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Abstract

Community structure is a universal and significant feature of many complex networks in biology, society, and economics.
Community structure has also been revealed in human brain structural and functional networks in previous studies.
However, communities overlap and share many edges and nodes. Uncovering the overlapping community structure of
complex networks remains largely unknown in human brain networks. Here, using regional gray matter volume, we
investigated the structural brain network among 90 brain regions (according to a predefined anatomical atlas) in 462 young,
healthy individuals. Overlapped nodes between communities were defined by assuming that nodes (brain regions) can
belong to more than one community. We demonstrated that 90 brain regions were organized into 5 overlapping
communities associated with several well-known brain systems, such as the auditory/language, visuospatial, emotion,
decision-making, social, control of action, memory/learning, and visual systems. The overlapped nodes were mostly
involved in an inferior-posterior pattern and were primarily related to auditory and visual perception. The overlapped nodes
were mainly attributed to brain regions with higher node degrees and nodal efficiency and played a pivotal role in the flow
of informa- tion through the structural brain network. Our results revealed fuzzy boundaries between communities by
identifying overlapped nodes and provided new insights into the understanding of the relationship between the structure
and function of the human brain. This study provides the first report of the overlapping community structure of the
structural network of the human brain.
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Introduction

Community structure is thought to be one of the main

organizing principles in most complex networks, including

biological, social, and economic systems [1,2,3,4]. Communities

or modules are groups of nodes forming tightly connected units

that are only weakly linked to each other; they reflect topological

relationships between elements of the underlying system and

represent functional entities [5,6]. The community structure is

interpreted in terms of separated communities, whereas most real

networks are also characterized by well-defined statistics of

overlapping communities [6,7,8,9]. A schematic network with

overlapping communities is shown in Figure 1A. Overlapping

community structure means that a node can belong to more than

one community, which results in overlapping communities [10].

For instance, as humans, we each belong to numerous commu-

nities related to our social activities or personal lives (school,

profession, friends, family, and hobbies). An extremely complicat-

ed web of our communities develops because members of our

communities also belong to other communities. Overlapping

community structure has been widely studied in many real-world

networks, such as Zachary’s karate club network, the word

association network, the scientific collaboration network, Lusseau’s

dolphins’ social network, and the molecular biology network of

protein-protein interactions [5,6,9,10,11]. However, characteriza-

tion of an overlapping community structure in the human brain

network has not been investigated.

The features of functional and structural networks in the human

brain have been well-defined; these features include small-world

topology, highly connected hubs, and modularity [12,13,14]. The

large-scale data of human brain connectivity offers the opportunity

to understand the links between brain structure and function at the

regional level [15]. For example, the characterization of

community structure in the human brain network contributes to

the identification of the anatomical and functional structures of

brain regions associated with specific biological functions

[16,17,18,19,20]. Some primary brain functions (e.g., motor,

auditory, and visual systems) have been regularly detected in these

previous studies, and significant differences in the modular

organization of brain networks have also been observed. The

main reasons for these differences between studies might be the

different neuroimaging modalities (e.g., functional, structural, and
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diffusion MRI) and the characteristics of the sample of research

subjects. In addition to these studies, current theories on brain

organization suggest that cognitive functions, such as attention,

language, and memory, are organized into widespread, segregat-

ed, and overlapping networks [21]. Moreover, some cortical areas

are heteromodal; they are not restricted to any single motor or

sensory function, but receive convergent information from

multiple sensory and motor areas of the brain. For example,

although 50% of over 200 cells in the superior temporal sulcus

(STS) of anesthetized monkeys are unimodal (meaning that they

respond to only one of the three sensory modalities: visual,

auditory, and somatosensory), over 20% of them are bimodal or

trimodal and respond to two or three modalities, respectively [22].

A previous study has identified the cortical areas that are

responsive to transitions within a single sensory modality and a

cortical network that is responsive to transitions in multiple sensory

modalities; this study has revealed a distributed, multimodal

network for involuntary attention to events in the sensory

environment [23]. An attempt has been made to reveal

overlapping communities in the network of the macaque monkey’s

visuotactile coretex; the authors have found that several areas (e.g.,

46, VIP, LIP, 7a, and V4) are bridge nodes (overlaps between the

visual and the somatosensory cortex), which play higher-level roles

and integrate cognitive functions (e.g., attention and working

memory) [24]. One may speculate that a brain region could be

involved in several brain systems, and therefore, we hypothesized

that such a region can be defined as an overlapped node shared by

different communities in the human brain network. Thus, this

study represents an interesting and challenging approach to clarify

the overlapping community structure in the human brain network

and would improve our understanding of how functional brain

states are associated with their structure.

The main objective of this study was to reveal an overlapping

community structure of the structural brain network in young,

healthy individuals using regional gray matter volume (RGMV).

Study participants were selected from a large-scale brain MRI

database of normal Japanese people (462 subjects, ages 21 to 39

years) [25]. A structural brain network can be abstracted from

human MRI data by compiling a matrix of correlations from

morphological measurements (cortical thickness, RGMV, and

surface area) between all pairs of regions in some parcellation

scheme and then applying a threshold to create a graph

representing strong (suprathreshold) correlations to connect

regions [26,27,28]. In this study, the structural connectivity of

the human brain consisting of 90 regions was constructed by

computing the correlation matrix of RGMV across the popula-

tion, as described in our previous study [29]. A binarized and

undirected network in the human brain was then obtained by

thresholding the correlation matrix with a cost threshold strategy.

We identified 5 overlapping communities in the structural brain

network and discovered brain functions that were involved in

overlapping communities and were related to overlapped nodes.

Finally, we analyzed regional nodal properties and the importance

of overlapped nodes in terms of node degree, nodal efficiency,

node betweenness, and the participation coefficient.

