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Abstract

CovR/S is a two-component signal transduction system (TCS) that controls the expression of various virulence related genes
in many streptococci. However, in the dental pathogen Streptococcus mutans, the response regulator CovR appears to be an
orphan since the cognate sensor kinase CovS is absent. In this study, we explored the global transcriptional regulation by
CovR in S. mutans. Comparison of the transcriptome profiles of the wild-type strain UA159 with its isogenic covR deleted
strain IBS10 indicated that at least 128 genes (,6.5% of the genome) were differentially regulated. Among these genes, 69
were down regulated, while 59 were up regulated in the IBS10 strain. The S. mutans CovR regulon included competence
genes, virulence related genes, and genes encoded within two genomic islands (GI). Genes encoded by the GI TnSmu2 were
found to be dramatically reduced in IBS10, while genes encoded by the GI TnSmu1 were up regulated in the mutant. The
microarray data were further confirmed by real-time RT-PCR analyses. Furthermore, direct regulation of some of the
differentially expressed genes was demonstrated by electrophoretic mobility shift assays using purified CovR protein. A
proteomic study was also carried out that showed a general perturbation of protein expression in the mutant strain. Our
results indicate that CovR truly plays a significant role in the regulation of several virulence related traits in this pathogenic
streptococcus.
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Introduction

Streptococcus mutans, a gram-positive bacterium that resides in

the human oral cavity, is considered to be the primary causative

agent of dental caries [1,2]. S. mutans has developed several unique

mechanisms that allows for the successful survival, colonization,

and continual presence in the oral cavity. S. mutans uses the dietary

carbohydrates of its host to produce an extracellular sticky

polysaccharide known as glucan, which is essential for anchoring

to the tooth surface, forming biofilms, commonly known as dental

plaque [3]. S. mutans also produces lactic acid as a byproduct from

the metabolism of carbohydrates ingested by its host [4]. In the

dental plaque, where the pH can be as low as 3.0 after exposure

to carbohydrates [5], S. mutans induces an acid tolerance response

that allows this pathogen to survive and grow under conditions of

low-pH [6]. The localized drop in pH also leads to demineral-

ization of the tooth enamel, promoting the formation of dental

caries. Oral bacteria, including S. mutans, can also enter the blood

stream during dental procedures, and cause transient bacteremia

and infective endocarditis [1]; some reports suggest that as much

as 14% of viridians streptococcus-induced endocarditis cases may

be linked to S. mutans [2,7]. The extraordinary ability of S. mutans

to adapt and persist in the human oral cavity is due to its ability

to rapidly respond and adapt to the ever changing conditions of

the oral cavity, including changes in the availability of essential

nutrients, fluctuations in oxidative and osmotic stress conditions,

and variations of temperature and pH.

Two-component signal transduction systems (TCS) are the

predominant mechanisms by which bacteria sense changes in

their external or internal environment [8]. TCSs are involved in

the regulation of gene expression in response to various environ-

mental cues. Although several different kinds of TCS exist, the

fundamental model of a TCS consists of a sensor kinase that is

usually located at the cell surface or periplasmic space, facilitating

the rapid detection of external signals (for recent reviews, see

[8,9,10,11,12]. Detection of an appropriate signal leads to a

conformational change, which results in autophosphorylation of

the protein. Typically, a conserved histidine residue in the sensor

kinase receives a phosphoryl group from ATP, followed by

transfer of the phosphoryl group from the kinase to the cognate

response regulator. The response regulator is composed of two

functional components: a receiver domain with a conserved

phosphorylatable aspartic acid residue, and an effector domain

that is activated upon phosphorylation of the aspartate residue.
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Phosphorylation of the response regulator alters its ability to

interact with either the target DNA sequence, or the RNA

polymerase, in order to activate or repress transcription of one or

more target genes in response to the signal received by the sensor

kinase. Coordinated gene expression in response to environmen-

tal signals is particularly important for many human pathogens

[13,14].

S. mutans encodes at least 14 TCS that play important roles in

bacterial adaptation, bacteriocin production, and biofilm forma-

tion [15,16]. Of these, CovR/S is one of the most important and

widely studied TCSs in S. mutans [17,18]. In the case of group A

streptococcus (GAS), the bacterium in which the CovR/S system

was first characterized [19], the TCS regulates about 15% of the

genes, either directly or indirectly [20,21]. These include the has

operon (hyaluronic acid capsule synthesis), ska (streptokinase), sagA

(streptolysin S), and speB (cysteine protease B) [19,22,23]. CovR

is also required for the expression of virulence related genes in

group B- (GBS) and C-streptococcus (GCS) [21,24,25]. As much

as 6% of the genes of GBS are regulated by CovR/S, including

cytolysin and CAMP factor, two key virulence determinants [24].

In both GAS and GBS, CovR regulates the expression of common

sets of genes in different strains; however, the repertoire of genes

regulated by CovR may also vary depending on the particular

strain [21,26,27]. Unlike most response regulators, in GAS and

GBS CovR predominantly acts as a repressor of most of the genes

that it regulates, including its own expression [24,28,29,30,31].

Regulation of gene expression by CovR may be indirect, involving

another regulator [32], or direct, by binding to the promoter

region of the target genes [24,28,29,30,31]. In S. mutans, CovR has

also been shown to repress the expression of various virulence

factors, including gtfB/C (glucosyltransferase B/C), gbpC (glucan-

binding protein C), and also autoregulates its own expression;

CovR directly regulates these genes by binding to the promoter

regions [17,18,33].

Transcriptomicanalysis in GAS and GBS indicates that al-

though CovR acts as a transcriptional repressor, the expression

of some genes are down regulated in the isogenic covR mutant

strains [21,24,27,32]. However, direct binding by CovR to the

target promoter was only shown for the promoter of the dppA gene

[32], and the cfb gene [27], both of which are up-regulated genes

identified by microarray analysis. Moreover, an in vitro transcrip-

tion assay indicates that in addition to CovR, other cellular factors

are necessary for activation of the dppA promoter [32]. We have

recently found that S. mutans CovR also activates expression of the

SMU.1882 gene. As with GAS dppA expression, activation also

requires additional cellular factors [34].

