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Abstract

RNA Seq provides unparalleled levels of information about the transcriptome including precise expression levels over a
wide dynamic range. It is essential to understand how technical variation impacts the quality and interpretability of results,
how potential errors could be introduced by the protocol, how the source of RNA affects transcript detection, and how all of
these variations can impact the conclusions drawn. Multiple human RNA samples were used to assess RNA fragmentation,
RNA fractionation, cDNA synthesis, and single versus multiple tag counting. Though protocols employing polyA RNA
selection generate the highest number of non-ribosomal reads and the most precise measurements for coding transcripts,
such protocols were found to detect only a fraction of the non-ribosomal RNA in human cells. PolyA RNA excludes
thousands of annotated and even more unannotated transcripts, resulting in an incomplete view of the transcriptome.
Ribosomal-depleted RNA provides a more cost-effective method for generating complete transcriptome coverage.
Expression measurements using single tag counting provided advantages for assessing gene expression and for detecting
short RNAs relative to multi-read protocols. Detection of short RNAs was also hampered by RNA fragmentation. Thus, this
work will help researchers choose from among a range of options when analyzing gene expression, each with its own
advantages and disadvantages.
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Introduction

Interest in quantifying levels of gene expression has been high

ever since the first methods were developed to assess RNA

differences across cell types and growth conditions. The methods

and technologies have progressively improved to allow better

sensitivity and inclusion of an ever greater number of transcripts in

each assay. In the recent past, various forms of expression arrays

have been the stalwart of gene expression analysis, but this

technology is now rivaled by a more accurate, sensitive and

versatile technology, RNA Seq (reviewed by [1,2,3,4,5]). RNA Seq

provides a digital measure of RNA abundance represented by the

sequence read counts in a region of interest as opposed to an

indirect, analog signal from microarrays. In addition, it has a

broader dynamic range, and is not dependent on having pre-

existing knowledge about the transcriptome under study. Expres-

sion results from RNA Seq [6,7,8,9,10] and the related

technologies of Digital Gene Expression (DGE) [11,12], SageSeq

[13,14], CAGESeq [15], and PET Seq [16], which count 59 and/

or 39 tags, have been compared to both microarrays and qPCR

experiments and shown to produce highly accurate and repro-

ducible results based on known spikes and other quality

assessments. In addition to analysis of gene expression levels,

RNA Seq is also able to discover novel transcripts, SNPs, splice

junctions, and fusion transcripts as well as provide allele specific

gene expression [17,18,19]. Additionally, paired read methods

have been used in an attempt to maximize information about

splicing and other long-range phenomena in RNA Seq experi-

ments, but the ligation and amplification steps in such methods

can introduce errors as evidenced by a relatively large proportion

of paired reads appearing as chimeras arising from distinct genes

(5–9%, [20]), most of which are artifactual.

Extensive efforts to characterize the reproducibility of micro-

array methodologies and platforms have been carried out

previously [21,22], showing that careful attention to methods

can yield predictable reproducibility. The much greater dynamic

range of RNA Seq and reduced susceptibility to artifacts caused by

array cross-hybridization mean that RNA Seq data should have

much higher reproducibility than hybridization-based approaches.

While the ability of RNA Seq to detect all RNAs in a sample is an

advantage with respect to identifying novel species and the

complete range of transcripts within a cell, it is a disadvantage

when total RNA is examined because such a high proportion of

cellular RNA arises from ribosomal and mitochondrial sources.

This limits the number of reads from other RNAs and thus the

number of different transcripts that can be detected and the

accuracy of their expression level. Hence, methods such as polyA

RNA selection and ribosomal RNA depletion have been

developed to minimize this problem. However, these fraction-

ations have the potential to skew the RNA population that is

detected. Similarly, the improved nature of the detection

technology make attention to sample preparation techniques all
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the more critical as not only sample fractionation but also any

sample manipulation including ligations, amplifications, and

sample fragmentation can have an effect on the results observed.

Understanding the impact that technical choices have on

experimental outcome is critical if one is to properly evaluate

expression profiles generated either within the same laboratory or

across laboratories. Studies that fully characterize the benefits and

limitations of RNA Seq technology have been initiated [23] but

more comprehensive testing is still required. Our studies are

intended to further explore what differences are likely to occur as

protocols are varied.