Methods

Ethics Statement
In accordance with the Declaration of Helsinki (1991), written

informed consent was obtained from every subject and his/her

parent after a full explanation of the purposes and procedures of the

study was provided. Approval for these experiments was obtained

from the institutional review board of Tohoku University.

Participants
In this study, we collected brain images of 462 young, healthy

subjects from a database of normal Japanese individuals [25]. The

female to male ratio was 218:244, the mean age 6 S.D was

28.4566.04 years, and the age range was 20 to 39 years. The MR

images were inspected by 2 to 3 well-trained radiologists, and

images with the following findings were excluded from this study:

head injuries, brain tumors, hemorrhages, major and lacunar

infarctions, and moderate to severe white matter hyperintensities.

We did not exclude images with mild, spotty white matter

hyperintensities.

MRI acquisition
Brain images were obtained using two 0.5 T MR scanners (Sigma

contour, GE-Yokogawa Medical Systems, Tokyo) with two different

pulse sequences: (1) 124 contiguous, 1.5 mm thick axial planes of

three-dimensional T1-weighted images (spoiled gradient recalled

acquisition in steady state: repetition time (TR), 40 ms; echo time

(TE), 7 ms; flip angle (FA), 30u; voxel size, 1.02 mm61.02 mm6
1.5 mm); and (2) 63 contiguous, 3 mm thick axial planes of gapless

(using interleaving) proton density-weighted/T2-weighted images

(dual echo fast spin echo: TR, 2860 ms; TE, 15/120 ms; voxel size,

1.02 mm61.02 mm63 mm). T1 images were used for the present

analysis, and all three images were used to exclude MRIs with

abnormalities, as described above.

Measurements of regional gray matter volume
Following image acquisition, the RGMV for each subject was

measured using statistical parametric mapping 2 (SPM2) (Well-

come Department of Cognitive Neurology, London, UK) [30] in

Matlab (Math Works, Natick, MA). First, T1-weighted MR images

were transformed to the same stereotactic space by registering

each of the images to the ICBM 152 template (Montreal

Neurological Institute, Montreal, Canada), which approximates

the Talairach space [31]. Then tissue segmentation from the raw

images to the gray matter, white matter, cerebrospinal fluid space,

and non-brain tissue was performed using the SPM2 default

segmentation procedure. WFU PickAtlas software was employed

to label the regions in the gray matter images, which provided a

Figure 1. The explanation for an overlapping community structure. (A) A schematic network with overlapping communities. Communities
are represented by different colors. Overlapped nodes shared by more than one community are emphasized in red. Connections between
communities are shown by gray lines. (B) The definition of a clique. A clique (k-clique) is a complete subgraph of size k. (C) The flowchart for the
process of determining an overlapping community structure. In the cover (ii) of the original example network (i), each superordinate maximal clique
(k = 3, 4) is a cluster, and each subordinate maximal clique (k,3) forms a cluster consisting of only one vertex (here, k is set to 3 in the calculation).
The maximal clique with k = 4 (red arrow) is not a subset of any other clique. The maximal clique network (iv) is obtained according to the belonging
coefficient a (iii) of each vertex (1–11) to its corresponding clusters (a–g). The optimal partition of the maximal clique network (v) is computed by an
efficient modularity optimization algorithm, and it can be mapped to the optimal cover of the original network (vi). In the cover (vi), it holds the
information about the overlapping community structure of the original network; overlapping communities are represented by different colors, and
an overlapped node is emphasized in red. Some parts of this figure are reproduced, with permission, from Shen et al., 2009b �2009, IOP Publishing
and SISSA.
doi:10.1371/journal.pone.0019608.g001
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method for generating ROI masks based on the Talairach

Daemon database [32,33,34]. To calculate the RGMV for each

subject, we divided the entire gray matter into 45 separate regions

for each hemisphere (90 regions in total, see Supplementary, Table

S1), as defined by the Automated Anatomical Labeling (AAL) atlas

[35].

Construction of the structural brain network
It has been well documented that there are correlated changes

in gray matter morphology (e.g., cortical thickness and volume)

between various anatomically or functionally linked areas. The

concept of morphological correlations has been widely used to

study correlated evolution in mammalian brain structures [36]. A

large-scale anatomical network of the human cerebral cortex [28]

was first investigated using cortical thickness measurements, which

are known to be strongly correlated between regions that are

axonally connected [37]. This approach has also been used to

study structural brain networks in health and disease

[16,26,27,29,38,39,40]. In this study, we used this methodology

to construct a structural brain network using the RGMV

measurements. First, we performed a linear regression on the

RGMV of 90 regions, removing the effects of age, gender, age-

gender interaction, and total gray matter volume. The residuals of

this regression were substituted for the raw RGMV and were

denoted as corrected RGMV (cRGMV). Secondly, we computed

the Pearson correlation coefficient between the cRGMV across the

462 subjects to construct the interregional correlation matrix

(N6N, where N is the number of gray matter regions; here N = 90).

Thirdly, the correlation matrix can be converted to a binarized

and undirected network G using a cost threshold, which is

equivalent to the ratio between the number of edges and all

possible edges [41].

