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Abstract

Protein modifications of death receptor pathways play a central role in the regulation of apoptosis. It has been
demonstrated that O-glycosylation of TRAIL-receptor (R) is essential for sensitivity and resistance towards TRAIL-mediated
apoptosis. In this study we ask whether and how glycosylation of CD95 (Fas/APO-1), another death receptor, influences
DISC formation and procaspase-8 activation at the CD95 DISC and thereby the onset of apoptosis. We concentrated on N-
glycostructure since O-glycosylation of CD95 was not found. We applied different approaches to analyze the role of CD95 N-
glycosylation on the signal transduction: in silico modeling of CD95 DISC, generation of CD95 glycosylation mutants (at
N136 and N118), modulation of N-glycosylation by deoxymannojirimycin (DMM) and sialidase from Vibrio cholerae (VCN). We
demonstrate that N-deglycosylation of CD95 does not block DISC formation and results only in the reduction of the
procaspase-8 activation at the DISC. These findings are important for the better understanding of CD95 apoptosis
regulation and reveal differences between apoptotic signaling pathways of the TRAIL and CD95 systems.
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Introduction

Apoptotic cell death is common in multicellular organisms and

can be triggered by a number of factors including UV- or c-

irradiation, chemotherapeutic drugs and signaling from death

receptors [1]. CD95 (APO-1/Fas) is a member of the death

receptor family, a subfamily of the TNF-R superfamily [2].

Crosslinking of CD95 with its natural ligand CD95L (CD178) [3]

or with agonistic antibodies such as anti-APO-1 induces apoptosis

in sensitive cells [4]. In addition, triggering of CD95 induces a

number of non-apoptotic activities [1,5,6].

The death-inducing signaling complex (DISC) is formed within

seconds after CD95 stimulation [7]. The DISC consists of

oligomerized CD95, the adaptor molecule FADD, two isoforms

of procaspase-8 (procaspase-8/a and procaspase-8/b), procaspase-

10 and c-FLIPL/S/R [1,8,9,10]. The interactions between the

molecules at the DISC are based on homotypic contacts. The

death domain (DD) of the receptor interacts with the DD of

FADD, while the death effector domain (DED) of FADD interacts

with the N-terminal tandem DEDs of procaspases-8, -10 and c-

FLIPL/S/R. Procaspase-8 upon binding to the DISC undergoes

oligomerization that results in processing of the zymogen, for

which a two-step mechanism has been described. The first

cleavage step generates the two subunits p43/p41 and p12 [11].

In a second cleavage step, the active enzyme subunits p18, p10

and the prodomains p26/p24 are produced. As a result the active

caspase-8 heterotetramer p102–p182 is released into the cytosol to

propagate the apoptotic signal [12]. The initial events of DISC

formation and caspase-8 activation have not been clarified yet.

Pre-oligomerization of CD95 via the Pre-Ligand Assembly

Domain (PLAD) has been suggested to play an important role in

apoptosis initiation [13]. Recently, there have been several new

reports on X-ray structure of CD95 and FADD [14,15,16].

Although the reported X-ray structures contradict each other/are

in disagreement in terms of the CD95/FADD structure, they

provide a basis for consideration of the initial events preceeding

caspase-8 binding and activation at the DISC.

Two CD95 signaling pathways have been identified so far [17].

Type I cells are characterized by high levels of CD95 DISC

formation and increased amounts of active caspase-8 which

activates downstream effector caspases-3 and -7. Type II cells are

characterized by lower levels of CD95 DISC formation and, thus,

lower levels of active caspase-8. In this case, signaling requires an

additional amplification loop that involves the cleavage of the Bcl-

2-family protein Bid by caspase-8 to generate truncated (t)Bid and

subsequent (t)Bid-mediated release of cytochrome C from

mitochondria. The release of cytochrome C from mitochondria

results in apoptosome formation followed by activation of

procaspase-9, which in turn cleaves downstream effector caspases.

CD95 is a glycosylated type I transmembrane receptor

(Figure 1A) and has been reported to be N-glycosylated in

its extracellular domain [18,19,20]. N-linked glycosylation is
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introduced upon entry of the polypeptide into the lumen of the

endoplasmic reticulum (ER) and involves the transfer of a

carbohydrate moiety to an asparagine residue within a specific

amino acid consensus sequence. In addition, CD95 was reported

to be sialylated on the N-linked oligosaccharide chains [18,19].

Sialic acids are a diverse family of sugar units with a nine-carbon

backbone that are typically attached to the outermost ends of

glycans [21,22]. Sialylation is mainly regulated by sialidases and

sialyltransferases, which cleave sialic acid residues from and

transfer them to glycoconjugates, respectively [23]. It has been

reported previously that desialylation of CD95 using Vibrio cholerae

neuraminidase (VCN) results in increased sensitivity towards CD95-

induced apoptosis [18,19].

Glycosylation has been reported to play an important role in the

modulation of the sensitivity towards death receptor-induced

apoptosis. It has been reported that O-glycosylation of TRAIL-R

is a major factor for the apoptosis induction. Further O-

glycosylation promoted ligand-stimulated clustering of TRAIL-

R1 and TRAIL-R2, which mediates recruitment and activation of

procaspase-8 [24]. In this line, the aim of this study was to analyze

the influence of CD95 glycosylation on apoptosis initiation and

procaspase-8 activation at the DISC. Using amino acid sequence

information and bioinformatic analysis we predicted that CD95 is

N-glycosylated at N118 and N136. Furthermore, by means of in

silico three-dimensional (3D) modeling we tentatively predict the

possible mechanism of how N-glycosylation might influence DISC

formation and procaspase-8 activation at the DISC. Surprisingly,

on the experimental level, we could only find that deglycosylation

of CD95 leads to the slowing down of procaspase-8 activation at

the DISC. Notably, the formation of the DISC, e.g. the

recruitment of FADD to the DISC was not blocked. The

sensitisation upon CD95 N-deglycosylation took place only upon

a narrow range of concentrations of CD95 antagonists. This

demonstrated that, in contrast to the TRAIL-R O-linked glycan

moiety, the CD95 N-glycan structure contributes to a smaller

extent to the initiation of the apoptotic signaling leading to the

death of the cells.