Multiple mechanisms have been proposed for the modula-

tion of CovR activity [35]. Although it is thought that the cognate

sensor kinase, CovS, phosphorylates the conserved aspartate

residue on the CovR for its activation, it has never been

demonstrated in vivo or in vitro. In contrast, it is proposed that

CovS dephosphorylates CovR under certain stress conditions,

thereby inactivating its repressor function [36]. In GBS, a

eukaryotic-like serine-threonine kinase, STK, was also shown to

modulate CovR activity by phosphorylating a threonine residue

on the N-terminal receiver domain. However, this modulation

may be specific for GBS CovR, and was not shown for GAS

CovR. In the case of S. mutans, CovR appears to be an orphan

response regulator, since no CovS was found in this streptococ-

cus, and a consensus binding sequence (CBS) for CovR has not

been clearly identified. The goal of the present study was to

analyze CovR-controlled regulation in S. mutans strain UA159 at

the transcriptional level, and their manifestations at the trans-

lational and phenotypic levels.

Materials and Methods

Bacterial strains and growth conditions
S. mutans strain UA159 and its isogenic covR-deleted mutant

strain IBS10 (Table S1) were grown in Todd-Hewitt medium

(BBL; Becton Dickinson) supplemented with 0.2% yeast extract

(THY). The pH of the THY medium was routinely adjusted

with HCl to 7.2 prior to sterilization. For growth kinetic analysis,

2 ml of overnight cultures were inoculated in 38 ml of the THY

broth, and grown anaerobically in Klett flasks at 37uC. The optical

densities of the cultures were monitored by using a Klett-

Summerson colorimeter [37] with a red filter, or measured at

OD600 using a spectrophotometer (Bio-Rad Laboratories, USA).

When necessary, erythromycin (Em, 5 mg/ml), kanamycin (Km,

300 mg/ml), or spectinomycin (Sp, 300 mg/ml) was added to liquid

or solid growth medium.

Construction of covR deleted strains
Two different covR deleted strains, IBS06 and IBS10, were

used in this study, and the construction of the latter strain, a

derivative of UA159, was previously described [18]. Similar to the

IBS10 strain, IBS06 is a derivative of NG-8, in which the covR gene

was disrupted by gene-replacement. Briefly, plasmid pIB10 [18],

which contains a 1.7-kb DNA fragment containing the entire

covR gene cloned into the pGEM-T-Easy vector (Promega), was

digested by MfeI at a unique site within the covR coding sequence.

A kanamycin resistance cassette (VKm), isolated from plasmid

pUC4VKm [38] after digestion by EcoRI, was ligated into the

MfeI-digested site, and the resulting construct was named pIB11.

The orientation of the kanamycin resistance cassette was verified

by PCR. Plasmid pIB11 was linearized by NotI, and then used

for the transformation of NG-8 strain [39]. Transformants were

selected on THY agar containing kanamycin, and designated as

IBS06 (NG-8). PCR analysis with flanking primers and Southern

hybridization using the entire covR gene as probe against IBS06

chromosomal DNA as template was performed to confirm that

covR inactivation had occurred in IBS06 by double-crossover

recombination.

Transformation of S. mutans
Transformation of S. mutans was done as previously described

[40]. Briefly, 0.5 ml of the overnight culture and 0.5 ml of heat

inactivated horse serum were inoculated in 10 ml of THY broth,

and cultured to OD600 = 0.2. At this point, competence stimulat-

ing peptide was added to the final concentration of 500 ng/ml.

One ml of the medium was transferred into a fresh tube, and

200 ng of DNA was added. The strains were incubated at 37uC
for 90 min, and transformants were selected on THY-agar in the

presence of appropriate antibiotics.

Semiquantitative RT- PCR (sqRT-PCR)
RNA samples were isolated from the S. mutans cultures grown

to mid-exponential growth phase (70 Klett units) following a

previously described protocol [33]. RNA samples were quantified

using a UV spectrophotometer. The sqRT-PCR analyses were

performed using a two tube RT PCR system. One microgram

of RNA was used for first strand cDNA synthesis (at 42uC, one hr

incubation) using Superscript-II reverse transcriptase (Invitrogen,

CA). The reaction was terminated by incubating the reaction

tubes at 70uC for 15 min, followed by RNaseH (Invitrogen, CA)

treatment at 37uC for 20 min, and purification of the cDNA using

a PCR purification column (Qiagen). The concentration of cDNA

was determined using a UV spectrophotometer. Five nanograms

of cDNA were used as template for PCR amplification using gene
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specific primers as listed in Table S1. Products obtained from the

sqRT- PCR reactions were loaded onto a 1% agarose gel,

photographed, and quantified using Doc-It-LS (UVP) software.

The expression of gyrA serves as the internal control to ensure that

equal amounts of total RNA were used in each sqRT-PCR

reaction.

Real time RT-PCR
Quantitative real-time PCR was performed as previously des-

cribed [41]. Briefly, the same RNA samples that were used for

sqRT-PCR were subjected to one-tube quantitative SYBR green

PCR assay using a Power SYBR Green RNA kit (Applied

Biosystems), and employing an ABI-Prism 7000 LightCycle system

(Applied Biosystems). The primers used for real-time PCR were

the same as the sqRT-PCR primers. As an additional control for

each primer set and RNA sample, the cDNA synthesis reaction

was carried out in the absence of reverse transcriptase to verify

that genomic DNA did not contaminate the RNA samples. The

critical threshold cycle (Ct) was defined as the cycle in which

fluorescence was detectable above the background, and is inversely

proportional to the logarithm of the initial number of RNA

molecules. A standard curve was plotted for each primer set with

Ct values obtained from amplification of known quantities of

DNA. The standard curve was used for transformation of the

Ct values to the relative number of cDNA molecules. The ex-

pression levels of all the genes tested by real time RT-PCR were

normalized using the gyrA expression as an internal standard. Each

RT-PCR was performed with at least two-independent RNA

samples in duplicate, and the x-fold change of the transcription

level was calculated with the ABI Prism SDS Software. Student’s t-

test was used to calculate the significance of the difference between

the mean expression of a given gene in the wild-type and its mean

expression in the covR deleted strain.

DNA microarray analysis
Affymetrix NimbleExpress arrays were purchased from Affyme-

trix (Santa Clara, CA). The arrays were designed based on the S.

mutans strain UA159 genome sequence [15], and are MIAME

compliant. The arrays were represented by 5 blocks, and each

block consisted of 1960 predicted S. mutans ORFs. cDNA synthesis,

biotinylation, and DNA microarray hybridization was done as

recommended by the manufacturer. For both the strains (UA159

and IBS10), two independently isolated RNA samples were

analyzed. The change of gene expression levels (n-fold) between

UA159 and IBS10 strains was calculated by taking the ratio of

corresponding average signal intensities with ArrayStar software,

version 3.0 (DNASTAR, Inc, Madison, WI). Student’s t-test was

applied, and the genes with 1.5-fold difference in RNA levels

(P-values#0.05) were considered to be differentially expressed.

