movement strategies when playing

at different tempi, based on their levels of musical expertise.

Results

Timing analyses
The eighth-note interonset intervals (IOIs) associated with each

tone were computed from the keyboard MIDI data. The first and

last tones of each performance were excluded from both MIDI

and movement analyses because they did not have comparable

beginnings or endings, respectively. The pianists were very accu-

rate in performing at each prescribed tempo: the mean IOIs were

on average within 4% (7 ms) of the prescribed IOIs. Accuracy in

performing at the prescribed tempo, measured in percentage

deviation from expected values ((|observed mean IOI - expected

IOI|/expected IOI)*100) changed as tempo increased (Slow,

0.6%; Fast1, 4.7%; Fast2, 7.2%; Fast3, 1.5%; Fast4, 2.2%; F(4,40)

= 2.63, p,.05). Because not all pianists were capable of reaching

the error-free performance criterion at the fastest tempi, perfor-

mance was treated as the random variable to avoid missing cases.

To confirm that the tempo effects yielded by the ANOVA were

not confounded with individual differences, the effect of tempo

was tested in each pianist separately with Kruskal-Wallis non-

parametric tests. Post-hoc comparisons revealed that this effect was

mostly due to a significant difference between Fast1 and Fast3

tempi (Tukey HSD, p,.05). Pianists’ note timing relative to the

mean IOI was also more variable at faster tempi, as shown by the

mean coefficient of variation (CV = SD divided by the mean IOI).

Figure 1(a) shows the mean CVs, computed for each performance

and averaged across tempi and participants, which increased with

tempo (F (4, 40) = 13.9, p,.001). Thus, relative temporal precision

decreased as tempo increased. In addition, as shown in Figure 1(b),

MIDI key velocities indicated that tones’ intensity increased as

tempo increased (F (4, 40) = 5.3, p,.01). These effects of tempo on

both CVs and key velocities were observed in all pianists, as

indicated by non-parametric Kruskal-Wallis tests (for Pianists 2–4,

p,.05; Pianist 1, p = .07, marginally significant).

Movement analyses
Pianists’ finger movements were examined in the vertical

(height) dimension perpendicular to the horizontal plane of the

piano keyboard. Motion data from the fingertip markers only were

analyzed. The discrete data from finger positions were converted

into continuous functions with Functional Data Analyses (FDA)

[30]. The position values were smoothed with order-6 splines

as basis functions with a smoothing parameter (lambda) between

10212 and 10213, which smoothes the acceleration (second deriv-

ative) curves. These parameter values yielded fits which fell within

.00001 of the generalized cross-validation score that estimates the

optimal degree of smoothing by minimizing the expected mean

square error between raw and fitted data [31].

Figure 2 shows the smoothed position, velocity, and acceleration

curves for one pianist’s thumb movements (Finger 1) during a

performance at the Slow tempo. The markers on the piano keys

served to identify the time of keypress. The vertical lines in Figure 2

denote the minimum position values of the piano key markers,

which indicate the time at which the piano key reached key

Rate Effects in Piano Performance
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bottom (within one sample or 8 ms of the MIDI keypress event).

Keypresses were aligned across performances in terms of the key

bottom positions; the region between two successive vertical lines is

referred to as an event region. Dark grey shading indicates an event

region preceding a keypress (hereafter referred to as ‘attack

regions’) and light gray shading indicates the region during a

keypress (‘keypress region’). Positive and negative velocities indi-

cate movement away and toward the key, respectively.

The finger movement amplitude, computed over two event regions

prior to the keypress, is defined here as the difference (in mm)

between the maximum finger height before keypress and the

minimum finger height at keypress (defined as 0 height). Anticipation

time before keypress is defined as the difference (in ms) between the

time of the maximum finger height within the two event regions

prior to the keypress, and the time of the keypress (defined as time

0). Figure 3 illustrates the computation of movement amplitude

and anticipation time for a portion of the finger height trajectory

presented in Figure 2. The shorter the anticipation time, the closer

the peak movement amplitude is to the keypress. Trajectories in

which the finger was resting on the key at maximum finger height

were excluded from amplitude and anticipation time analyses;

only cases in which the finger was raised above the key were

included (80% of all trajectories). Cases of fingers resting on the

key prior to keypress were observed in all pianists. This phenom-

enon concerned primarily enslaved fingers [5], such as the middle

finger and the ring finger (64% of on-key trajectories), which are

most constrained by neighboring fingers during performance. This

indicates that biomechanical constraints affected finger movement

amplitude to some extent.