Detecting overlapping community structure
A clique (k-clique) (Figure 1B) is a complete subgraph of size k in

which every vertex is adjacent to every other vertex [6]. A

maximal clique is a clique that is not a subset of any other clique in

a graph [11]. By assuming that a maximal clique only belongs to

one community because of its high connectivity, overlaps between

communities are allowed. The flowchart for the process of

determining overlapping community structure in an example

network is shown in Figure 1C. Firstly, the cover was defined as a

set of clusters in an original example network. Each vertex in the

original network was assigned to at least one cluster. Among the

clusters in the cover, maximal cliques with a size greater than or

equal to k were defined as superordinate maximal cliques, and

those with a size smaller than k were defined as subordinate

maximal cliques. Secondly, each cluster becomes a vertex in the

resulting maximal clique network, which was defined as a

weighted network by introducing the concept of the belonging

coefficient of each vertex [8]. Thirdly, a partition of the maximal

clique network can be mapped into a cover of the original

network, which may hold the information about the overlapping

community structure of the original network. We obtained the

optimal cover of the original network by optimizing the quality of

a cover (Qc) formalized as: [11]

Qc~
1

L

X
c[C

X
uv

aucavc Auv{
kukv

L

� �
ð1Þ

In equation (1), A is the adjacency matrix of the network G,

L~
X
uv

Auv is the total weight of all edges, and ku~
X

v

Auv is the

degree of the vertex u. Moreover, auc is a belonging coefficient

defined in equation (2), which reflects how much the vertex u
belongs to the community c [8].

auc~
1

au

X
v[V cð Þ

Oc
uv

Ouv
Auv ð2Þ

In equation (2), Ouv denotes the number of maximal cliques in

the whole network containing the edge (u,v), Oc
uv denotes the

number of maximal cliques containing the edge (u,v) in the

community c, and au is a normalization term denoted in equation

(3).

au~
X
c[C

X
v[V cð Þ

Oc
uv

Ouv
Auv ð3Þ

It has been demonstrated that the optimization of Qc in the

original network is equivalent to the optimization of the Newman’s

modularity in the maximal clique network [11]. Thus, the optimal

cover with overlapping communities of the original network can

be identified through partitioning the maximal clique network

using a fast unfolding algorithm on the modularity optimization

[42]. (The main terminologies used in this study are summarized

in Table 1).

Regional nodal properties
We examined regional nodal properties of 90 brain regions in

terms of the following metrics: node degree, nodal efficiency, and

node betweenness. The node degree (D) of a node i is the number

of connections that link it to the rest of the network. It is the most

fundamental network measure, and most other measures are

ultimately linked to it. The nodal efficiency (Enodal) for a given node

i is defined as the inverse of the mean harmonic shortest path

length between this node and all other nodes in the network

[41,43] and is defined by equation (4).

Enodal ið Þ~ 1

N{1

X
i=j[G

1

dij

ð4Þ

The node betweenness centrality (Nbc) of a node i is defined as the

number of shortest paths between any two nodes that run through

node i [44]. It is a widely used measure of a node’s significance for

the flow of information through the network. Finally, we defined

the normalized metrics (Enodal ,D,Nbc) of a node as the ratio

between the value of this node and the average value of all nodes.

Moreover, we applied a simulated procedure to investigate how

the robustness of the structural brain network is affected by the

different types of lesions [40,44,45,46]. We computed changes in

both the global efficiency and the largest connected component

size of the structural brain network in response to the continuous

removal of the nodes (brain regions) in either random failures or

targeted attacks by the decreasing node degree, nodal efficiency,

node betweenness, and the participation coefficient in the non-

overlapping partition, respectively (see Supplementary Text S2).

Results

Detecting overlapping community structure
In this study, we thresholded the structural connection matrix

into a binarized and undirected network G using a specific cost

Overlapping Community of Structural Brain Network
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threshold (cost = 0.13), which resulted in the sparsest, fully-

connected brain network. Unless stated otherwise, the results

reported in this paper were mainly computed using this threshold.

After we obtained the structural brain network, we applied the

method proposed by Shen et al. (2009b) to detect overlapping

community structures. In this analysis, the parameter k affects the

constituent of overlapped nodes between communities. It is

essential to select an appropriate value for the parameter k,

although there is no criterion for the selection. The parameter k

should not be too small because subordinate maximal cliques are

not as highly connective. A larger value of k would result in a lower

number of overlapped nodes (n). If k is large enough, the maximal

clique network would be identical to the original network, and no

overlap would be identified. In this study, we applied a range of k

(k = 4–9) to calculate the covers of the overlapping community

structure in the structural brain network. For the dynamic

processes of overlapping communities in the structural brain

network, only 2 overlapped nodes occurred when k was equal to 9,

and 31 overlapped nodes were identified when the parameter k

was decreased to 4 (Figure 2). We also computed a partition for the

non-overlapping community structure in the structural brain

network using the modularity optimization method [42], which

was the same as the method of partitioning the maximal clique

network. The structural brain network was separated into 5 non-

overlapping communities (Figure 2). We then compared pairs

among all covers with overlapping communities by mutual

information, which is in the range [0,1] and equals 1 if and only

if the two covers are equal [5]. Therefore, a larger value of mutual

information indicates a higher similarity between two covers. We

averaged the mutual information of pairs between overlapping

covers, as shown in Figure 3A. Each point of the solid line

indicates the mean value of mutual information by a specific value

of k, which was averaged from the values of mutual information of

comparisons between the cover represented by k and all other

covers. The cover represented by k = 7 had the highest value,

which revealed that this cover might be the most representative

cover among all of the covers. We also compared the non-

overlapping partition to all covers with overlapping communities

(k = 4–9), as shown in Figure 3A. Each point of the dashed line

indicates the value of mutual information of the comparison

between the cover of the overlapping community structure

represented by a specific value of k and the partition of the non-

overlapping community structure. The covers created using the

values k = 7 and k = 9 showed higher mutual information values,

which implied that the partition with non-overlapping community

structure was more similar to the cover with overlapping

communities created using a value of k = 7 or k = 9. Using the

same parameter k, we also calculated the number of overlapped

nodes in 1000 matched random networks that preserve the same

number of nodes, mean degree, and degree distribution as the

brain network [47]. The overlapped nodes in the random

networks disappeared when the parameter k was increased to 6

(Figure 3B). This result implied that overlapped nodes in the brain

network show distinct topological properties compared to those in

random networks. Therefore, we adopted k = 7 for the analysis of

the overlapping community structure of the brain network.