The microarray experiments were done according to MIAME

standard, and all of the microarray data are available through the

Gene Expression Omnibus data repository at NCBI (www.ncbi.

nlm.nih.gov/geo/) via accession number GSE16500.

Electrophoretic mobility shift assay (EMSA)
CovR protein was previously expressed in E. coli and purified

as described [34]. After quantification by Bradford reagent using

BSA as standard, the purified CovR was used for EMSA analysis,

as described before [34]. Briefly, target promoters were PCR

amplified, purified, and radio-labeled using T4 polynucleotide

kinase (T4 PNK, New England Biolabs) as previously described

[18]. The labeled PCR fragment (0.1 pmole) was incubated with

increasing concentrations of CovR in a binding buffer that

contains 50 mM NaPO4 (pH 6.5), 50 mM NaCl, 1 mM MgCl2,

1 mM CaCl2, 1 mM dithiothreitol, 2 mg/ml poly (dI-dC), and

10% glycerol. Each binding reaction was performed in a 40 ml

volume, and incubated at room temperature for 45 min. After

incubation, the samples were loaded onto a 4.0% native

acrylamide gel containing 50 mM NaPO4 buffer (pH 6.5) and

4% glycerol. Following electrophoresis, the gel was dried and

analyzed by a Typhoon scanner following exposure of the dried

gel to a phosphor imager screen.

Analysis of total cellular lysate
Cultures were grown in THY, collected by centrifugation at the

indicated growth phases, and washed twice in a half volume of

phosphate buffered saline (PBS). Total cell extracts were prepared

by lysing the cell suspension with a bead beater (MP Biomedicals)

as previously described [42]. Total crude lysates (50 mg) were

loaded on to a 4–20% gradient SDS-PAGE, and stained with

PageBlue (Fermentas). The band of interest was excised from the

stained gel and subjected to mass-spectrometry analysis.

Two-dimensional gel electrophoresis (2-DE)
S. mutans cultures were grown until the mid-exponential phase

corresponding to ,70 Klett units. The cells were collected by

centrifugation, and suspended in 500 ml of osmotic lysis buffer

(10 mM Tris-HCl, pH 7.4, 0.3% SDS) containing protease

inhibitors. Proteins were isolated using FastPrep protein isolation

and PlusOne 2-D Clean-up kits (GE Healthcare, Piscataway, NJ,

USA) to remove non-protein contaminants. Before loading, the

samples were diluted to 1.0 mg/ml in SDS-boiling buffer (60 mM

Tris-HCl, 5% SDS, 10% glycerol) and placed in boiling water

bath for 5 min. A total of 50 ug of each protein sample was

subjected to isoelectric focusing (IEF), which was carried out in

glass tubes of inner diameter 2.0 mm using 2% pH 4–8 am-

pholines. Fifty nanograms of IEF internal standard, tropomyosin,

was included in each samples. This protein migrates as a doublet

with lower polypeptide spot of MW 33 kD and pI5.2; an arrow on

the stained gel marks its position. After equilibration for 10 min in

buffer ‘‘0’’ (10% glycerol, 50 mM dithiothreitol, 2.3% SDS,

0.0625 M Tris-HCl, pH 6.8) each tube gel was sealed to the top of

a stacking gel, which was on the top of a 10% acrylamide slab gel

(0.75 mm thick). SDS-PAGE was carried out for about 4 hrs at

15 mA/gel. Digital images of silver stained gels were acquired with

a Typhoon 9410 imager (GE Healthcare). The whole cell lysates

of both UA159 and IBS10 strains were prepared from two in-

dependently grown cultures, and the representative images are

shown. Analysis of the gels, including protein spot detection and

quantitation, was done with PDQuest software (Bio-Rad Labora-

tories). Gels were normalized based on the sum of all protein spots

detected in each sample.

Protein spot identification
The proteins of interest were excised from the SDS-PAGE gels

with a robotic spot cutter (Bio-Rad Laboratories), and identified

with tandem mass-spectrometry, as previously described [43].

The spectra were obtained, and the MASCOT software (www.

matrixscience.com) was used to analyze them against NCBI S.

mutans specific database.

Results

CovR-regulon of S. mutans strain UA159
To investigate the function of CovR in S. mutans strain UA159,

we used a previously constructed DcovR mutant strain, IBS10 [18].

In this strain, a non-polar aad9 gene conferring spectinomycin

resistance has been inserted into covR. To explore the global
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regulatory role of CovR in S. mutans, we performed a whole-

genome transcriptome analysis by comparing the gene expression

pattern of the exponentially grown (70-Klett unit) cultures of

IBS10 and UA159 using a high-density NimbleGen microarray

chip. Exponentially grown cultures were chosen because covR

transcription appears to be optimum at this growth phase [17].

ArrayStar software (DNASTAR, Inc) was used, and 1.5-fold

cuftoff in gene expression was applied (P-values#0.05) to identify

the genes differently transcribed and therefore affected by CovR.

Transcriptome analysis revealed that the transcription of 69 genes

was down regulated, while the transcription of 59 genes was up

regulated in the IBS10 strain. Several differentially expressed

genes could be clustered into many groups (Table S2), such as

genes associated with virulence, competence, house keeping func-

tions, and genes associated with genomic islands (GI).

We found several virulence-associated genes differentially

expressed in IBS10 (Table S2). Genes such as gtfB, gtfC, and gbpC

were previously shown to be repressed by CovR in S. mutans

[17,18,33]. In addition to these three genes, our transcriptome

analysis found that three additional genes, including wapE and

ftf, were also up regulated in IBS10 (Table S2). On the other hand,

two virulence-associated genes were found to be positively

regulated by CovR: spaP, whichencodes a well-studied surface

antigen AgI/II [44], and patB, which putatively encodes a

hemolysin (Table S2).

The S. mutans genome contains multiple GIs [15], which are

acquired by the organism through horizontal gene transfer.

Among these GIs, the presence of TnSmu1 and TnSmu2 among

the different isolates had previously been studied [45,46].