We have performed multiple RNA Seq experiments and

technical replications to assess protocol variations and reproduc-

ibility. The same samples have also been used for DGE expression

profiles in order to compare single and multi-tag approaches for

their impact on expression measurements. In this work, we will

focus on gene expression and means for optimizing the accuracy

and precision of those measurements for all cellular transcripts.

The Helicos single-molecule sequencing technology is used

because of its reduced biases and ability to see a broader range

of DNA sizes and GC-contents [24] and a wider range of

expression levels [25] relative to amplification-based sequencing

methods.

Results

cDNA Synthesis
For RNA Seq, cDNA was generated by priming RNA with

random hexamers and extending with reverse transcriptase (RT)

except for one experiment in which selected hexamers (avoiding

sequences that prime rRNA) were used [26]. For DGE

experiments, total RNA was used as starting material and an

oligo dT-based primer was used for cDNA priming [11,27]. First

strand cDNA was tailed with terminal transferase and dATP. This

tailed cDNA was sequenced after hybridization to dT50 covalently

bound to a flow cell surface. No amplification, ligation or size

selection was necessary, minimizing opportunities for introducing

methodological biases. Each cDNA sample was sequenced on one

or more channels of a HeliScope Genetic Analysis System with the

resulting reads filtered for length ($25 nt) and base addition order

artifacts. The remaining reads were aligned to known transcripts

as defined by UCSC Genes track as well as the complete human

genome for unannotated transcripts.

Read Counting and Normalization
Because ribosomal RNAs (rRNA) and mitochondrial RNAs

(mitoRNA) are so common but generally of less interest than other

transcripts, they were removed prior to analysis. To compare

expression levels across samples that have differing numbers of

reads, it is necessary to normalize the total number of reads to a

constant value. This is accomplished by multiplying the filtered

read counts from all non-rRNA/mitoRNA reads by a constant

factor to generate a total of 1,000,000 reads per sample.

Expression is thus given as Reads Per Million (RPM). Elsewhere,

this is frequently further adjusted to Reads per thousand (K)

nucleotides Per Million reads (RKPM). As discussed later, this

additional normalization introduces a variety of problems so,

except for spike-in data, all comparisons will be made using RPM

rather than RPKM.

RNA Fractionation and its impact
With total RNA, .80% of aligned reads correspond to rRNA,

reducing the number of reads arising from transcripts of higher

interest. Because the precision with which any RNA Seq

measurement can be made is directly dependent on the number

of times each transcript is counted, eliminating rRNA from

sequencing allows a much higher number of counts to be obtained

from all other RNAs. However, selective removal of any class of

RNA introduces the potential risk of inadvertently altering the

concentration of other RNAs [28] so an understanding of the

impact of selection procedures is required. The most common

selections carried out for RNA Seq experiments include depletion

of rRNAs, often using a RiboMinus kit (Invitrogen), or selection of

polyA RNA using oligo-dT binding. Additionally, selective

priming can be performed either using primers specific for certain

classes of RNA or using an oligo-dT primer as with DGE

measurements. PolyA RNA selection can be accomplished in

multiple ways, generally using oligo-dT attached to magnetic

beads, plates, or cellulose.

To assess the impact of RNA selection on RNA Seq results, total

RNA from human liver, human brain, and K562 cells, derived

from human leukemia cells [29], was either sequenced directly,

sequenced after RiboMinus rRNA depletion, or sequenced after

one or more rounds of polyA selection. Ribosomal/mitochondrial

reads ranged from 80–88%/2–8% for total RNA, 47–77%/4–

15% for RiboMinus RNA, and 9–25%/10–25% for singly-

selected polyA RNA from the three sources of RNA (Table 1).

The contribution of mitochondrial reads rises with increased

polyA selection because those transcripts are also polyadenylated

[30] and thus enriched as more rRNA is removed.