Overlapping communities
The structural brain network was separated into 5 overlapping

communities (Table 2). The topological representation of the

overlapping community structure in the structural brain network

was drawn using the Pajek software package (http://vlado.fmf.uni-

lj.si/pub/networks/pajek) (Figure 4). We also demonstrated the

surface representation of the overlapping community structure in

the structural brain network using the Caret software [48]

(Figure 5). Community I included all of the 15 overlapped nodes

and was designated as the ‘‘core’’ community in which the 25

brain regions identified were mostly found in the frontal lobe, the

temporal lobe, the subcortex, and the occipital lobe. Community

II included 1 overlapped node and was designated as the

‘‘prefrontal’’ community (preF community), in which all 12

regions were found in the prefrontal cortices. Community III

included 10 overlapped nodes and was designated as the

‘‘occipital-parietal’’ community (O-P community), in which most

of the 22 regions identified were found in the occipital lobe and the

parietal lobe. Community IV was designated as the ‘‘frontal-

parietal’’ community (F-P community) and had no overlapped

nodes, with 14 regions located in the frontal lobe and 8 regions

found in the parietal lobe. Community V included 6 overlapped

nodes and was designated as the ‘‘temporal-occipital-subcortical’’

community (T-O-S community), in which 14, 6, and 6 regions

were located in the temporal lobe, the occipital lobe, and the

subcortical system, respectively. The separated communities of the

structural brain network were illustrated in anatomical spaces in

sagittal and top views (see supplementary Figure S1). For a

detailed description of the constitution of overlapping communi-

ties, see supplementary Text S1.

Overlapping nodes
As indicated by the overlapping community structure, 15

regions were recognized as overlapped nodes; specifically, 11

association regions, 2 subcortical regions, 1 limbic/paralimbic

Table 1. The terminologies used in this study.

Terminology Explanation

Community or module A set of nodes with denser links among them, but sparser with the rest of the network.

Overlapping community structure

Cover of overlapping community structure The overlapping community structure can be represented as a cover of network in which one node

can belong to more than one community.

Overlapped node A node can be shared by more than one community.

Non-overlapped node A node only belongs to one community.

Non-overlapping community structure

Partition of non-overlapping community structure The non-overlapping community structure can be represented as a partition of network in which

each node only belongs to one community.

doi:10.1371/journal.pone.0019608.t001
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region, and 1 primary region were recognized as overlapped nodes

(Table 3). The overlapped nodes were mostly identified in an

inferior-posterior pattern (Figure 5). We observed that the

overlapped nodes might be primarily related to regions with

higher values of node degree (top 25%) (Figure 6A) and nodal

efficiency (top 26%) (Figure 6B). However, the node betweenness

of the overlapped nodes was scattered (Figure 6C). We also found

that most of the overlapped nodes were insensitive to the selection

of cost thresholds; the results showed a higher occurrence of five

cost thresholds (cost = 0.13, 0.15, 0.18, 0.20, 0.22) (Figure 6D).

Moreover, we showed that the distribution of these nodal

properties followed an exponentially truncated power law

Figure 2. The dynamic processes of overlapping communities in the structural brain network. Using a fast unfolding algorithm on
modularity optimization, both the overlapping community structure, setting parameter k to 4 through 9, and the non-overlapping community
structure were obtained. Overlapping communities are painted with different colors (Community I: violet; Community II: green; Community III: blue;
Community IV: cyan; Community V: orange). Overlapped nodes are painted red. The number of overlapped nodes is denoted by the parameter n. The
participation coefficients of 90 regions in the non-overlapping community structure are plotted using the color bar (see supplementary Text S2). For a
description of the abbreviations, see supplementary Table S1.
doi:10.1371/journal.pone.0019608.g002
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distribution model, implying a lack of nodes with extremely high

values in these metrics (Figure 7). Furthermore, to assess the effects

of nodal ‘lesions’ on the overall topology of the brain structural

network, a simulation analysis was performed to examine the

network robustness after individual nodes were continuously

removed in a manner of random failure or targeted attacks. As

expected, the continuous targeted attacks caused by decreased

node degree, nodal efficiency, node betweenness, and the

participation coefficient (in the non-overlapping partition) had a

more dramatic effect on the brain structural network performance

(the global efficiency and the size of the largest component) than

the random failure of regions (Figure 8). For instance, when 26.7%

of the regions with higher values of nodal efficiency (Figure 8A,

violet arrow), 32.2% of the regions with higher values of node

degree (Figure 8A, red arrow), or 34.4% of the regions with higher

values of the participation coefficient (Figure 8A, blue arrow) were

attacked in the brain network, the size of the largest component

decreased sharply; in this case, all of the overlapped nodes were

removed. This result demonstrated that overlapped nodes usually

showed higher nodal efficiency and node degree and were highly

related to those with high participation coefficients, which are

usually defined as ‘‘connectors’’ in a non-overlapping community

structure.