TnSmu1, which lies adjacent to a cluster of tRNA genes, cor-

responds to a large region of 23 kb spanning from SMU.191 to

SMU.226; this region encodes many predicted transposases,

integrases, transporter proteins, and hypothetical proteins. At

least 11 genes were induced in the strain without functional covR

compared to the wild-type strain, UA159.

In contrast, several genes within TnSmu2 were down regulated

in the DcovR mutant IBS10. TnSmu2 is the largest genomic island

(57 kb) found in the S. mutans genome, and it contains about 47

genes organized into several operons [15]. The largest operon

within this genomic island is the smt operon [47], which is

approximately 32-kb in length. The smt operon includes 10 genes

with high homology degree of similarity to several secondary-

metabolite biosynthesis genes. Expression of all 10 of the genes

in the smt operon (SMU.1339 to SMU.1348) was dramatically

decreased in the covR mutant strain (Table S2). In fact, the fold

difference in the expression of these genes was the highest of all the

genes that were differentially regulated in the mutant. TnSmu2

also contains two genes, SMU.1365 and SMU.1366, which are

generated due to gene duplication of SMU.1347 and SMU.1348,

respectively [45]. Expression of SMU.1365 and SMU.1366 was

also reduced (7.6- and 8.0-fold, respectively) in the mutant strain

IBS10. A putative transcriptional regulator of the TetR/AcrR

family, SMU.1349, is present just upstream of the smt operon, and

is transcribed divergently. In contrast to the smt operon genes,

expression of SMU.1349 was not significantly altered in the DcovR

mutant strain (data not shown).

The expression of another gene in the genomic island GI-4 was

also differentially regulated in the DcovR mutant strain IBS10. GI-4

is a small genomic island less than 10 kb in length, and includes

about 12 genes, two of which encode a sorbose phosphotransferase

(PTS) gene cluster (SMU.100 and SMU.101). The expression of

SMU.100 was down regulated in IBS10. Thus, taken together, it

appears that the expression levels of several horizontally transferred

genes were differentially affected by the covR inactivation.

We also observed that the expression levels of at least four

oxidative stress-related genes were differentially regulated in the

DcovR mutant (Table S2). However, the fold differences in the

expression levels between the mutant and the wild-type strains

were modest; the greatest difference was 2.4-fold for the SMU.758

gene that encodes a putative NADH dehydrogenase. Thus, the

results suggest that CovR probably plays an important role in

oxidative stress response in S. mutans.

Confirmation of differential gene expression by
quantitative PCR

In an attempt to validate the microarray results, quantitative

real-time RT-PCR analyses were carried out. Toward this end,

RNA isolated from exponentially grown cultures of UA159 and

IBS10 was used for RT-PCRs with primers listed in Table S1.

Nine genes that were differentially regulated according to the

microarray data (Table S2) were randomly selected, and their

expression was analyzed. The genes chosen were SMU.498,

SMU.625, SMU.644, SMU.1001 (dprA), SMU.1004 (gftB),

SMU.1396 (gbpC), SMU.1493, SMU.1983, and SMU.1988. The

results are consistent with the observed microarray results (Fig. 1),

and both methods strongly correlated with a coefficient of cor-

relation value of R2 = 0.93 (data not shown). Thus, CovR indeed

regulates the expression of these genes at the transcriptional level.

CovR is involved in competence of S. mutans
Our transcriptome study indicated that several competence

related genes, including coiA, dprA, comF/comFC, comEA/comEC,

and the genes belonging to the comY operon (Table S2) were

down regulated in the covR mutant strains. The extent of down

regulation varied between 1.6 to 3.6-fold. Quantitative RT-PCR

confirmed that at least dprA was also down regulated in the covR

mutant to a similar extent as in the transcriptome study. Thus,

tit appears that a functional CovR is required for optimal com-

petence gene expression. To determine if activation of these genes

by CovR correlates with competence of S. mutans, both the wild-

type UA159 and and DcovR mutant IBS10 strains were used as

recipient for the foreign DNA. Three different types of DNA

molecules were used: pDL276 plasmid that replicates via rolling-

circle mechanism; pOri23 plasmid that replicates via theta

mechanism; and a linear DNA fragment generated by PCR that

contains an erythromycin resistance marker flanked by ,0.5-kb

homology corresponding to the SMU.261 locus (a locus unlinked

and unrelated to CovR). Both of the pDL276 and pOri23 plas-

mids were able to replicate in S. mutans, providing resistance to

kanamycin and erythromycin, respectively, whereas the PCR

product encoding erythromycin resistance (Table S1) could

provide this phenotype only after integration into the chromo-

some. In the latter case, in addition to the defect in transformation,

possible deficiencies in the recombination pathway could also

be detected. As shown Fig. 2, in all cases, the transformation

efficiency of the IBS10 strain was lower compared to the wild- type

strain. A reduction of ,2.7-fold was obtained with transformation

of the linear DNA fragment, while a reduction of ,5.0-fold was

obtained for the replicating plasmid transformations. Thus, we

conclude that CovR plays an important role in the competence of

S. mutans.

CovR regulates expression of the smt locus
In an earlier study we also observed that a high molecular

weight protein, which migrated to a point above the 175-kDa

marker, was specifically expressed in the wild-type UA159, but

was absent in the isogenic DcovR mutant IBS10 (see Fig. 1 of
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reference [18]. To confirm our previous observation, protein

profiles of the wild-type (UA159) and the covR mutant IBS10

were resolved using a 4–20% SDS-PAGE. As shown in Fig. 3A, in

the crude cell lysates prepared from the exponentially growing

cultures, a band above the largest marker (250-kDa) appears to be

expressed in the wild-type strain, but is absent in the crude lysates

of IBS10. This band was also visible in the stationary phase culture

lysates from UA159, but not in the lysates of IBS10 (data not

shown). To identify this band, the band was excised from the gel,

and the protein was analyzed by mass-spectrometry. Twenty

peptide fragments were identified by mass-spectrometry analysis,

and a BLAST search revealed that the peptides corresponded

to BacA (SMU.1342), which is encoded by smt locus within

the TnSmu2 GI. To verify that the expression of the BacA protein

was indeed up-regulated by CovR, total cellular protein was also

extracted from IBS10 carrying pIB30, a plasmid containing

full-length wild-type covR [18], and its protein profile was

compared with the wild-type UA159 and DcovR mutant strain

IBS10 (Fig. 3A). The profile of the complemented covR mutant

strain displayed the same band as the wild-type strain, suggesting

that the loss of the BacA protein in crude cell extract of IBS10 was

due to the inactivation of covR.