Pianists’ mean finger movement amplitudes, averaged across all

fingers, are shown in Figure 4 by tempo condition. Pianists lifted

fingers higher as tempo increased (F (4, 40) = 13.87, p,.001). Post-

hoc tests (Tukey HSD) revealed that the Slow tempo significantly

differed from all other tempi (p,.01); in addition, Fast1 signifi-

cantly differed from Fast4 (p,.05). Increasing tempo led to larger

finger movement amplitudes in all pianists (for Pianists 2–4,

p,.05; Pianist 1, p = .07, marginally significant). As expected,

movement amplitudes differed among fingers, with the thumb

amplitude reaching a maximum value (26.1 mm on average), and

the ring finger reaching a minimum value (21.7 mm) (F (4,

92) = 2.97, p,.05). Differences in finger heights are expected,

given the different lengths and degrees of freedom of different

Figure 1. Results from MIDI analyses. a) Mean coefficients of variation (CV) of the IOIs (SD/mean IOI) for the five tempo conditions; b) Mean key
velocity (tones’ intensity) for the five tempo conditions. Error bars are SE of the Mean.
doi:10.1371/journal.pone.0020518.g001
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fingers [5]. There was no interaction of tempo with finger; all

finger movement amplitudes increased with tempo.

We compared finger movement amplitudes with the temporal

and intensity characteristics of the sounded tones. Larger finger

movement amplitudes were associated with increases in MIDI key

velocity (r = .73, p,.01). To investigate whether tempo or tone

intensity goals accounted for increased finger heights at faster

tempi, the effects of key velocity were first partialled out from

finger movements by regressing key velocity on movement ampli-

tudes for each finger movement. The effect of tempo on residual

finger amplitudes was still significant (F (4,40) = 3.17, p,.05),

indicating that tempo goals contributed to finger heights beyond

intensity goals.

The mean anticipation times (ms before key bottom that the

finger reached maximum amplitude) across fingers were larger at

the slower tempi (F (4, 40) = 72.92, p,.001), an effect that was

observed in all pianists (for Pianists 2–4, p,.05; Pianist 1, p = .07,

marginally significant). The mean anticipation time was equivalent

to about one tone before the keypress across tempo conditions.

This is confirmed by the analysis of anticipation times expressed in

% of the IOI. Relative anticipation times did not differ signifi-

cantly as a function of tempo (Slow = 111% of the IOI, Fast1 =

107%, Fast2 = 100%, Fast3 = 113%, and Fast4 = 123%). The

Slow tempo differed from all other tempi, as indicated by post-hoc

tests (Tukey HSD, p,.01). Anticipation time was negatively

correlated with MIDI key velocity (r = 2.47, p,.01): the shorter

Figure 2. Movement of Finger 1 (thumb) during one pianist’s performance of the notated melody at Slow tempo. Framed notes
represent keypresses for Finger 1; vertical lines indicate the time at which the piano keys reached the bottom for each note in the melody.
Highlighted regions underscore motion attack regions (dark gray areas) and keypress regions (light gray areas). Key height at rest was approximately
10 mm (+/2 0.5 mm).
doi:10.1371/journal.pone.0020518.g002

Figure 3. Movement amplitude and anticipation time for a
portion of the finger height trajectory framed in Figure 2.
doi:10.1371/journal.pone.0020518.g003
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the anticipation time, the louder the tone. To assess whether

intensity changes were associated with tempo effects on anticipation

times, the effects of key velocity on anticipation times were partialled

out, as before; the effect of tempo on residual finger anticipation

times was still highly significant (F (4,40) = 16.10, p,.001). Thus,

finger movements in anticipation of a keypress started sooner at

slower tempi, above and beyond intensity changes.