Discussion

This is the first study to demonstrate an overlapping community

structure in the structural brain network. The brain network was

constructed by the measurement of RGMV in 462 young, healthy

individuals. The division of 90 brain regions into 5 overlapping

communities with functional significance suggested that the

structural brain network reflects the functional organization of

the human brain. The overlapped nodes shared by more than one

community might be involved in different brain systems. We

showed that the overlapped nodes revealed prominent regional

nodal properties and played a pivotal role in the structural brain

network. The overlapped nodes with a higher node degree and

nodal efficiency mostly contributed to ventral frontal-temporal-

occipital cortices, which are primarily related to auditory and

visual perception and are likely to be early developed brain

Figure 3. The selection for parameter k. (A) The mutual information of comparisons among the dynamic processes of the overlapping
community structure of the structural brain network. Each point of the solid line indicates the mean value of mutual information by a specific value of
k, which is averaged from the values of mutual information of comparisons between the cover represented by k and all other covers. Each point of
the dashed line indicates the value of mutual information of the comparison between the cover of overlapping community structure by a specific
value of k and the partition of non-overlapping community structure. (B) The number of overlapped nodes in the brain network (solid line) and
random networks (dashed line). The number of overlapped nodes in random networks by each k value (mean 6 sd) were obtained by 1000 matched
random networks that preserve the same number of nodes, mean degree, and degree distribution as the brain network (Maslov and Sneppen 2002).
doi:10.1371/journal.pone.0019608.g003

Table 2. The overlapping community structure of the structural brain network.

Community Name Brain Function
Brain
Regions

Overlapped
Nodes Lobe

Frontal Temporal Occipital Parietal Subcortical

I Core Auditory and language/
visuospatial

25 15 7 6 4 2 6

II Prefrontal Emotion/decision-making 12 1 12

III O-P Social/visual(DP) 22 10 3 1 10 8

IV F-P Control of action 22 0 14 8

V T-O-S Memory and learning/
visual(VP)

26 6 14 6 6

Total 90 15 32 (4) 18 (3) 14 (4) 16 (2) 10 (2)

The cover of the structural brain network was obtained by k = 7 here. The number of brain regions (overlapped nodes) included in each lobe was indicated by the bold
characters. O-P: Occipital-Parietal; DP: dorsal pathway; F-P: Frontal-Parietal; T-O-S: Temporal-Occipital-Subcortical; VP: ventral pathway.
doi:10.1371/journal.pone.0019608.t002
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Figure 5. The surface representations of the overlapping community structure in the structural brain network. All 90 brain regions
were organized into 5 overlapping communities painted with a different color (Community I: violet; Community II: green; Community III: blue;
Community IV: cyan; Community V: orange). Overlapped nodes are indicated by red spheres, in which the large spheres are shared by three
communities, and the small spheres are shared by two communities. Community I included all overlapped nodes, which were shared by at least one
other community.
doi:10.1371/journal.pone.0019608.g005

Figure 4. The topological representations of the overlapping community structure in the structural brain network. All 90 brain
regions were organized into 5 overlapping communities painted with different colors (Community I: violet; Community II: green; Community III: blue;
Community IV: cyan; Community V: orange). Overlapped nodes are indicated by square symbols (red colors), in which the large squares are shared by
three communities, and the small squares are shared by two communities. Connections within the same community are painted with the color of the
community. Connections between communities are painted with gray. For a description of the abbreviations, see supplementary Table S1.
doi:10.1371/journal.pone.0019608.g004
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Figure 6. The regional nodal properties of overlapped nodes in the structural brain network. The bar plot of all 90 regions is listed in
descending order of their (A) node degree, (B) nodal efficiency, and (C) node betweenness, respectively. (D) The occurrence of overlapped nodes in
the structural brain networks constructed at all selected cost thresholds (cost = 0.13, 0.15, 0.18, 0.20, 0.22); the overlapping community structure of all
brain networks was detected using the same parameter (k = 7). Regions with a high occurrence were determined to be insensitive to the selection of
cost thresholds. The black and gray bars indicate overlapped nodes and non-overlapped nodes, respectively. For a description of the abbreviations,
see supplementary Table S1.
doi:10.1371/journal.pone.0019608.g006

Table 3. The overlapped nodes in the structural brain network.

Region Lobe Class Degree Enodal Nbc Community Brodmann’s Area Reference

U M T

STG.R Temporal Association 2.59 1.39 3.86 I, V 41, 42 22 B, C, G

STG.L Temporal Association 2.50 1.36 2.04 I, V 41, 42 22 B, G

MOG.R Occipital Association 2.50 1.38 3.04 I, III 18 19 A, G

ROL.R Frontal Association 2.07 1.32 1.13 I, III 48

IFGtriang.R Frontal Association 1.90 1.31 3.61 I, III 45 E, G

SMG.L Parietal Association 1.90 1.26 0.54 I, III 40 B

ROL.L Frontal Association 1.90 1.28 2.22 I, III 48

CUN.R Occipital Association 1.81 1.25 2.68 I, III 17, 18 19 23 G

LING.L Occipital Association 1.64 1.22 1.65 I, III, V 17, 18 19 G

PUT.L Subcortical Subcortical 1.64 1.18 1.32 I, V 48 D

ORBmed.L Frontal Paralimbic 1.55 1.20 3.48 I, II 10 11 C

PUT.R Subcortical Subcortical 1.55 1.17 1.25 I, V 48 D, F

HES.L Temporal Primary 1.47 1.19 2.54 I, III 41, 42

SMG.R Parietal Association 1.47 1.19 0.47 I, III 40 C

IOG.L Occipital Association 1.38 1.17 1.06 I, III, V 18 19, 37

The brain regions were listed by a descending of their node degree. The regions are classified as association, primary, limbic/paralimbic or subcortical regions as
described by [63]. R: right; L: left. For the description of the abbreviations, see Table S1. Brodmann’s areas are categorized into unimodal (U), multimodal (M), or
transmodal (T) divisions using the criteria described by [63]. The reference column indicates the hub regions previously identified in human brain structural (A, B, C, D, E)
or functional (F, G) networks. A; Gong et al. (2009), B; He et al. (2008), C; Chen et al. (2008), D; Iturria-Medina (2008), E; He et al. (2007), F; He et al. (2009), G; Achard et al.
(2006).
doi:10.1371/journal.pone.0019608.t003
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regions. Our results provide new insights into the understanding of

the relationship between the structure and function of the human

brain.