The transcriptome study suggested that CovR positively regu-

lates all ten genes belonging to the smt locus. The absence of BacA

protein in the DcovR mutant strain is consistent with the mic-

roarray result. To confirm the effect of CovR on the transcription

of smt locus, we performed real time RT-PCR analyses using RNA

isolated at mid-exponential growth phase from strains UA159,

IBS10, and IBS10/pIB30. In order to measure the level of the

transcripts produced from each strain, RT-PCR was performed

using specific primers corresponding to the following three genes,

psaA (SMU.1348, the first gene in the smt operon), bacA

(SMU.1342), and bacC (SMU.1339, the last gene in the smt

operon). The level of the gyrA transcript was also measured to

ensure that equal amounts of RNA were being used for each RT-

PCR reaction. The bacA transcript produced from IBS10 grown

to mid-exponential phase was one-fifth compared to the wild-type

UA159 strain (Fig. 3B). The complemented DcovR mutant strain,

IBS10/pIB30, produced about 1.2-fold more bacA transcript

compared to the wild-type UA159. Similarly, both the psaA and

bacC transcripts were also reduced in the DcovR mutant strain,

where the transcript levels were about 44% compared to those of

the wild-type strain (Fig. 3B). As expected, the expression of

SMU.1349, which lies just upstream of the smt operon, was not

significantly altered (Fig. 3B). We also measured the relative level

of the bacA transcript from cultures grown to stationary phase and

found that it followed the same pattern as the level in the mid-

exponential phase (data not shown). Taken together, our results

suggest that when CovR is present, expression of the entire smt

locus, including the bacA gene, increases significantly.

CovR binds to promoter regions of both activated and
repressed genes

Our earlier studies demonstrated direct binding of CovR to

promoters of four repressed genes and one activated gene. To

further investigate the interaction of CovR with the regulated

promoters, a total of 15 promoters were subjected to electropho-

retic mobility shift assays (EMSA) with purified His-CovR protein.

Figure 1. Differential regulation of gene expression measured by quantitative real-time PCR. Bars represent either repression (A) or
activation (B) in strain IBS10 (covR) relative to the wild-type strain UA159. Values are means 6 standard deviations from at least three independent
experiments.
doi:10.1371/journal.pone.0020127.g001

Figure 2. CovR is required for competence. Fold-difference in
transformation efficiency of the S. mutans UA159 (wild-type) compared
to IBS10 (DcovR) with two circular plasmid DNAs (pDL276 and pOri23)
and linear DNA (a PCR fragment from plasmid pIB75, see text). Mean
values with standard error from two (pOri23 and pIB75) or three
(pDL276) independent experiments are shown.
doi:10.1371/journal.pone.0020127.g002
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Among the promoters, CovR repressed four of them while the rest

were activated by CovR (promoters used for EMSA are indicated

in Table S2). For all 15 promoters except one, shifts in the mobility

were observed when CovR was added, indicating direct binding

of CovR to the DNA sequences upstream of both CovR-activated

and -repressed genes (Fig. 4, data not shown). We did not observe

any shift after incubation of CovR to the SMU.136 promoter,

suggesting that regulation of this gene by CovR is indirect. We also

did not observe any shift when CovR was added to a DNA

fragment corresponding to the nlmAB operon, a result consistent

with the absence of CovR regulation of this locus and allowing for

this DNA fragment to be used as a negative control for the

specificity of CovR binding to regulated promoters. Specificity of

the binding interaction for each of the regulated promoters was

also supported by competition with excess unlabeled probe (Fig. 4,

lanes 5). Therefore, CovR specifically binds to the target pro-

moters to activate or repress transcription of these genes, and

supports the results of our microarray analysis.

Inactivation of covR perturbs protein expression
Our one-dimensional SDS-PAGE analysis showed that at least

three differentially expressed proteins (GtfB, GtfC, and BacA)

could be easily detected, distinguishing the wild-type UA159

from the covR mutant IBS10 (Fig. 3A, [18]). To evaluate a possible

relationship between transcriptional and translational regulations

that is modulated by CovR, a two-dimensional gel electropho-

resis approach was used to identify the protein spots that are

differentially expressed in UA159 and IBS10. Crude cellular

lysates from UA159 and IBS10 were prepared from mid-

exponential-phase and subjected to proteomic analysis. A total

of approximately 480 polypeptide spots could be detected in the

pI range of 5.2 to 8.2 by silver staining (Fig. 5, data not shown).

Three-fold difference in spot densities was used as cut-off to

identify differentially expressed proteins/protein isoforms in the

UA159 and IBS10 strains. Comparison of the proteomes from

UA159 and IBS10 revealed that at least 41 protein spots had levels

of expression altered by a change of three-fold or greater, with a

P- value of #0.05. Among the differentially expressed proteins,

26 were down regulated while 15 spots were up regulated in IBS10

strain relative to those in the wild-type strain grown under the

same condition. Fourteen spots of interest were excised from the

gels, and the polypeptides were identified by mass-spectrometry.

Corresponding protein identities are indicated in the Fig. 5 by

their SMU# according to the GenBank S. mutans genome

annotation [15]. For example, the spot identified as SMU.235

(hypothetical protein) was exclusively present in the UA159 strain,

while the spot identified as SMU.155 (polynucleotide phosphor-

ylase) was exclusively present in the IBS10 strain. On the other

hand, the spot identified as SMU.1496 (galactose-6-phosphate

isomerase) was present in both the strains, but was 3-fold more

abundant in the DcovR mutant. In total, 18 peptides present in the

14 spots were unambiguously identified by mass-spectrometry.

Overall, apart from GtfB and GtfC, protein expression pattern did

not correlate with the microarray results.