Results

Analysis of CD95 glycosylation using bioinformatic
analysis and in silico 3D modeling

CD95 has been described to be an N-glycosylated protein [18].

To characterize CD95 N-glycosylation putative glycosylation sites

of human CD95 were analyzed using bioinformatic analysis

(Figure 1). The presence of several glycosylation sites was

predicted, which is in accordance with previous reports and

supports N-glycosylation of CD95 [20]. There are three N-

glycosylation sites predicted (Figure 1B). Two N-X-S/T sites are

located in the extracellular domains (residues 112–149) at positions

N118 and N136 and one in the intracellular domain (174–298) at

position N223 (Figure 1B). Predictions also show the presence of

one O-glycosylation site at T214, which is highly unlikely as it is

located in the CD95 intracellular domain (Figure 1C).

Analysis of an alignment of 16 sequences of CD95 from

different species showed that the Asn residue in the first N-

glycosylation site, which corresponds to N118 in human CD95, is

the most conserved one. The Asn residue in the second N-

glycosylation site, which corresponds to N136 in human CD95, is

less conserved with regard to glycosylation (Figure S1A).

Moreover, the N-X-S/T sequence of the second N-glycosylation

site N136 is conserved in three organisms from all 16 analyzed,

suggesting N136 residue could be potentially glycosylated (Figure

S1B).

To analyze the possible role of CD95 glycans in the CD95

DISC formation and in the formation of the CD95 DISC complex

network on the membrane in silico modeling was applied. Core

structures of N-glycans were added using the GlyProt tool as

presented in Figure S2A. It is generally accepted that CD95 DISC

core structures are composed of three molecules of CD95 and

three molecules of CD95L [16]. As depicted in Figure 2, upon

formation of CD95 DISC core structure, the glycan attached to

N136 of CD95 could potentially be important for complex

formation and/or stability, due to its close proximity to CD95L

molecule (Figure 2A, B) and could form an extensive hydrogen

bond network with residues 200–204 of CD95L (Figure 2C). The

glycan attached to N118 of CD95 most probably is not important

for the formation and/or stability of the CD95 DISC core

structure as it is located more distal from the CD95-CD95L

interface (Figure 2B). On the other hand, the glycan attached to

N118 of CD95 could be important for the stabilization of the

DISC-DISC interaction upon formation of the CD95 DISC

network. Oligomerisation of procaspase-8 might occur more

efficiently and lead to more efficient procaspase-8 activation at

the CD95 DISC network in the presence of CD95 glycans at

N118. In this way, the modeling predicted a possible function of

CD95 N-glycosylation for the proper caspase-8 activation

(Figure 2D). We subsequently sought to validate the predictions

of this modeling approach by further biochemical analysis.

Figure 1. CD95 is a predicted glycoprotein. (A) Schematic
representation of domain organization of CD95. The CRD are shown
in yellow, the transmembrane domain (TM) in blue, the DD in red.
Potential glycosylation sites are depicted as schematic oligosaccharides,
phosphorylation sites as black arrows, palmitoylation sites as green
arrows. (B) and (C) Prediction of N- and O-linked glycosylation sites in
CD95. Graphical representation of prediction with indicated scores
generated by server.
doi:10.1371/journal.pone.0019927.g001
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CD95 is N-glycosylated at two extracellular sites N118
and N136

To validate the bioinformatic predictions using biochemical

analysis we sought to demonstrate that CD95 in our cell lines is

indeed N-glycosylated. We compared CD95 in cellular lysates of

different human T and B cell lines using anti-CD95 antibodies

[25]. Interestingly, we observed that CD95 in B lymphoblastoid

SKW6.4 and T leukaemia Hut78 cells appeared as two bands

which are not the result of alternative splicing as assessed by RT-

PCR (data not shown), while CD95 in T leukaemia cells J16

appeared as a single band on 10% SDS-PAGE (Figure 3A). The

bands of CD95 had a diffuse and broad shape, which is

characteristic for glycosylated proteins analyzed by Western Blot.

To confirm N-glycosylation of CD95 we used N-glycosidase F, the

enzyme, which cleaves off complete N-glycan moieties from a

given protein (Figure S2B). The treatment with N-glycosidase F

resulted in a clear shift of two major bands in case of SKW6.4 cells

to a lower molecular mass range (Figure 3B). The one major band

in case of J27 and JA3 cells also shifted to the lower molecular

mass (Figure 3B). Therefore, we concluded that CD95 is N-

glycosylated in all cell lines analyzed.

To confirm N-glycosylation of CD95 at the predicted glyco-

sylation sites we generated CD95 single and double ‘glycomutants’

by site-directed mutagenesis (Figure 4A). Although glycan addition

at the intracellular consensus site is highly unlikely, it was

nevertheless included as a negative control for mutagenesis.

Transient overexpression of these mutants in HeLa cells

demonstrated that only glycomutants at positions N118 and

N136 show characteristic CD95 band shifts to the lower molecular

mass upon Western Blot analysis (Figure 4B). These changes in

molecular mass, indicating a possible impaired glycosylation, were

observed for single mutants N118Q and N136Q as well as for all

double mutants containing N118Q and/or N136Q (Figure 4B).

There were no CD95 bands shifts in case of the N223Q and

T214Q mutants (Figure 4B). This demonstrates that there is no O-

or N-glycosylation at the predicted sites in the intracellular domain

of CD95 as expected. The treatment of all mutants with N-

glycosidase F resulted in the characteristic shift of CD95 bands to

the lower molecular mass (Figure 4C). Importantly, the introduc-

tion of the mutations at the glycosylation sites did not block

transport of CD95 to the cell surface as monitored by flow

cytometry cell surface staining (Figure S3A). Thus, site-directed

mutagenesis indicated that two extracellular sites N118 and N136

are glycosylated.