Each finger’s movement kinematics one event before and during

keypresses was compared with its kinematic properties while

other fingers were pressing keys. Figure 5 shows an example of a

velocity-acceleration trajectory for Finger 1 (the thumb) for the

attack region (lower left panel) and for the keypress region (lower

right-panel). We examined whether the consistency of kinematic

properties across movements by the same finger varies depending

Figure 4. Mean movement amplitude averaged across all fingers for the five tempo conditions. Errors bars indicate standard errors. Key
height at rest was approximately 10 mm (+/2 0.5 mm).
doi:10.1371/journal.pone.0020518.g004

Figure 5. Finger height and phase plane plots of velocity-acceleration trajectory for a pianist’s Finger 1 (thumb) movement in the
attack and keypress event region (see Figure 2). Black filled circles mark the end of movement, corresponding to full key pressure.
doi:10.1371/journal.pone.0020518.g005
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on the type of event region. Each velocity-acceleration finger

trajectory was compared with other trajectories; the similarity of

the trajectories was computed between all possible pairs (n = 496,

without pairs including the same trajectories) for attack, keypress, and

remaining event regions, termed ‘‘at-rest’’ (while another finger

struck a key). Similarity was computed with Procrustean trans-

formation methods [32] which estimate a linear transformation of

the points in one matrix to best conform to the points in another

matrix. Procrustes values range from 0 (no shape similarity) to 1

(identical shape). Both the attack finger movements (mean Pro-

crustes value = .32) and the keypress finger movements (mean = .47)

were significantly more consistent than movements at rest (mean

= .17, F (2,477) = 77.9, p,.01, taking trajectory as the random

factor). Thus, finger movements were more consistent during the

goal of striking a key.

Network Classification Analyses
Next we tested whether the movement trajectories for attacks,

keypresses, and at-rest event regions contained sufficient information to

identify each performer on the basis of individual keystrokes. The

portion of the velocity-acceleration curves for each finger that

differed significantly between pianists was first identified by Func-

tional ANOVAs [30], which allow comparisons among functional

observations using a functional linear model. Figure 6 shows the

mean velocity and acceleration trajectories (panels a and b, respec-

tively) for the index finger across tempo conditions in the attack event

region for each of the performers. The brackets along the top of

each panel indicate the portion of the event region (69%) in which

the main effect of Performer reached significance, with unadjusted

p-values (significance threshold in Functional ANOVAs, F(3, 41) =

2.83, p,.05). Square brackets indicate the significant portion of the

event region with adjusted p-values (p,.001). The same pattern of

Performer-specific differences was obtained in keypress event regions

(47% of samples) and at-rest regions (58%). Hence, performers’

movement kinematics differed in particular in the vicinity of key-

presses. A similar pattern was observed for other fingers.

The next step was to determine whether these differences reflect

performer-specific kinematic signatures. Specifically, we tested whether

Figure 6. Mean velocity (panel a) and acceleration (panel b) trajectories for Finger 2 (index) in the attack event region for the 4
performers. Brackets indicate the regions where the difference between performers reached significance (with p,.05, and p,.001 significance
values). The x-axis is the normalized time in the attack event region: 1 refers to the keypress of the preceding note (i.e., beginning of the attack
region) and 0 to time of occurrence of the actual keypress.
doi:10.1371/journal.pone.0020518.g006
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it was possible to generate a model of finger movement kinematics

for a given performer that was capable of identifying that per-

former on the basis of novel movement trajectories. To test this

possibility, a neural network classifier was trained and then tested

on the attack, at-rest, and keypress portions of the velocity/accel-

eration trajectories that differed across performers. The significant

portions of the velocity and acceleration trajectories were first

entered in a Principal Component Analysis, to reduce the amount

of information. Five principal components, which accounted for

more than 95% of the variance in the finger trajectories, were used

to train a two-hidden-layer neuronal network (with 10 and 20

hidden units) with a resilient back-propagation algorithm, which

yields superior classification performance in automatic pattern

recognition [33]. Network classification performance was opti-

mized using bootstrap methods (bagging methods) [34]. Five 10-

fold cross-validation experiments were performed, in which data

were divided into 10 subsets. The performer’s identity was pre-

dicted for each subset by a neural network classifier that was

trained on the remaining 9 subsets. This process was repeated 5

times. Mean classification accuracy, as reported here, is based on

the average of these 5 cross-validation experiments.

Overall, the neural network classifiers were successful in

identifying performers based on finger movements in the attack

and keypress event regions and were less successful when fingers

were at rest. Figure 7 displays the network classifications by actual

performer and by classified performer for the attack movements.

The performers were correctly classified overall in 87% of attack

trajectories (chance = 25%) and in 84% of keypress trajectories.

Trajectories of fingers at rest (while another finger struck a key)

were classified less successfully (76%) but better than chance

(25%). The network’s successful classifications of the event finger

trajectories (in proportions) were entered in an ANOVA by Event

region (attack, keypress, at-rest) and Performer (1–4), with trajec-

tory as the random variable. The ANOVA confirmed the higher

classification accuracy for fingers during attacks and keypresses (F

(2, 2238) = 22.61, p,.01).