CovR modulates FTF expression
Our transcriptome data suggest that one of the virulence-related

genes, ftf (SMU.2028), was moderately up-regulated in the covR

mutant strain. FTF, which synthesizes fructan polymers from

sucrose, can be found in either cell-associated or extracellular

form. Expression of FTF varies greatly among various S. mutans

isolates. Although FTF can be identified in UA159, it appears

that FTF is one of the most abundant proteins in the culture

supernatant of NG-8 [48]. Therefore, we chose to investigate

the role of CovR in the production of FTF in this strain, and

constructed a covR mutant strain, IBS06. IBS06 appeared to

produce heavily mucoid colonies compared to NG-8 when

streaked on mitis-salivarious agar plates (Fig. 6A). The extracel-

lular protein profiles of the wild-type (NG-8) and the DcovR mutant

(IBS06) were also determined by resolution via 4–20% gradient

SDS-PAGE. Two distinct bands of approximately 170-kDa were

elevated in the DcovR mutant IBS06 relative to the wild-type NG-8

strain. Mass-spectrometry analysis confirmed that the larger band

corresponds to GtfB, while the smaller band corresponds to GtfC.

As previously shown, these two bands were also up regulated in

IBS10 supernatant fractions (Fig. 3A). In contrast, the supernatant

fraction of NG-8 and its isogenic covR mutant strain contain a

band that was absent in UA159 and its derivatives. This band,

which is ,87.0 kDa in size, was more abundant (,3-fold) in the

mutant strain (IBS06) compared to the wild-type strain (NG-8).

Mass-spectrometry analysis confirmed the identity of the band as

FTF protein. To verify our mass-spectrometry result, we employed

western blot analysis (Fig. 6D). Mid-exponential phase culture

Figure 3. Differential expression of smt operon in the CovR
deficient strain. (A) Protein profile of the wild-type UA159, the DcovR
mutant IBS10, and the complemented IBS10 strain. Whole cell lysates
from cultures grown to the mid exponential phase were resolved on a
4–20% gradient gel, and stained with PageBlue (Fermentas). M:
Prestained molecular weight marker; lane 1: UA159 (wild-type); lane 2:
IBS10 (covR mutant); and lane 3: IBS10/pIB30 (complemented covR
mutant). The 313-kDa protein band was excised from the gel and
analyzed by mass spectrometry to verify its identity. (B) RT-PCR analysis
of the genes in the smt locus. RNA was harvested from cultures at the
mid-exponential phase of growth and subjected to real time RT-PCR
analysis using primer pairs specific for bacA, bacC, gyrA, psaA, and
SMU.1349 genes, as described in the text. Strains used include: UA159
(wild-type), IBS10 (covR mutant), and IBS10/pIB30 (complemented covR
mutant). Real time RT-PCR reactions were performed in triplicate and
the mean values with standard deviations are shown.
doi:10.1371/journal.pone.0020127.g003
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supernatants from the wild-type (NG-8) and the covR mutant

(IBS06) strains were separated by SDS-PAGE, and probed with

anti-FTF antibody. As expected, IBS06 showed increased presence

of FTF in the supernatant compared to NG-8. Furthermore,

purified CovR protein was able to bind to the promoter region of

the ftf gene during EMSA analysis (Fig. 6E). This binding was

specific, since excess unlabelled competitor DNA was able to

disrupt the complex formation. Thus, taken together our results

strongly suggest that in addition to glucosyltransferases (GtfB/C),

CovR also regulates fructosyltransferase production in S. mutans

strain NG-8.

CovR is involved in regulation of multiple genes in NG-8
Since our SDS-PAGE analysis of the supernatant proteins

identified at least three genes that were up-regulated in the covR

mutant IBS06, we investigated the CovR regulon in NG-8, by

measuring the expression of some of the selected genes that were

regulated by CovR in its sister strain UA159. We found that gtfB

(SMU.1004), gtfC (SMU.1005), and gbpC (SMU.1396) were all up

regulated 3-fold or higher in strain IBS06 as compared to the

parental strain NG-8. We also found that the putative galactose

metabolism operon (SMU.1431–SMU.1437) and a hypothetical

protein (SMU.2147) were also up regulated in the covR mutant.

Surprisingly, we found that the operon encoding genes SMU.1067

to SMU.1070 (putative ABC transporter genes) was also up-

regulated in the IBS06 strain. This operon was not differentially

regulated in UA159 or its isogenic covR derivative IBS10. Among

the CovR-activated genes, we measured the expression of

SMU.1882 gene, and found that this gene was down regulated

,3.0-fold in the covR mutant strain IBS06 as compared to the

wild- type parent (NG-8). Unexpectedly, we found that the operon

encoding citrate utilization genes, which also includes a trans-

porter gene (SMU.1010–SMU.1013), were also down- regulated

(,2.0-fold) in IBS06. Since both TnSmu1 and TnSmu2 are absent

in NG-8 (Biswas, unpublished), we were unable to test the

expression of the genes associated with these operons.

Discussion

CovR/S is an important two-component signal transduction

system that seems to regulate a wide range of genes in various

Streptococcal spp. Although it has been known for pathogens such

as GAS and GBS that CovR/S plays a fundamental role in

virulence and stress response, the global role of this system in S.

mutans biology and/or pathogenesis has not been elucidated in

detail. In contrast to other streptococci in which this TCS system is

present, CovR appears to be an orphan response regulator in S.

mutans [20,21,24,27,29,35,49]. To understand the importance of

this response regulator, we carried out detailed genomic and

proteomic studies. We report here that under planktonic growth

conditions, CovR plays pleiotropic and complex roles in S. mutans

global gene regulation, including competence and expression of

important virulence traits. Our analyses have revealed several new

findings that are discussed below.

Previous studies from our laboratory indicated that CovR

predominantly functions as a transcriptional repressor. We cha-

racterized four such genes: gtfB, gtfC, gbpC, and covR; expression

from each of these promoters is repressed by CovR [17,18,33].

We also demonstrated that CovR could activate expression of

SMU.1882, a small putative bacteriocin-encoding gene. However,

in this present study, our transcriptome data suggested that among

the 128 differentially regulated genes (about 6.5%), 69 genes were

activated, whereas 59 genes were repressed by CovR. Although

the number of genes regulated by CovR in S. mutans is smaller

compared to GAS (6.5% vs 15%), it is comparable to the number

of differentially regulated genes in GBS (,7%). Our results are

also consistent with the GBS data that show the number of CovR

activated and repressed genes are roughly equal. In contrast,

CovR activates very few genes in GAS [21].

Among the 41 protein spots that were differentially expressed

in our proteomic study, the identity of only 14 protein spots

were unambiguously determined (Fig. 5). The expression of

GftB (SMU.1004, glucosyltransferase-I) and GtfC (SMU.1005,

glucosyltransferase-SI) were more than 3-fold higher in the covR

deficient strain IBS10, and correlated with the microarray analysis.