Overlapping communities in the structural brain network
We proposed an overlapping community structure for the

structural brain network in the human brain. The definition of

overlapping community structure relies on the basic observation of

a typical community consisting of several complete (fully

connected) subgraphs that tend to share many of their nodes

[6]. One node can participate in more than one community;

therefore, overlapping communities naturally occur. Such an

overlapping community structure can be represented by a cover of

networks, and its identification in complex networks has been

widely studied [5,6,8,9,10,11,49,50]. In this study, the overlapping

community structure was identified through partitioning the

maximal clique network using the modularity optimization

method [11].

In the cover with overlapping communities, our results

demonstrated that the structural brain network was organized

into 5 topological communities that corresponded to several well-

known functional systems in the human brain. Previous studies on

several real networks have shown that the detection of overlapped

nodes as members of communities can be interpreted as a

prediction of their functions [5,6]. Thus, the analysis of brain

functions within overlapping communities and related overlapped

nodes is of great importance and significance (Table 2). Most of

the regions in the ‘‘core’’ community (Community I) were

associated with auditory and language/visuospatial functions.

The characterization of this community was in agreement with

Figure 8. Network robustness in the structural brain network. (A) Changes in global efficiency as a function of the fraction of removed nodes
in either random failures or targeted attacks caused by decreasing node degree, nodal efficiency, node betweenness, and the participation coefficient
(in the non-overlapping partition). (B) Changes in the size of the largest component as a function of the fraction of removed nodes in either random
failures or targeted attacks caused by decreasing node degree, nodal efficiency, node betweenness, and the participation coefficient (in the non-
overlapping partition).
doi:10.1371/journal.pone.0019608.g008

Figure 7. Topological distribution of the structural brain network. (A) Log-log plot of the cumulative probability of node degree distribution.
(B) Log-log plot of the cumulative probability of nodal efficiency distribution. (C) Log-log plot of the cumulative probability of node betweenness
distribution. The solid lines indicate the fits of the exponentially truncated power law [p xð Þ* xa{1ex=xc]. R-squared values indicate the goodness of
the fits.
doi:10.1371/journal.pone.0019608.g007
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many previous studies that identified the human language network

and its structure-function relationship using fMRI and DTI

[51,52,53]. This community included several regions in the

occipital lobe (CUN.R, LING.L, MOG.R, and IOG.L) that are

primarily associated with visuospatial processing and are found in

verbal tasks involving visual/spatial relations [54,55]. Moreover,

the ‘‘core’’ community was also in accordance with a multimodal

cortical network that is responsive to transitions in multiple sensory

modalities (visual, auditory, and tactile stimuli) [23]. The regions

included in Community II from the prefrontal cortex were mainly

responsible for emotion and decision-making. This finding was in

accordance with a previous study demonstrating that the

orbitofrontal cortex represents a critical structure in a neural

system that sub-serves decision-making [56]; it also supported the

fact that many current theories on decision-making address

emotion as a factor [57]. Regarding the two cortical pathways

for visual perception, many regions in Community III from the

occipital and parietal lobes (bilateral CUN, LING, SOG, MOG,

ANG, PCUN, CAL.L, and IOG.L) were related to the dorsal

pathway, which is specialized for determining ‘‘where an object

is’’; some regions in Community V (bilateral FFG, IOG, ITG,

LING.L, and CAL.R) were associated with the ventral pathway,

which is specialized for determining ‘‘what we’re looking at’’

[58,59]. Additionally, many regions in Community III, such as the

6 overlapped nodes shared by Community I (bilateral ROL,

SMG, IFGtriang.R, and HES.L), were also found to be associated

with the ‘‘C-system’’ of the social brain [60]. Many regions in

Community V from the temporal cortex and subcortical areas,

such as hippocampus, parahippocampal gyrus, and amygdala,

were associated with the biological memory system and the

learning of skills and habits [57,61]. Most of the regions in

Community IV participated in the control of actions involving

motor planning, movement preparation, and movement execution

[57,62].

Our results revealed several higher-level circuits or systems that

are involved in complex behaviors, such as auditory and visual

perception and motor control, or cognitive processes, such as

memory, language, and emotion. These findings are compatible

with previous studies on the modular organization of structural

and functional networks in the human brain. The modular

organization of the structural brain network was first revealed by

cortical thickness measurements from structural MRI analyses in

which 45 cortical regions were organized into 6 topological

modules (sensorimotor, auditory, visual, attention, and mnemonic

processing) that closely overlap known functional domains [16].

He et al. reported that spontaneous brain function networks have

an intrinsically cohesive modular organization in which the

identified modules are found to be closely associated with several

well-known, functionally interconnected subsystems, such as the

somatosensory/motor, auditory, attention, visual, subcortical, and

‘‘default’’ systems [18]. Meunier et al. demonstrated that three

major modules are recognized in human brain functional

networks, including central (presumably motor and auditory/

language), posterior (presumably visual), and dorsal fronto-

cingulo-parietal modules (presumably attention and default-mode

functions) [19].