N-Glycosylation of CD95 does not play an essential role
for caspase-8 activation at the DISC

Having received evidence for a possible N-glycosylation at

positions N118 and N136, we next addressed the influence of

CD95 glycans on CD95 DISC formation. We therefore generated

HeLa cell lines stably overexpressing WT CD95 (HeLa-CD95

cells) as well as different CD95 glycomutants (HeLa-CD95-

N118Q, HeLa-CD95-N136Q, HeLa-CD95-T214Q, HeLa-

CD95-N223Q cells). The level of endogenous CD95 was

approximately 10 times lower than that of overexpressed WT

CD95 as estimated by quantitative Western blot by Neumann and

co-authors [26] (Figure 5A).

Plasma membrane targeting of CD95 is important for proper

CD95/CD95L interactions and transduction of the apoptotic

signal as shown earlier. In the generated stable HeLa-CD95 cell

lines, CD95 appeared to be transported to the cell surface as

monitored by flow cytometry cell surface staining (Figure S3B).

Additional evidence for cell surface expression came from the

confocal microscopy analysis of cellular compartmentalization of

CD95 glycomutants. In these experiments CD95 glycomutants as

well as WT CD95 could be observed on the plasma membrane

(Figure 5B). These results confirmed that a CD95 containing

mutation at individual glycosylation sites was translocated to the

cellular membrane. In addition, we analyzed the stability of the

glycomutants, i. e. N118Q, N136Q and N118Q/N136Q, using the

inhibitor of translation, cyclohexamide (CHX) (Figure S3C). We

did not observe any difference in the stability of CD95

glycomutants vs. WT CD95.

To analyze CD95 DISC formation and caspase-8 activation

upon deglycosylation of CD95, HeLa-CD95 cells as well as

Figure 3. Analysis of CD95 glycosylation. (A) CD95 protein
patterns were analyzed in the total cellular lysates of SKW6.4, Hut78,
J27, JA3, CEM and J16 cells on 10% SDS-PAGE followed by Western Blot
with anti-CD95 polyclonal antibodies C20. Two CD95 bands are
indicated by black arrows, while one CD95 band is indicated by a grey
arrow. (B) CD95 was immunoprecipitated from SKW6.4, J27 and JA3 cell
lysates using anti-APO-1 antibodies. CD95-immunoprecipitates (CD95-
IP) were subjected to N-glycosidase F (NGF) treatment with subsequent
analysis by Western Blot with anti-CD95 polyclonal antibodies C20. Anti-
APO-1 antibody alone was loaded on the same gel to control for the
IgG bands (lane: control). Glycosylated bands of CD95 are indicated by
black arrows, while deglycosylated bands are indicated by grey arrows.
The band corresponding to the antibody chain is indicated. After
enzymatic treatment with NGF the CD95 pattern was changed. In the
case of the SKW6.4 cells the lower band of the CD95 pattern overlaps
with the IgGl upon deglycosylation.
doi:10.1371/journal.pone.0019927.g003

Figure 2. In silico modeling of the CD95 DISC and interactions of CD95 glycosylated residues. (A) Formation of CD95-CD95L trimer upon
binding of CD95 ECDs to the CD95L ECDs trimer. (B) Close up on the interface between CD95 and CD95L ECDs. The glycan attached to N136 is in
close proximity to CD95L. The glycan attached to N118 of CD95 is distal from the CD95L ECD. (C) The glycan attached to N136 of CD95 is in a close
proximity to CD95L ECD and could form extensive hydrogen bonds (green dotted lines) with residues 200–204 of CD95L.
doi:10.1371/journal.pone.0019927.g002
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HeLa-CD95 cells with glycomutants were stimulated with

agonistic anti-APO-1-antibodies and the CD95 DISCs were

immunoprecipitated and analyzed [27]. Analysis of the CD95

DISCs demonstrated that disruption of glycosylation by mutation

(N118Q) did not influence FADD recruitment to the DISC

(Figure 5C). The introduction of mutation at N136 also did not

influence recruitment of FADD to the DISC (data not shown).

However, we observed that procaspase-8a/b processing to its

cleavage products p43/p41 and p18 at the DISC formed with the

CD95-N118Q mutant occurred slightly slower than with WT

CD95 (Figure 5C). After 10 min there was hardly any p18

detectable in HeLa-CD95-N118Q cells in comparison to HeLa-

CD95 cells, even though the amount of immunoprecipitated

CD95 was higher in HeLa-CD95-N118Q cells. This could not

result from different affinities of WT CD95 and CD95-N118Q to

anti-APO-1 antibodies because the affinity as demonstrated by

ELISA analysis was similar for both WT and mutant (Figure

S3D). Thus, we observed slower kinetics of procaspase-8

activation at the CD95 DISC in HeLa-CD95-N118Q cells.

The experiments in HeLa cells stably transfected with CD95

glycomutants show that the disruption of glycosylation did not

influence CD95 DISC formation, the recruitment of FADD to

the DISC and only slightly slowed down procaspase-8 activation

at the CD95 DISC.

To rule out that effects of deglycosylation of CD95 on caspase-8

activation have more impact upon the application of another

stimuli of CD95, e.g. via CD95L, caspase-8 activation was

compared upon stimulation with CD95L and anti-APO-1

antibodies. These experiments were carried out upon transient

overexpression of WT CD95, N118Q, N136Q and N118Q/

N136Q in HeLa cells (Figure S3E, F, G). Also CD95L also did not

cause any significant increase or decrease of caspase-8 activation in

glycomutant -transfected HeLa cells as compared to WT CD95-

transfected HeLa cells.

Finally, as a number of reports [28] show the importance of

stable, high molecular weight CD95 complexes for the efficient

activation of caspase-8, we have analyzed whether these

aggregates are perturbed after CD95 deglycosylation. We

observed the formation of the high molecular weight complexes

upon anti-APO-1 stimulation for HeLa cells with WT CD95,

N118Q, N136Q and N118Q/N136Q (Figure S3H). Therefore,

we have concluded that CD95 deglycosylation does not influence

formation of these CD95 high molecular weight structures.