However, expression of other proteins (or protein isoforms)

identified during the proteomics analysis did not correlate with

the microarray results. There are several possibilities that can ex-

plain the lack of correlation between the transcriptomics and

proteomics data. First, the results of microarray analysis are more

comprehensive compared to those obtained in the proteomics

study. Furthermore, due to the relatively low sensitivity of protein

detection, the total number of unique proteins identified with 2-

DE followed by mass-spectrometry usually corresponds to about

10% of the predicted proteins within the range of pH gradient

[50,51,52,53]. The low abundance proteins, such as transcrip-

tional regulators, are difficult to detect in the proteome, although

transcriptional levels of the corresponding genes can be easily

measured by microarrays. Furthermore, many streptococcal pro-

teins are known to be expressed as different isoforms; the data

Figure 4. Binding of CovR to the putative promoter regions of the genes indicated below the respective panels. Increasing
concentrations of CovR was added to 0.1 pmole of the putative promoters as follows, lane 1, 0 mM; lane 2, 0.5 mM; lane 3, 1.25 mM; lane 4, 2.5 mM.
Lane 5 contains 1.25 mM CovR with 10 pmole of non-labelled specific DNA.
doi:10.1371/journal.pone.0020127.g004
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Figure 5. Two-dimensional gel electrophoresis analysis of S. mutans. Whole cell lysates of the wild-type UA159 (A) and DcovR mutant IBS10
(B) are electrophoresed in 10% SDS-PAGE. Red and black circles in Fig. 2A indicate protein spots exclusively present in wild-type strain, or at least
3-fold abundant in the wild-type strain compared to the covR mutant, respectively. Red and black circles in Fig. 2B indicate protein spots exclusively
present in the covR mutant strain, or at least 3-fold abundant in covR mutant strain compared to wild-type strain, respectively. Numbers correspond
to the orf according to NCBI designation (SMU#). Molecular weight standards (kD) are shown.
doi:10.1371/journal.pone.0020127.g005
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presented here also confirm this. For example, among the 14 spots

of interest, two spots identified in the covR mutant contained

SMU.1535 (glycogen phosphorylase). One spot was exclusively

found in the covR mutant, while the other spot was more abundant

in the mutant compared to the wild-type strain (Fig. 5B). We

cannot rule out the possibility that SMU.1535 is present in the

wild-type proteome, and based on our limited analysis of just a few

protein spots it is difficult to conclude that CovR regulates

expression of all the identified protein spots (Fig. 5). Nevertheless,

given that the proteome maps were well reproducible, and a total

of 41 protein spots were differentially expressed, it is obvious

that inactivation of covR resulted in some perturbations at the

translational and/or post-translational level.

Among the new findings that emerged from this study is the

involvement of CovR in the regulation of competence-related

genes, where CovR appeared to activate at least 16 competent

related genes. Among these, four genes encode late competentence

proteins (ComEA, ComEC, ComFA, and ComFC) that are

involved in DNA uptake. It was found that CovR also activated

genes belonging to the ComY operon as well as a gene encoding

DprR protein. This protein, which colocalizes with the DNA

uptake machinery [54] in streptococci, has two functions. The first

function is single-strand DNA binding activity that is absolutely

required during DNA uptake, and the second activity is to se-

quester intracellular iron to prevent H2O2 toxicity. Consistent with

the gene expression studies, we found that covR mutant strains

are more sensitive to H2O2 exposure in a disk diffusion assay (data

not shown). Our results are also consistent with the results in S.

pneumoniae, where dprA is also activated by RitR, an orphan

response regulator that shares a high degree of sequence similarity

to CovR [55]. However, in this pathogen, RitR does not activate

other competence-related genes. Our microarray results were also

supported by the transformation studies, which found three- to

five-fold reduction of transformation efficiency in the covR mutant.

The CovR/S system also actively participates in general stress

responses in both GAS and GBS. In the case of GAS, a func-

tional system is necessary to withstand acid, osmotic, and thermal

stresses. CovR/S system is involved in acid stress response in GBS.

More than 90% of the pH-activated genes are also regulated by

CovR/S [56]. Surprisingly, we did not find any correlation

between acid-modulated and CovR-regulated genes. However, we

found several oxidative-stress related genes that appeared to be

activated by CovR, although the observed activation is low to

moderate (1.5- to 2.0-fold). Further experimental verification is

required to confirm the role of CovR in the oxidative stress res-

ponse in S. mutans.

Animal studies have indicated that both GAS and GBS CovR

plays an important role in pathogenesis. However, the effect of

CovR on relative virulence depends on the experimental animal

models and strain types. For example, CovR deficient strains of

Figure 6. Differential expression of fructosyltransferase in wild-type and DcovR strains of NG-8. (A). Colony morphology of IBS06 (covR
mutant) and NG-8 (isogenic wild-type parent) on mitis-salivarius agar medium. Plates were incubated at 37uC under microaerophilic conditions for
48 hrs. (B) Semi-quantitative RT-PCR analysis of ftf and gyrA for the strains NG-8 and DcovR (IBS06). The gyrA gene was included as an internal control
to ensure that equal amounts of RNA were used for each RT-PCR reaction. Experiments were repeated at least twice with two independent RNA
isolations. (C) Analysis of extracellular proteins from the wild-type and the DcovR strains. Supernatant proteins from overnight cultures were
precipitated by 20% TCA, washed with acetone, and resuspended in PBS. Equal amounts of protein were loaded in each lane, and samples were run
on SDS-PAGE (4–20%) gels and stained with Coomassie blue. Bands marked with arrowheads were excised from the stained gel, and identified by
mass spectrometry. Lanes: M, Fermentas prestained marker; 1, NG-8; 2, IBS06. Proteins identified by mass spectrometry are indicated at the right. (D)
Western blot analysis of FTF (fructosyltransferase) expression. NG-8 (wild-type, lane 1) and IBS06 (covR, lane 2) were grown overnight in THY broth
and whole-cell extracts were prepared. Equal amounts of cell extracts were separated on 4–20% SDS-PAGE gels and reacted with anti-FTF antibody
(E). In vitro binding of CovR to the promoter of ftf (Pftf). EMSA was performed with His-tagged CovR as described in the text. An increasing
concentration of CovR was added to 0.1 pmole of the putative promoters as follows: lane 1, 0 mM; lane 2, 0.5 mM; lane 3, 1.25 mM; lane 4, 2.5 mM. Lane
5 contains 1.25 mM CovR with 10 pmole of non-labelled Pftf DNA.
doi:10.1371/journal.pone.0020127.g006
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GAS are shown to be hypervirulent in a murine skin infection

model [57]. However, a naturally occurring covR mutant strain

of GAS has also been shown to be hypervirulent in a murine

model of infection [58]. The role of CovR in GBS pathogenesis is

much more complex, and highly strain dependent [27]. Strepto-

coccal pathogenesis has also been studied using zebrafish as an

experimental animal model system [59]. Our preliminary studies

also indicate that IBS10, the isogenic covR mutant derivative of

UA159, is also hypervirulent in a zebrafish infection model as

compared to UA159 (Neely and Biswas, unpublished).