Overlapped nodes in the structural brain network
Our results revealed that overlapped nodes were shared by

different communities (which represented brain systems). Most of

the overlapped nodes were found to be involved in multimodal or

transmodal cortices (Table 3), which provide anatomical and

computational epicenters for large-scale neurocognitive networks

[63]. These findings might provide evidence demonstrating that

the human brain contains a system of multimodal areas. The

cerebral cortex has been traditionally divided into separate

territories for functions such as vision, touch, audition, and

movement, which are known to overlap in many parts of the

cortex. Bremmer et al. 2000 reported a major advance in

understanding the regions of overlap in the human brain in which

the senses are integrated [64]. There is recent electrophysiological

and brain imaging evidence showing that visual, auditory, and

somatosensory integration occurs in early stages of the visual

cortical pathways; for example, this integration has been shown to

occur around the lingual gyrus (an overlapped node shared by

Community I, III, and V) where Brodmann’s area 17 is located

[65,66]. The superior temporal gyrus (two overlapped nodes

shared by Community I and V) and the supramarginal gyrus (two

overlapped nodes shared by Community I and III) play an

important role in the social brain [57,60], although these regions

are mainly responsible for auditory/language processing. Al-

though the putamen (two overlapped nodes shared by Community

I and V) has many functions because it is interconnected with

many other structures, its main function is to regulate movement,

influence various types of learning, and play a role in speech motor

control [67,68,69].

We also noted that overlapped nodes were mostly attributed to

ventral frontal-temporal-occipital cortices in an inferior-posterior

pattern (Figure 5). These regions were primarily related to

auditory and visual perception and are likely to develop early.

The auditory and visual systems are two of the sensory modalities

that have distinct cortical representations and provide information

about the external environment for cognitive processing [70].

More interestingly, there was only one community (Community

IV) without an overlapped node, which mainly participated in the

control of action. These findings were in accordance with the

results of a recent study showing that, in the infant brain, cortical

hubs and their associated cortical networks are largely confined to

primary sensory and motor brain regions and that the functional

network architecture is linked to support tasks that are of a

perception-action nature [71]. Our findings were also consistent

with previous results showing that neurons in early sensory cortical

areas are influenced by more than one modality and that

multisensory processing begins in early cortical areas

[72,73,74,75,76].

Regional nodal properties
Our results demonstrated the topological importance of

overlapped nodes, which revealed prominent regional nodal

properties and played a pivotal role in the structural brain

network. The overlapped nodes showed a higher node degree,

nodal efficiency, and density connections. These brain regions

were mostly in accordance with global hubs defined in previous

studies on the structural and functional networks of human brains

(Table 3) [16,18,28,40,46,77,78,79]. Thus, overlapped nodes with

a higher node degree and nodal efficiency should be of great

importance for communication within the network and suggest a

role for global hubs. However, distinct discrepancies between our

results and previous studies were also observed due to differences

in neuroimaging modalities, characteristics of subjects, and metrics

for defining global hubs (such as the node degree, the nodal

efficiency, the characteristic path length, and the node between-

ness). To investigate the correlation between regional nodal

properties, we computed the Pearson Coefficient of the compar-

isons among the three metrics adopted in this study. We

demonstrated high accordance between node degree and nodal

efficiency, whereas node betweenness had lower correlation to

other metrics (see supplementary Figure S2). This result supported
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our finding that similar rankings of overlapped nodes were found

between node degree and nodal efficiency. Moreover, we found

that the overlapped nodes were also related to regions with a

higher participation coefficient in the partition with non-

overlapped nodes. Nodes with a higher value of the participation

coefficient have much more inter-module (inter-community)

connections in the non-overlapping community structure and

are usually defined as ‘‘connectors’’ that play a critical role in the

coordination of information flow over the whole network [18,19].

Thus, the topological role for overlapped nodes was also similar to

that of ‘‘connectors’’, which are likely to be responsible for inter-

module communication.

Methodological limitations
Several methodological issues need to be addressed. First, in this

study, we used the RGMV measurement to construct structural

brain networks, as applied by a previous study on the hierarchical

organization of human cortical networks [26]. Although there is

no direct proof showing that correlations of gray matter volume

across subjects are indicative of axonal connectivity via white

matter tracts, strong correlations between brain regions that are

known to be anatomically connected have been observed in

previous optimized voxel-based morphometry studies [80,81].

Moreover, the quantitative analyses of structural brain networks

provide fresh insights into these questions [38]; for example, are

there any other grey matter reductions accompanied by the

atrophy of one brain region? Is age-related hippocampal

degeneration related to degeneration elsewhere? What is the

relationship between the atrophy of the prefrontal lobe with

normal aging and atrophy of other cortical regions? Using RGMV

as a measurement of structural connectivity is currently considered

to be exploratory and should be investigated further in future

studies. Second, different cost thresholds result in different

numbers of edges in the brain network and may lead to different

overlapping community structures. Thus, we applied multiple cost

thresholds (cost = 0.15, 0.18, 0.20, or 0.22) to evaluate the stability

of topological organization in the structural brain network. The

cost thresholds were selected from the range (0.13#cost#0.25),

which was adopted by the following complementary approaches:

(1) all brain networks were fully connected, and (2) the resulting

brain networks have sparse and distinguishable properties in

comparison to degree-matched random networks [26,82,83]. We

demonstrated the similar overlapping community structure in

structural brain networks constructed at multiple cost thresholds

(Figure 9). As the cost threshold increased, the number of edges in

the brain network also increased, which resulted in an increase in

overlapped nodes. Interestingly, the overlapped nodes were found

to be mainly attributed to ventral frontal-temporal-occipital

cortices and were involved in an inferior-poster pattern, suggesting

a robust topological organization in the structural brain networks.

Third, variations in parcellation templates (e.g., AAL used in this

study) affect network structure in the human brain. A previous

study indicated that regional volumes are positively correlated to

their mutual information, which measures the functional connec-

tivity between the region and the remaining brain regions [84].

Although gross inferences regarding network topology (e.g., small-

world or scale-free) are robust to the template used, different

parcellation strategies affect topological parameters (e.g., path

length, clustering, small-worldness, and degree distribution) of

structural or functional brain networks [27,82,85,86]. Thus, the

comparison of network parameters across studies must be made

with reference to the spatial scale of the parcellation schemes.