Nevertheless, the analysis of CD95 DISC in HeLa cells stably

transfected with CD95 glycomutants has clear limitations due to

the presence of endogenous CD95 albeit in lower amounts.

Assessment of the effects induced by residual amounts of

endogenous CD95 on DISC formation and caspase activation

was not possible by this approach. Therefore, to analyze the CD95

DISC formation upon perturbation of CD95 N-glycosylation by

other independent approaches cells were treated with VCN

(recombinant Vibrio cholerae neuraminidase) and different inhibitors

of N-glycosylation. This was followed by analysis of the DISC

formation.

VCN preferentially hydrolyzes linkages of sialic acid (Figure

S2C). Treatment with VCN for one hour resulted in substantial

desialylation of CD95 glycans, monitored by the shift to a lower

molecular mass for both bands of CD95 (Figure 6A). To analyze

CD95 DISC formation, CD95 DISCs were immunoprecipitated

from untreated and VCN-treated SKW6.4 and Hut78 cells

(Figure 6B). The CD95 DISC formed after VCN treatment had

Figure 5. Analysis of HeLa-CD95 stable cell lines with CD95
glycosylation mutants. (A) CD95 protein pattern in cell lines stably
expressing CD95 forms was analyzed by Western Blot analysis using
anti-CD95 polyclonal antibodies C20. WT CD95 bands are indicated by
black arrows, while CD95 bands from glycomutants are indicated by
grey arrows. (B) HeLa cells stably transfected with WT CD95 and CD95
glycomutants were plated on glass slides, fixed, stained with anti-APO-1
antibodies for CD95, with anti-calreticulin for specific ER marker and
with anti-GM130 for specific Golgi marker antibodies. Localization of
CD95 was visualized by Alexa594-coupled secondary antibodies and
localization of GM130 and calreticulin was visualized by Alexa488-
coupled antibodies. Nuclei were stained with DAPI. (C) CD95 DISCs were
analyzed after treatment with 500 ng/ml of anti-APO-1 antibodies for
indicated time points. Western Blot analysis of the DISCs was performed
with antibodies against CD95, procaspase-8 and FADD. CD95 bands in
stably transfected HeLa-CD95 cells are indicated by black arrows, while
for HeLa- CD95N118Q cells CD95 bands are indicated by grey arrows.
doi:10.1371/journal.pone.0019927.g005

Figure 4. Analysis of CD95 glycosylation mutants. (A) Schematic overview of all generated glycomutants. (B) Expression of CD95 glycomutants
in HeLa cells. CD95 pattern was analyzed by Western Blot using anti-CD95 polyclonal antibodies C20. WT CD95 bands are indicated by black arrows,
while CD95 bands from glycomutants are indicated by grey arrows. (C) CD95 pattern in HeLa cells transfected with WT CD95 and CD95 glycomutants
after N-glycosidase F treatment was analyzed by Western Blot using anti-CD95 polyclonal antibodies C20.
doi:10.1371/journal.pone.0019927.g004
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lower amounts of the procaspase-8a/b cleavage product p43/p41

and the cleavage product of c-FLIPL, p43-FLIPL (Figure 6B).

To rule out that the reduced DISC formation after VCN

treatment was not due to the decreased affinity of anti-APO-1

antibodies to desialylated CD95, we carried out an ELISA analysis

and found that the binding of desialyated and sialylated CD95 to

anti-APO-1 antibodies was similar (Figure S4A). In addition, no

change of cell surface expression of CD95 was detected (Figure

S4B). Thus, the diminished DISC formation was the consequence

of VCN treatment.

We also tried to analyze CD95 DISC formation upon treatment

with tunicamycin, an inhibitor of N-glycosylation that acts at the

ER level blocking N-glycosylation (Figure S2D). However, the

tunicamycin-induced N-deglycosylation was also accompanied by

ER stress and inhibition of translation. This led to a decrease in c-

FLIP levels, which are the main inhibitors of caspase-8 activation

at the DISC. Therefore, the decrease in caspase-8 activation at the

DISC could not be attributed to N-deglycosylation as the only

cause (Figure S5A–C and data not shown).

Finally, we also applied deoxymannojirimycin (DMM), a

reagent that inhibits the ER mannosidases and Golgi mannosidase

I, resulting in the accumulation of high-mannose oligosaccharide

structures (Figure S2E). DMM treatment resulted in a shift to the

lower molecular mass for both bands of CD95 in SKW6.4 cells

pointing to the impairment of CD95 glycostructure (Figure 7A).

Tunicamycin-treated cells were used in parallel to control CD95

band shifts. In DMM-treated cells CD95 was transported to the

cell surface as shown by surface staining (Figure S6). Stimulation of

CD95 with anti-APO-1 in DMM-treated cells resulted in

decreased amounts of FADD at the DISC and diminished

amounts of procaspase-8a/b processed at the CD95 DISC

(Figure 7A).

Taken together, we showed that CD95 DISC is formed despite

N-deglycosylation of CD95. Apparently N-deglycosylation of

CD95 reduces the amount of active caspase-8 generated at the

DISC.

Deglycosylation of CD95 leads to decreased cell death
under low strength CD95 stimulation conditions

After investigating procaspase-8 activation at the DISC we

wanted to understand the contribution of CD95 N-glycosylation to

the onset of apoptosis. The analysis of cell death upon CD95

deglycosylation has been complicated in the stable HeLa-CD95

cells as they contain endogenous CD95. The application of VCN

and tunicamycin demonstrated that they alone were already toxic

to the cells causing caspase activation and cell death (Figure S4C,

D; Figure S5D, E and data not shown). As an alternative we also

applied deoxymannojirimycin (DMM), a reagent with minimal

toxicity to the cells [29]. Our experiments demonstrated that

DMM treatment alone did not result in any cell death (Figure 7B).