Another important finding is the involvement of CovR in the

regulation of genes that are encoded within the genomic islands

(GIs). Out of 11 GIs that are encoded by the UA159 genome [15],

we found that genes encoded by two GIs were differentially

expressed in the DcovR strain (Table S2). GI-6, which is also known

as TnSmu1 [46], encodes about 34 genes, and we found that 13 of

these genes were up-regulated in the DcovR strain. Only one gene,

SMU.223, which is also encoded by TnSmu1, was down-regulated

in the mutant. On the other hand, at least 12 genes encoded by

GI-12, also known as TnSmu2 [45], were down-regulated in the

DcovR strain. Interestingly, the difference in the expression of these

genes between the wild-type and the mutant was among the

highest. TnSmu2 encodes an operon, smt, which is thought to be

involved in the biosynthesis of secondary metabolites. There are

ten genes (SMU.1339–SMU.1348) encoded within the smt operon,

and all of the genes were down-regulated in the covR deletion

strain. Furthermore, one gene product of the smt operon, BacA,

was also identified by the proteomics analysis. However, the

expression of SMU.1349, a TetR/AcrR family of transcription

factors, which lies just upstream of the smt operon, was unaffected

in the covR deletion strain. At present, we do not know the exact

mechanisms by which CovR modulates the expression of these GI

encoded genes. It is possible that CovR may activate the smt

operon by functioning as an anti-silencer.

By using DNase I protection assays, previously we have

characterized the binding of CovR to promoters of five genes:

gtfB, gtfC, gbpC, covR, and SMU.1882 [17,18,33]. These five

promoter sequences have been analyzed with the GLAM2

program to develop an optimized position weight matrix for

consensus binding sequence (CBS) for CovR [17,18,33]. Surpris-

ingly, four different CBSs have been obtained with overall weight

score varied from 78.4 to 67.8. The CBS with the highest score

(78.4) is a 36-bp long AT-rich sequence that is present in all the

five promoters; in one promoter (gtfC), the sequence is present

twice. When we analyzed the presence of this putative CBS in the

S. mutans genome, we found the sequence was present about 25

times, many of which map to the intergenic regions (IGR);

however the majority of the IGR were not associated with the

CovR regulon. In this study, we extended the binding study to 15

additional promoters. With one exception, CovR was able to bind

to all of the other tested promoters. To develop a revised CBS, we

analyzed by GLAM2 all 19 promoters to which CovR was shown

to bind directly. Apart from the presence of a few AT-rich motifs

at the binding sites of these promoters, we were unable to derive a

consensus binding sequence specific for CovR. Furthermore, as

mentioned before, the GAS CovR consensus binding sequence,

ATTARA [29,30], was not found in all of the promoter sequences

regulated by S. mutans CovR. Since no specific binding sequence is

apparent for S. mutans CovR, it is possible that CovR may have low

sequence specificity for DNA binding. Alternatively, CovR of S.

mutans may recognize and bind to multiple sequences that cannot

be deduced by a simple sequence comparison. It is also possible

that CovR recognizes some unique structural features in the target

DNA, such as bending or looping. Further in vitro experiments are

required to elucidate the mechanism by which CovR recognizes its

target promoters.

Homologs of the CovR/S system are widely present in many

streptococci. However, in most cases this is an archetypal system

that includes both the response regulator (CovR) and the histidine

kinase (CovS). In the case of S. mutans, CovR appears to be an

orphan response regulator [17], as no CovS homolog can be

identified in this pathogen, although the locus is highly conserved

in both GAS and GBS, as well as S. thermophilus. The exact

environmental cues that stimulate this system are also unknown,

although Fe+, Mg+2, cationic peptides, and environmental stresses

have been shown to activate this TCS [36,60,61]. We have shown

that covR expression in S. mutans is dependent on temperature, pH,

as well as Mg+2; however whether these signals truly activate

CovR in vivo remains to be evaluated.

The precise mechanism in the activation of CovR/S system

is not fully understood. In the case of GAS, it has been shown that

CovS acts both as a phosphatase and as a kinase. While pho-

sphorylation of CovR causes dimerizarion, and possibly recruit-

ment to the target promoters, dephosphorylation by CovS leads to

inactivation of CovR. Depending on the specific environmental

signal, the activity of CovS is switched between phospahatase and

kinase. On the other hand, in GBS, eukaryotic-like Ser-Thr

protein kinase-phosphatase (STK-STP) pairs have been implicated

in the regulation of CovR activity. In this case, CovR is proposed

to be phophorylated at two residues: an aspartate at position 53

(D53), and a threonine at position 65 (T65). While phosphoryla-

tion of CovR at D53 by CovS leads to activation of the system,

phosphorylation of CovR at T65 by STK leads to inhibition [62].

Thus, two different kinases modulate the activity of CovR in GBS.

The involvement of two kinases seems to be specific to GBS, since

CovR is not modulated by STK in GAS. For three reasons, we

believe that CovR activity is also not modulated by STK in S.

mutans. First, unlike the GBS scenario, there is very little overlap

between the STK and the CovR-regulated genes. Second, the

conserved T65 residue is absent in the S. mutans CovR protein.

Finally, an in vitro phosphotransfer reaction failed to transfer

the phosphate group from STK to CovR (data not shown). Since

CovS is absent in S. mutans, we speculate that CovR is engaged

in cross talk with other TCSs. Furthermore, small molecule pho-

sphodonors, such as acetyl phosphate, may play an important role

in the modulation of CovR activity in S. mutans. Further bio-

chemical studies are required to unravel the mechanism of CovR

activation in S. mutans.
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