Also evident in Figure 7 is the fact that some performers were

identified correctly more often than others (F (3, 2238) = 20.67,

p,.01); finger trajectories of Performers 2 and 4 were classified

correctly overall (97%) more often than those of Performers 1 and

3 (64%). Correct classifications for individual performers also

differed for attack, keypress, or at-rest event regions, as indicated in a

significant interaction (F (6, 2238) = 5.46, p,.01). Post-hoc tests

(Tukey HSD) revealed that trajectories of fingers at rest were

significantly less successful than attacks (p,.05) and keypresses (for

performer 3 only, p,.01) for classifying Performers 1 and 3. Dif-

ferences among event regions for Performers 2 and 4 did not reach

significance.

Several characteristics of the sounded tones differed in the

performances for which the network correctly classified the move-

ment trajectories. Correctly classified trajectories in the attack event

regions were characterized by a small but significant increase in

temporal accuracy (16 ms) relative to incorrectly classified trajec-

tories (19 ms), as indicated by the absolute difference between the

performed IOI and the IOI prescribed by the metronome (t

(448) = 2.32, p,.05) . Performers 2 and 4, whose finger move-

ments were more often classified correctly, had more piano

performance experience (20.5 years on average) than Performers 1

and 3 (12.0 years on average). In addition, Performers 2 and 4

displayed higher consistency of movement (higher Procrustes

similarity values) than Performers 1 and 3 (t (147) = 2.4, p,.05,

with trajectories as the random variable). Thus, network identi-

fication of performers based on single finger movements was more

accurate for skilled performers with consistent finger movements

and for movements before and after goal-related keypresses. Move-

ment trajectories were more consistent and led to more accurate

performer identification when they were temporally accurate.

Further analyses were conducted to test whether variability in

movement kinematics across pianists reflected in sound differences

allowed for performer classification. To this aim, MIDI event data

(key velocity and tempo accuracy, expressed as before in average

deviation of the performed IOI from the expected IOI, in percent)

were analyzed across all tempi and the two melodies. The four

performers differed in terms of key velocity (Performer 1 = mean of

60.3 MIDI units; Performer 2 = 61.5; Performer 3 = 33.9; Per-

former 4 = 48.0; F(3, 446) = 122.95, p,.001) and tempo accuracy

Figure 7. Percent neural network classifications by actual and classified pianist, based on principal components of velocity-
acceleration trajectories for all finger movements in the attack event region. Stars indicate correct classifications or HITS (when the
classified pianist corresponded to the actual pianist).
doi:10.1371/journal.pone.0020518.g007
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(Performer 1 = 16.6%; Performer 2 = 8.4%; Performer 3 = 7.6%;

Performer 4 = 6.6%; F(3, 446) = 25.36, p,.001). Post-hoc analyses

(with Tukey HSD, p,.001) confirmed that each performer

significantly differed from the others in terms of either key velocity

or timing accuracy. Finally, in order to assess whether MIDI event

data are sufficient to predict which pianist is performing, key

velocities and timing accuracy were entered in a multiple regres-

sion model using pianist number as the dependent variable. The

analysis showed that the model significantly predicted the

performer (r-squared = .23, F(2, 447) = 67.78, p,.001); moreover,

both key velocities (b = 2.39, p,.001) and timing accuracy (b =

2.21, p,.001) significantly contributed beyond the other variable

to explain variance. In sum, these results confirm that both finger

kinematics and the sounded result of movement consistently

allowed for pianist classification.

Discussion

Kinematic and acoustic measures of pianists’ performances

yielded two novel findings. First, faster performances yielded

greater finger heights above the keys, which were related to larger

key velocities; finger kinematics in the vicinity of peak heights

contain relevant information for differentiating performers. Peak

heights consistently occurred about one tone before keypresses.

This finding contradicts both empirical findings in simple finger

movement tasks and pedagogical recommendations for music

performance practice. Second, individual pianists’ finger move-

ments were characterized by unique velocity/acceleration patterns

of goal-directed movements toward a keypress. The specificity of

these kinematic patterns was demonstrated by successful network

classifications of performers, based on trajectories in the attack and

keypress events as compared to at-rest portions of performance.