Interestingly, we observed that pretreatment with DMM caused a

decrease in CD95-induced apoptosis upon stimulation with low

amounts of CD95 agonists, e.g. anti-APO-1 and CD95L (Figure 7B

and C). Upon stimulation with a high amount of CD95 agonists

we did not observe any contribution of DMM pretreatment. This

might be due to the fact that CD95 deglycosylation results in a

small decrease of procaspase-8 processing at the DISC, which does

not lead to significant effects on apoptosis provided the strength of

stimuli and the rate of apoptosis are high. However, when the

strength of stimulation is close to the threshold amount [5,30] and

the quantity of active caspase-8 generated at the DISC is low then

alterations in caspase-8 amount can result in changes in the cell

death level.

Discussion

CD95-mediated apoptosis is one of the best-studied apoptotic

signaling pathways. A number of studies have clarified the main

CD95-mediated events: DISC formation, procaspase-8 activation

and signaling in Type I and Type II cells [1,31]. Despite this

progress there are still many unknown details in the molecular

mechanisms of CD95 signal transduction. In this study we aimed

to understand the role of CD95 N-glycosylation in CD95

apoptotic signaling.

Using bioinformatic analysis we predicted the putative CD95 N-

glycosylation sites at N118 and N136, which was confirmed by

site-directed mutagenesis. In silico computer modeling showed that

CD95 N-glycosylation might play a significant role in fine-tuning

of the CD95 DISC complex. The modeling predicted that N136

may play an important role for CD95L/CD95 interactions and

that N118 might be important for stabilization of the CD95 DISC

network. Using biochemical analysis of the CD95 DISC on the

HeLa-CD95 cells and cells treated with VCN and DMM we

demonstrated that N-deglycosylation of CD95 slightly diminishes

activation of procaspase-8 at the DISC. As we observed only small

Figure 6. Analysis of CD95 DISC in cells treated with Vibrio
cholerae Neuraminidase (VCN). (A) SKW6.4 and Hut78 cells were
treated with VCN for 1 hour at 37uC. Total cellular lysates were analyzed
using Western Blot with polyclonal antibodies C20. (B) SKW6.4 and
Hut78 cells were treated with VCN for 1 hour at 37uC. CD95 DISCs were
analyzed after treatment with 1 mg/ml of anti-APO-1 antibodies for
indicated time points. Western Blot analysis of the DISCs was performed
with antibodies against CD95, procaspase-8 and c-FLIP. CD95 bands in
untreated cells are indicated by black arrows, while shifts of CD95
bands in VCN-treated cells are indicated by grey arrows.
doi:10.1371/journal.pone.0019927.g006
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effects on procaspase-8 activation upon deglycosylation with

DMM, which likely involves both N118 and N136, we did not

follow the contribution of each residue, e.g. N118 or N136. From

the modeling data we can suggest that both residues contribute to

the decrease in procaspase-8 activation. Similar data were

obtained upon deglycosylation of TRAIL-R by Wagner et al.

[24]. Deglycosylation of TRAIL-R1 and TRAIL-R2 led to the

diminished amounts of FADD and procaspase-8 at the TRAIL

DISC, however, the effects were more drastic than upon

deglycosylation of CD95 [24].

In contrast to the DISC analysis with N-deglycosylated CD95 it

was more difficult to establish the optimal system for the analysis of

the cell death. DMM treatment did not cause any toxicity to the

cells, therefore, represented a reliable tool for the analysis of cell

death mediated via deglycosylated CD95. We have found a

reduction of CD95-induced apoptosis upon DMM pretreatment

and low CD95 stimulation strength. This result corresponds quite

well with the slightly diminished rate of procaspase-8 activation at

deglycosylated CD95. These small kinetic effects could not

dramatically change the outcome of cell death when the strength

of CD95 stimulation was high. However, upon so-called threshold

CD95 stimulation with low doses of CD95 antagonists [5,30] the

amount of CD95 DISCs formed is low and the amount of caspase-

8 is just sufficient to trigger apoptosis [5,30]. Therefore, a decrease

in the amount of caspase-8 caused by deglycosylation of CD95

might result in apoptosis inhibition. Interestingly, deglycosylation

of TRAIL-R1 and TRAIL-R2 results in more robust sensitisation

towards apoptosis in contrast to CD95 deglycosylation. In the

latter case the observed effects took place only under the narrow

range of anti-CD95 concentrations.

Other methods of CD95 deglycosylation were found to be not

appropriate for comparison of cell death mediated by N-

deglycosylated CD95 and N-glycosylated CD95. HeLa-CD95

stable cell lines with different glycomutants contain endogenous

CD95, which did not allow us to assess the contribution of only

deglycosylated CD95 apoptosis induction. Tunicamycin induces a

number of side effects, e.g. ER-stress and translation inhibition,

that are toxic to the cells. The action of VCN resulted in the

induction of CD95-independent cell death, complicating the

analysis of CD95-induced apoptosis upon VCN action.

Interestingly, we have detected different forms of CD95 in

various cell lines, which we showed not to be the result of

differential N-glycosylation (Figure 2B, C). In some cells CD95

appears at Western Blots as two forms, 45 and 54 kDa. In other

cells only one form, of appr. 50 kDa, is observed. Interestingly,

most Type I cells, e.g. SKW6.4, Hut78 and BJAB, have two CD95

forms with a differential molecular mass of 9 kDa and Type II

cells, e.g. Jurkat and CEM cells, mostly have one CD95 form. The

nature of these forms is poorly understood. There might be two

reasons for the presence of different receptor forms – alternative

splicing and posttranslational modifications. We have shown that

alternative splicing is not the reason for the presence of several

CD95 protein forms in the cell lines under investigation (data not

shown).