Figure 9. The overlapping community structure of structural brain networks constructed at multiple cost thresholds (cost = 0.15,
0.18, 0.20, 0.22). The analysis of the overlapping community structure was performed using the same parameter (k = 7). All 90 brain regions were
organized into overlapping communities painted with different colors. Overlapped nodes are indicated by red spheres, in which the large spheres are
shared by three communities, and the small spheres are shared by two communities.
doi:10.1371/journal.pone.0019608.g009
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Moreover, because our results revealed the fuzzy boundaries

between communities by identifying overlapped nodes, the

overlapping community structure would be changed by parcella-

tion templates due to different boundaries between brain regions.

It would be worthwhile to identify the overlapping community

structure with different parcellation templates in future studies.

Fourth, while the majority of previously published works have

adopted 1.5 T or 3 T MR scanners, the current findings were

based on T1-weighted images using two 0.5 T MR scanners,

which may lead to lower resolution of our results. Finally, while the

binary brain network was analyzed in this study, it will be

interesting to determine the overlapping community structure in

weighted brain networks. Further investigations will also examine

the overlapping community structure in the human brain network

by different neuroimaging modalities, such as diffusion tensor

imaging, functional MRI, and electroencephalography.

Conclusions
In conclusion, the overlapping community structure was

identified in the structural brain network derived from the

measurement of RGMV in 462 young, healthy individuals.

Overlapping communities were associated with known functional

specializations of brain regions. Overlapped nodes were found in

an inferior-posterior pattern and were mainly related to brain

regions with a higher node degree and nodal efficiency, which

played a pivotal role in the flow of informa- tion through the

structural brain network. The identification of overlapping

communities and overlapped nodes may provide valuable insights

into the understanding of the structure and function of the human

brain.
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Figure S1 The anatomical representations in the sagittal (A) and
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1. Guimerà R, Mossa S, Turtschi A, Amaral LAN (2005) The worldwide air
transportation network: Anomalous centrality, community structure, and cities’

global roles. Proc Natl Acad Sci USA 102: 7794–7799.

2. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to

modular cell biology. Nature 402: 47–52.

3. Newman MEJ (2006) Modularity and community structure in networks. Proc

Natl Acad Sci USA 103: 8577–8582.

4. Girvan M, Newman MEJ (2002) Community structure in social and biological

networks. Proc Natl Acad Sci USA 99: 7821–7826.

5. Lancichinetti A, Fortunato S, Kertész J (2009) Detecting the overlapping and

hierarchical community structure in complex networks. New J Phys 033015 p.

6. Palla G, Derenyi I, Farkas I, Vicsek T (2005) Uncovering the overlapping
community structure of complex networks in nature and society. Nature 435:

814–818.

7. Zhang S, Wang R-S, Zhang X-S (2007) Identification of overlapping community

structure in complex networks using fuzzy c-means clustering. Phys A 374:

483–490.

8. Nicosia V, Mangioni G, Carchiolo V, Malgeri M (2009) Extending the definition
of modularity to directed graphs with overlapping communities. J Stat Mech

2009: P03024.

9. Baumes J, Goldberg M, Magdon-Ismail M (2005) Efficient Identification of

Overlapping Communities. Intelligence Security Informatics 3495: 1–5.

10. Shen H, Cheng X, Cai K, Hu M-B (2009) Detect overlapping and hierarchical

community structure in networks. Phys A 388: 1706–1712.

11. Shen H, Cheng X, Guo J (2009) Quantifying and identifying the overlapping

community structure in networks. J Stat Mech 2009: P07042.

12. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical

analysis of structural and functional systems. Nat Rev Neurosci 10: 186–198.

13. He Y, Evans A (2010) Graph theoretical modeling of brain connectivity. Curr

Opin Neurol 23: 341–350.

14. Stam CJ (2010) Characterization of anatomical and functional connectivity in
the brain: A complex networks perspective. Int J Psychophysiol 77: 186–194.

15. Honey CJ, Thivierge J-P, Sporns O (2010) Can structure predict function in the

human brain? NeuroImage 52: 766–776.

16. Chen ZJ, He Y, Rosa-Neto P, Germann J, Evans AC (2008) Revealing Modular

Architecture of Human Brain Structural Networks by Using Cortical Thickness
from MRI. Cereb Cortex 18: 2374–2381.

17. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, et al. (2008)
Mapping the structural core of human cerebral cortex. PLoS Biol 6: e159.

18. He Y, Wang J, Wang L, Chen ZJ, Yan C, et al. (2009) Uncovering intrinsic

modular organization of spontaneous brain activity in humans. PLoS One 4:
e5226.

19. Meunier D, Achard S, Morcom A, Bullmore E (2009) Age-related changes in
modular organization of human brain functional networks. Neuroimage 44:

715–723.

20. Meunier D, Lambiotte R, Fornito A, Ersche KD, Bullmore ET (2009)

Hierarchical modularity in human brain functional networks. Front Neuroinfor-

matics 3: 37.

21. Mesulam MM (1990) Large-scale neurocognitive networks and distributed

processing for attention, language, and memory. Ann Neurol 28: 597–613.

22. Hikosaka K, Iwai E, Saito H, Tanaka K (1988) Polysensory properties of

neurons in the anterior bank of the caudal superior temporal sulcus of the
macaque monkey. J Neurophysiol 60: 1615–1637.

23. Downar J, Crawley AP, Mikulis DJ, Davis KD (2000) A multimodal cortical

network for the detection of changes in the sensory environment. Nat Neurosci
3: 277–283.
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