Previous measures of finger coordination between hands indi-

cated smaller finger movement amplitudes at faster tempi [24]. In

addition, some pedagogical techniques recommend that musicians

reduce their finger movement at faster tempi, in order to conserve

energy [22]. Yet, this finding is consistent with recent evidence in

duet piano playing showing a rate effect for finger amplitudes: the

fingers were raised higher above the keyboard when pianists had

to play eighth notes as compared to quarter notes [35].

The observed increase of finger movement amplitude with

tempo is unlikely to result solely from differences in performance

style or expression, for the simple melodies recorded here. The

effects of tempo on finger height were still present when differences

in key velocity associated with increased loudness were partialled

out (see [36] for other evidence confirming that intensity goals are

not the sole cause of increased finger height at fast tempi). As well,

clarinetists have been shown to raise their fingers farther above

clarinet keys at faster tempi [37], despite a lack of change in

accompanying sound intensity. Additionally, Loehr and Palmer

[5] showed that pianists’ finger taps increased in height as the

tempo increased, and pianists’ increased finger heights were ac-

companied by increased finger-key contact accelerations, which

correlated with better temporal precision of upcoming keypresses

[16]. These findings suggest that sensorimotor integration, rather

than style or expressive goals, accounts for the need to raise fingers

higher at faster tempi. More likely, the tendency of pianists’ finger

heights to increase with tempo may be related to goals of spatial

and temporal precision in music performance, which differ from

traditional motor tasks. Most motor studies employ single-effector

movements whose goal is spatial accuracy [38,39,40]. Some tasks

require repetitive movements in which participants focus either on

spatial accuracy, such as reaching tasks [41] or temporal accuracy,

such as tapping tasks [5,42]. Piano performance requires both

spatial and temporal accuracy, involves more than two effectors,

and its ultimate goal is sound production.

Larger amplitudes of motion at faster tempi may partially com-

pensate for the observed trade-off between speed (tempo) and

accuracy (spatial and temporal accuracy) [41]. Fast tempi in piano

performance usually entail lower spatial accuracy (more wrong

keys pressed; [1,2]) and higher temporal variability [17,18,19].

Skilled performers may adopt movement strategies (e.g., increasing

movement amplitude) aimed at containing the deleterious effects

of speed on spatial and temporal accuracy at very fast tempi, in

order to achieve error-free performances. This possibility is con-

sistent with recent observations that changes in pianists’ finger

kinematics have a direct effect on temporal accuracy. Greater

finger acceleration when pianists’ fingers make contact with the

key surface predicts temporal accuracy for the temporal interval

following the keystroke: the larger the change in acceleration at

finger-key contact, coincident with greater tactile and kinesthetic

feedback, the more accurate the subsequent temporal interval pro-

duced by pianists [16]. Strategies such as those aimed at increasing

movement accuracy, thereby compensating for a speed-accuracy

trade-off, may have played a role in the present study. A speed-

accuracy tradeoff is the tendency toward lower accuracy (e.g., in

error rates or temporal variability) at faster tempi. This constraint

is obviously incompatible with one of the main goals of piano

performance, namely to maintain high temporal accuracy at fast

tempi. Pianists may have increased movement amplitude at faster

tempi, thus enhancing temporal accuracy to counter a speed-

accuracy tradeoff. Related to this is the idea that effects of tempo

on movement amplitude were guided by perceptual factors.

By increasing finger movement amplitude, pianists may have

increased tactile and kinesthetic feedback at keypress, to overcome

the decrease in temporal accuracy that typically occurs at faster

tempi (in accordance with Weber’s law). This explanation,

although plausible, awaits further inquiry. For example, sensory

properties were not manipulated in the present study, a possibility

that deserves further research.

Finally, pianists’ finger movements demonstrated consistent kine-

matic differences in velocity/acceleration patterns across fingers and

melodies, in goal-directed movements in the vicinity of keypresses.

The specificity of these kinematic patterns was demonstrated by

highly successful network classifications of performers based on

trajectories in the attack and keypress event regions as compared to at-

rest regions. Success rate in classifying trajectories was also sensitive

to sounded differences among pianists, and to pianists’ perfor-

mance experience. Nonetheless, movement differences contributed

to classification success beyond these factors. It is striking that so

little kinematic information was sufficient to extract a model of per-

formers’ individualistic movement signatures that allowed successful

classification of new trajectories; this finding is significant, con-

sidering that pianists were not chosen a priori as having different

performance styles. One caveat is that the large number of indi-

vidual keypresses examined here represented a small number of

pianists and a small number of melodies. A larger sample is needed

to generalize these findings to other performance situations. In

addition, the present study did not examine whether humans can

classify pianists based on visual information. However, such study

should be conducted in the future to confirm the performance of the

neural network classifier.