Several posttranslational modifications, e.g. N-glycosylation,

proteolysis, C-mannosylation and palmitoylation, might lead to

the significant shift in molecular mass of about 9 kDa and give rise

to different forms of CD95. N-glycosylation was ruled out by our

initial experiments. Treatment with N-glycosidase F showed that

both CD95 forms shifted to a lower molecular mass. This is an

important result as there are many reports which describe the

different CD95 forms as a result of differential N-glycosylation

[18,26]. To analyze the possibility of C-mannosylation and

palmitoylation we have performed bioinformatic analysis. This

did not reveal any potential C-mannosylation sites with a

probability score higher than 0.5 (data not shown) but demon-

strated several potential palmitoylation sites. Recently, there has

Figure 7. Analysis of the role of complex and hybrid glycans in
CD95 signaling with DMM. (A) SKW6.4 were treated for 24 h with
2 mM DMM or 2 mg/ml of tunicamycin (Tuni) or left untreated. CD95
DISCs upon were analyzed after treatment with 500 ng/ml of anti-APO-
1 antibodies for 15 min. Western Blot analysis of the DISCs was
performed with antibodies against CD95, FADD and procaspase-8. IgG
Western Blot was used as a loading control for immunoprecipitation.
CD95 bands in non-treated cells are indicated by black arrows, while
CD95 bands in DMM-treated cells are indicated by grey arrows. (B) and
(C) Apoptotic cell death was measured with propidium iodide staining
in SKW6.4 cells.
doi:10.1371/journal.pone.0019927.g007
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been a report that CD95 is a palmitoylated protein and that CD95

palmitoylation facilitates apoptosis induction [28]. However,

palmitoylation of the protein does not result in a large difference

in relative molecular mass using gel electrophoretic separation

techniques and cells carrying mutations in the CD95 palmitoy-

lated site did not have an altered mobility in SDS-PAGE [28].

This rules out the possibility that palmitoylation contributes to the

generation of two forms of CD95. The possibility of proteolysis by

the metalloproteinase matrilysin (MMP7) was also excluded as the

reported cleavage of the extracellular domain of CD95 by MMP7

generates a small fragment of only one kDa [32]. The difference in

molecular mass of the two CD95 forms is about 9 kDa, which

excludes their generation by MMP7. However, we could not

exclude proteolysis mediated by other proteinases as a possible

reason for several forms of CD95 in some cell types. This question

has to be addressed in future studies.

Recently, it has been reported that O-glycosylation of

TRAILR1 (DR4) and TRAILR2 (DR5) plays a central role in

regulation of sensitivity and resistance of cells towards TRAIL-

induced apoptosis [24]. In our study we found that the only

predicted O-glycosylation site in CD95 (T214) was not glycosy-

lated. CD95 glycomutant T214Q showed the same CD95 protein

pattern upon SDS-PAGE analysis as WT CD95. The glycosyla-

tion on T214Q was highly unlikely, as it is located in the

intracellular domain. Another important result of our studies, as

mentioned above, is that the influence of CD95 glycostructure on

the apoptosis onset is less drastic than that for the TRAIL system.

This might result from the different spatial organisation of the

receptor complexes.

Taken together, using in silico modeling predictions together

with biochemical approaches, we showed that glycostructure of

CD95 can modulate procaspase-8 activation at the DISC.

Furthermore, our findings provide evidence that the CD95

glycostructure contributes to the apoptotic signaling threshold

defining cell death initiation. This may be additionally affected by

different glycostructures. This regulation might be very important

for cancer cells where subtle differences in the amount of caspase-8

regulate life or death of the cells.

Materials and Methods

Cell lines
The B lymphoblastoid cell lines SKW6.4 [33], BJAB [34] and

the T cell lines Hut78 [35], CEM [36], Jurkat A3 [37], Jurkat 16

[38], Jurkat 27 [39] were maintained in RPMI 1640 (Life

Technologies, Germany), 10 mM HEPES (Life Technologies,

Germany), 50 mg/ml Gentamycin (Life Technologies, Germany)

and 10% fetal calf serum (Life Technologies, Germany) in 5%

CO2. HeLa [40] and HEK293T [41] cell lines were maintained in

DMEM (Life Technologies, Germany), 0.5% Penicillin-Strepto-

mycin (Life Technologies, Germany) and 10% fetal calf serum

(Life Technologies, Germany) in 5% CO2.

Antibodies and reagents
Anti-CD95 polyclonal antibodies C20 were purchased from

Santa Cruz Biotechnology (Heidelberg, Germany). The anti-

FADD mAb 1C4 (mouse IgG1) recognizes the C-terminus of

FADD [42]. The anti-FLIP mAb NF6 (mouse IgG1) recognizes

the N-terminus of FLIP [43]. The anti-caspase-8 mAb C15 (mouse

IgG2b) recognizes the p18 subunit of caspase-8 [11]. Anti-APO-1

is an agonistic monoclonal antibody recognizing an epitope on the

extracellular part of CD95 (APO-1/Fas) [4]. Anti-tubulin

antibodies were purchased from Sigma. Anti-ERK antibodies

were from BD Transduction Laboratories. Anti-JNK antibodies

were purchased from Santa-Cruz Biotechnology. Horseradish

peroxidase-conjugated goat anti-mouse IgG1, -2a and -2b were

from Southern Biotechnology Associates (United Kingdom). The

coding sequence of LZ-CD95L [44] was cloned into a pIRE-

Spuro3 plasmid (Clontech, France). Recombinant LZ-CD95L was

produced using 293T cells stably transfected with this vector.

Tunicamycin and DMM were purchased from Calbiochem

(Darmstadt, Germany); VCN was from Sigma-Aldrich (Germany).

N-glycosidase F was from Roche (Mannheim, Germany). CHX

was from Sigma (Germany). pKEX plasmid was published in [45].

All other chemicals used were of analytical grade and purchased

from Merck (Germany) or Sigma (Germany).

Flow Cytometry analysis
The percentage of viable cells was determined by FSC/SSC

and propidium iodide staining using a FACScallibur Cytometer

(BD). A minimum of 10000 cells per sample was analyzed.

Surface staining. To analyze the surface expression of

CD95, 56105 cells were resuspended in 100 ml of FACS buffer

(10% FCS in PBS) and incubated with 10 mg/ml of anti-APO-1

antibodies or with FII23 antibodies as isotype control for 15 min

on ice. The cells were washed with FACS buffer, centrifuged and

resuspended in 100 ml of FACS buffer containing PE-conjugated

anti-mouse IgG antibody and incubated on ice for 15 min. The

cells were washed with FACS buffer and resuspended in 300 ml of

FACS buffer containing 1 mg/ml PI. The staining was analyzed by

flow cytometry. The population was gated on living cells and the

staining of isotype control was compared to the surface staining

with anti-APO-1 antibody.

Preparation of total cellular lysates
16108 or 16106 cells were washed twice in 16 PBS and

subsequently lysed in the lysis buffer (20 mM Tris/HCl, pH 7.5,

150 mM NaCl, 2 mM EDTA, 1 mM phenylmethylsulfonyl

fluoride (Sigma, Germany), protease inhibitor cocktail (Roche,

Switzerland), 1% Triton X-100 (Serva, Germany) and 10%

glycerol) (stimulation condition) or lysed without treatment

(unstimulated). The total cellular lysates were subsequently

analyzed by Western Blot.

DISC analysis by immunoprecipitation and Western Blot
16108 cells were treated with 1 mg/ml of anti-APO-1 antibodies

at 37uC for indicated periods of time, washed twice in 16PBS and

subsequently lysed in the lysis buffer (stimulation condition) or

lysed without treatment (unstimulated). The CD95 DISC was

immunoprecipitated overnight with 2 mg of anti-APO-1 and

protein A sepharose beads. Protein A sepharose beads were

washed five times with 20 volumes of lysis buffer. The

immunoprecipitates were analyzed on 12% PAAG. Subsequently,

the gels were transferred to Hybond nitrocellulose membrane

(Amersham Pharmacia Biotech., Germany), blocked with 5%

nonfat dry milk in PBS/Tween (PBS plus 0.05% Tween 20) for

1 h, washed with PBS/Tween, and incubated with the primary

antibodies in PBS/Tween at 4uC overnight. Blots were developed

with a chemoluminescence method following the manufacturer’s

protocol (Perkin Elmer Life Sciences, Germany).

Glycosidase treatment
For desialylation, 16107 cells were washed twice in 16PBS and

then treated with 100 mU VCN in RPMI, pH 6.8 for 1 hour at

37uC. For N-glycosidase F treatment 107 cells were lysed in buffer

A and, subsequently the total cellular lysates were treated with N-

glycosidase F following the protocol by the manufacturer.
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Inhibition of glycosylation
To completely inhibit N-linked glycosylation cells were cultured

for 20 hours in medium containing 2 mg/ml of tunicamycin. For

inhibition of mannosidase-1 cells were cultured for 48 hours in

medium containing 2 mM DMM.

Inhibition of translation
For inhibition of protein translation cells were cultured for 0, 3

and 9 hours in medium containing 10 mg/ml of CHX.

Enzyme-linked immunosorbent assay (ELISA)
Flexible 96-well plates from Becton Dickinson (USA) were

coated with 100 ml of anti-CD95 (Abcam) antibody in 0.05 M

carbonate-bicarbonate buffer pH 9.6 (CBB) at 4uC overnight.

Then the plates were washed 3 times with distilled water, blocked

with 200 ml of PBS containing 3% bovine serum albumin (BSA) at

RT for 2 hours, which was followed by washing 3 times with PBS

containing 0.5% Tween 20 (PBS-T). 100 ml of total cell lysates

were added to each well, which was followed by incubation at RT

for 1 h. After incubation, the plates were washed 3 times with

PBS-T. This was followed by addition of 100 ml of peroxidase-

conjugated goat anti-mouse IgG antibody (Jackson ImmunoR-

esearch Laboratories) diluted at 1/5000 in PBS-1% BSA. The

plates were incubated for 1 h at 4uC. After incubation, the plates

were washed 3 times with PBS-T and then the reaction was

revealed with 100 ml of OPD 0.4 mg/ml (Sigma) in 0.05 M

phosphate-citrate buffer, pH 5.0 solution for 10–20 min at room

temperature. After stopping the reaction with 100 ml of 3 N

H2SO4, the plates were read with an ELISA reader (Wallac,

Gaithersburg, USA) at 490 nm.

Homology modeling and structures visualization
Modeling was carried out as previously described in [46,47]

using the MODELLER package [48]. Human CD95 ECD was

modeled using crystal structures of tumor necrosis factor receptor

(PDB ID 1ncf [49] and 1tnr.R [50]) as the templates. The CD95

transmembrane region was modeled as an a-helix bases on the

prediction of the TMHMM Server v. 2.0 (www.cbs.dtu.dk/

services/TMHMM/). To model free full-length CD95 receptor as

envisaged on a plasma membrane the CD95 ECD and TM

domains were modeled as described above and the model of CD95

DD domain was based on the NMR structure of CD95 DD in

solution (PDB ID 1ddf, [51]) added. Human CD95L ECD was

modeled using the crystal structure of tumor necrosis factor beta

(PDB ID 1tnr.A [50]) as the template. The model of the complete

CD95 DISC core structure was assembled on the crystal structure

of Apo2L/TRAIL in a complex with death receptor 5 (PDB ID

1dog [52]): CD95 ECD and TM domains were modeled as

described above and the model of the CD95 DD domain was

based on the CD95 DD crystal structure from the CD95/FADD

DDs complex (PDB ID 3ezq [16]). As their precise composition

and structure is unknown, only core structures of N-glycans were

added using GlyProt [53]. GROMACS [54] molecular dynamics

and the quality analysis (ANOLEA [55], VERIFY_3D and

ERRAT [http://nihserver.mbi.ucla.edu/]) and visualization/

analysis (SwissPBD Viewer [56] and PyMol [www.pymol.org])

tools were employed as described in details in [46,47] use instead

[57].