Subtle individual movement differences also emerge in

handwriting, typing, and other finger actions [43]. Increasing

evidence suggests that personal identifiers may be found in many

goal-directed actions [44,45,46]. The fact that finger movements

in piano performance give rise to specific sound characteristics

suggests that what makes performers unique begins with their
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movements. Individual characteristics of finger movements can

have ramifications for pianists’ touch that influence their control of

force and timing [16], which in turn yields individualistic sound.

Method

Ethics statement
Written informed consent, as required by the ethics committee

of the Ohio-State University, was obtained from all participants.

Participants
Four skilled adult pianists (mean age = 24 years, range = 18–40

years, 3 females and 1 male) with an average of 16.3 years of piano

performing experience (range 12–21 years) were recruited from the

Columbus, Ohio, music community. Performers 1 and 3 had less

piano performance experience (12.0 years on average) than Per-

formers 2 and 4 (20.5 years on average). There were no large

anatomical differences in hand size or shape between participants.

Participants received a nominal fee for taking part in the experiment.

Stimulus Materials and Equipment
Two simple 4-measure isochronous melodies notated in 4/

4 meter (one in C-major, one in F-major), each containing 13

notes for the right hand, were created for the experiment (see

Figure 8). The melodies were constructed such that horizontal

hand displacement was limited and no ‘‘thumb-under’’ movement

was required, to limit occlusions during motion capture.

Participants performed the melodies on a Roland RD600 MIDI

digital piano. Finger movements were recorded by a Vicon-8

motion capture system (Vicon Motion Systems Ltd.). Fourteen

cameras with fine-angle lenses, located around the pianist,

captured the movement of passive markers (3-mm diameter) glued

to the fingernails on the right hand (sampling frequency = 120 Hz,

yielding 8-ms temporal resolution, which was about 7% of the

interonset intervals (IOIs) at the fastest prescribed tempo; spatial

resolution = .01 mm). The markers did not interfere with fingers’

movement during piano performance. Additional markers were

placed on the finger joints and on the front surface of the piano

keys (one for each key), to align the movement trajectories with the

MIDI data at the pofint of minimum key position. Sonar 2.2

software was used to record MIDI keypress timing data (‘‘note on’’

times) from the digital piano.

Procedure
The pianists first completed a questionnaire on their musical

background, and then memorized each melody, using their own

choice of fingering, until they could play it from memory without

errors. Three of the participants adopted the same fingering (for

melody 1, Pianists 1–3 used the fingers 1 3 2 3 1 5 4 5 1 5 1 4 3; for

melody 2, Pianists 2–4 used the fingers 1 5 2 5 3 5 4 5 3 1 5 1 4).

The other participant adopted a slightly different choice of

fingering, differing by three events in melody 1, and by one event

in melody 2. Pianists then performed each melody from memory,

following the tempo indicated by a metronome at the quarter-note

level. Each melody was performed at five experimental tempi in

the following order, progressively from the easiest to the most

difficult tempo: Slow tempo (60 beats/min, eighth-note

IOI = 500 ms), Fast1 (180 beats/min, eighth-note IOI = 167 ms),

Fast2 (210 beats/min, eighth-note IOI = 143 ms), Fast3 (240

beats/min, eighth-note IOI = 125 ms), and Fast4 (250 beats/min,

eighth-note IOI = 120 ms). The wide range of fast tempi was

chosen to induce a broad range of possible finger movements

under conditions that required fast preparation. The metronome

sounded prior to each performance and was turned off while the

performance was recorded. Each pianist performed each melody

at each tempo at least once; only error-free performances, assessed

by comparing the performances with the notation, were analyzed,

totaling 45 performances. All pianists were able to provide

errorless performances at Slow (n = 14) and Fast1 tempi (n = 13).

Three performers were able to perform the melodies at the Fast2

tempo (n = 11); two performers at Fast3 tempo (n = 5), and one

performer at the Fast4 tempo (n = 2). All performances of one

melody by one performer were discarded due to inadvertent hand-

rubbing that caused marker displacement. The experimental

session lasted approximately one hour.
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