Supporting Information

Figure S1 Alignment of CD95 sequences from different
organisms. (A) ClustalX2 sequence alignment of CD95 ECD

across different species. Sequence abbreviations: Homo sapiens

(HUMAN); Macaca fascicularis (MACFA); Macaca nemestrina

(MACNE); Cercocebus torquatus (CERTO); Macaca mulatta

(MACMU); Macaca arctoides (MACAR); Macaca assamensis

(MACAS); Aotus trivirgatus (AOTTR); Callithrix jacchus

(CALJA); Oryctolagus cuniculus (RABIT); Sus scrofa (PIG); Ovis

aries (SHEEP); Felis catus (FELCA); Bos taurus (BOVIN); Mus

musculus (MOUSE) and Rattus norvegicus (RAT). Sequences

from NCBI Protein databank. Color lines on the top of the

alignment indicate cysteine residues forming disulphide bonds in

human CD95. N-X-S/T sequons are indicated by red boxes. (B)

Probability of glycosylation (glycosylation potential) of sequons at

positions 118 and 136 in human CD95 and their analogues in

CD95 from other species was calculated by NetNGlyc 1.0 server.

(TIF)

Figure S2 Schematic mechanisms of enzymatic and
inhibitory deglycosylation. (A) Core structure of N-glycan

added to the models is a minimal possible composition of N-

glycans. (B) The mechanism of action of N-glycosidase F. Variable

structures of glycan side chains are presented in grey. (C) The

mechanism of action of tunicamycin. Variable structures of glycan

side chains are presented in grey. (D) The mechanism of action of

VCN. Variable structures of glycan side chains are presented in

grey. (E) The mechanism of action of DMM. Variable structures

of glycan side chains are presented in grey.

(TIF)

Figure S3 Analysis of CD95 glycosylation mutants. (A)

Cell surface staining of WT CD95 and CD95 glycomutants for

transiently transfected HeLa cells was performed with anti-APO-1

IgG3 antibodies (red line). As isotype control FII23C IgG3

antibodies were used (Black and violet lines). To control efficiency

of CD95 surface expression HeLa-CD95 stable cell line was used

(green line). (B) Cell surface staining of WT CD95 and CD95

glycomutants in stable cell lines was performed with anti-APO-1

IgG3 antibodies. As isotype control FII23C IgG3 antibodies were

used. (C) Degradation of WT CD95 and CD95 glycomutants in

transiently transfected HEK293T cells was performed upon

treatment with CHX. Total cellular lysates were analyzed after

treatment with CHX using Western Blot with polyclonal

antibodies C20, monoclonal NF6 antibodies against FLIP and

anti-tubulin antibodies.(D) Binding of CD95 WT and glycomu-

tants to anti-APO-1 antibodies. Cellular lysates from the HeLa

cells stably transfected with CD95 WT and glycomutants were

used for anti-APO-1-specific ELISA analysis. Anti-APO-1 was

used in concentrations. 0.1, 0.2, 0.4, 0.8 and 1 mg/ml. (E) and (F).

Comparison of caspase-8 activation was performed upon treat-

ment with CD95L or anti-APO-1. To control activation of

caspase-8 transiently transfected with WT CD95 and CD95

glycomutants HeLa cells were stimulated with CD95L or anti-

APO-1 for indicated time points. Total cellular lysates were

analyzed using Western Blot with C15 monoclonal antibodies for

caspase-8 and anti-tubulin antibodies. (G). Control of CD95

expression for (E) and (F) was done after immunoprecipitation with

anti-APO-1 by Western Blot with C20 polyclonal antibodies. (H).

The ability to form CD95n oligomeric structures was compared

between WT CD95 and CD95 glycomutants. Analysis was done

by Western Blot with polyclonal C20 antibodies and anti-ERK

antibodies. In the (C), (G) and (H) WT CD95 bands are indicated

by black arrows, while CD95 bands from glycomutants are

indicated by grey arrows. CD95n oligomeric structures are

indicated by red arrow.

(TIF)

Figure S4 Analysis of deglycosylation of CD95 with
VCN. (A) ELISA analysis for the binding of anti-APO-1
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antibodies to CD95 from the lysates of untreated and VCN-

treated SKW6.4 cells. (B) Cell surface staining of untreated and

VCN-treated SKW6.4 cells was performed with anti-APO-1 IgG3

antibodies. As isotype control FII23C IgG3 antibodies were used.

(C) Caspase-3 processing and Bid cleavage were analyzed in

untreated and VCN-treated SKW6.4 cells using Western Blot. (D)

SKW6.4 cells were treated as it was described in A and cell death

was measured with propidium iodide staining.

(TIF)

Figure S5 Analysis of CD95 N-glycosylation with tuni-
camycin. (A) SKW6.4 and Hut78 cells were treated for 24 h with

2 mg/ml of tunicamycin (Tuni) or left untreated. CD95 DISCs

were analyzed after stimulation with 500 ng/ml of anti-APO-1

antibodies for indicated time points. Western Blot analysis of the

DISCs was performed with antibodies against CD95, procaspase-8

and c-FLIP. CD95 bands in non-treated cells are indicated by

black arrows, while shifts of CD95 bands in tunicamycin-treated

cells are indicated by grey arrows. (B) Cell surface staining of

CD95 was performed with anti-APO-1 IgG3 antibodies. As

isotype control FII23C IgG3 antibodies were used. (C) C-FLIP

expression was analyzed by Western Blot analysis using monoclo-

nal NF6 antibodies. (D) SKW6.4 and Hut78 cells were treated for

24 h with 2 mg/ml of tunicamycin (Tuni) or left untreated. Total

cellular lysates were analyzed after treatment with 1 mg/ml of anti-

APO-1 antibodies using Western Blot with polyclonal antibodies

C20 and monoclonal antibodies C15 against procaspase-8. Anti-

JNK1 Western Blot was used as a loading control. (E) SKW6.4

cells were treated as was described in A and apoptotic cell death

was measured with propidium iodide staining.

(TIF)

Figure S6 The analysis of deglycosylation of CD95 with
DMM. (A) Cell surface staining of CD95 was performed with

anti-APO-1 IgG3 antibodies. As isotype control FII23C IgG3

antibodies were used.

(TIF)
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