Analysis of K562 RNA
For K562 cells, three channels of total RNA, two channels each

for two replicate samples of RiboMinus RNA prepared in parallel,

and duplicate single channels of two replicate samples of polyA

RNA were compared. The UCSC reference transcriptome

included 28,808 non-ribosomal, non-mitochondrial annotated

transcripts, each representing a collapsed set of transcript

annotations. Transcript counts for all channels used in this

analysis can be found in the GEO database under accession

GSE28123 and sequence reads are available at the Sequence

Read Archive under accession number SRP006040. The 69

individual samples available are listed in Table S1. To avoid the

common practice of artificially inflating correlation coefficients

with non-expressing genes, annotated transcripts were included in

this analysis only if present at .5 RPM in any of the compared

samples. For K562 samples, 16,830 such transcripts were included

based on this cutoff. Whenever different channels of the same

sample were combined for analysis, the read counts were summed

prior to normalization. Replicates of the same RNA sample run on

different flow cell channels or different HeliScope sequencers were

found to be nearly indistinguishable (R.0.99, all correlations

presented are Spearman, see Text S1 for more detailed

discussion).

When different samples of K562 polyA RNA were compared to

each other, it did not matter whether the duplicate runs or

replicate samples were compared as the correlations were .0.99

in all pair-wise comparisons (Table 2). One pair of polyA replicates

is shown graphically in Figure 1A. There are no transcripts that

are significant outliers in this comparison. Though there is

broadening below ,10 RPM, this is expected from the stochastic

nature of counting low frequency transcripts. In marked contrast

to the high correlation when polyA RNA is compared to itself,

there is a much broader distribution and many outliers when

polyA RNA is compared to RiboMinus RNA (R = 0.85–0.88,

Figure 1B). Most outliers have significantly higher RPM in the

RiboMinus sample, as would be expected if the polyA method is

selecting out a subset of RNAs and eliminating more than simply

Protocol Dependence of Gene Expression Measurement
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rRNA. The RiboMinus depletion method eliminates fewer RNAs

than polyA selection, leaving a larger number of transcripts in the

overall pool. Many of the most significant outliers are non-coding

RNAs which are not expected to be polyadenylated and would not

be removed using methods designed to eliminate only rRNA.

Comparison of total K562 RNA with the K562 RiboMinus RNA

shows an intermediate level of correlation (R = 0.94–0.95) with far

fewer outliers (Figure 1C). The high number of ribosomal reads in

the total RNA sample lowers the precision of those measurements.

It is also worthy of note that RiboMinus depletion of RNA samples

is dependent on the quality of the starting RNA. Because a

relatively small number of probes (8 total probes for all rRNAs) is

used for depletion of the large rRNAs, even mildly degraded RNA

samples are not depleted well because many partial fragments are

not targeted. With such samples, we have used 30 evenly-

distributed probes and this is much more effective at removing

rRNA (data not shown). Similarly, the commercial RiboZero kit

(Epicentre) is much more effective at removing rRNA, typically

leaving less than 10% rRNA reads (data not shown).

Analysis of Liver RNA
To determine the generality of the patterns observed with the

K562 samples, the same analysis was repeated with liver RNA

(Table 3). With the 5 RPM cutoff, 17,204 transcripts were

included. The correlations between all pairs of liver RNAs are

somewhat lower than the corresponding K562 pairs which is likely

Table 1. Summary of sequence data for analyzed channels.

Tissue/Cell
RNA
Fractionation Other # Chan

Non ribo/
mito Reads Mito Reads Ribo Reads Total Reads

% Non
ribo/mito % Mito % Ribo

K562 polyA 4 30,456,413 6,600,803 5,518,076 42,575,291 71.5 15.5 13.0

K562 RiboMinus 4 9,710,364 2,757,107 20,091,962 32,559,433 29.8 8.5 61.7

K562 Total 3 1,742,177 925,339 22,116,669 24,784,185 7.0 3.7 89.2

K562 DGE 1 2,785,898 671,865 2,908,141 6,365,904 43.8 10.6 45.7

Liver polyA 12 59,005,359 26,439,549 34,136,252 119,581,159 49.3 22.1 28.5

Liver RiboMinus 6 5,785,654 2,988,093 43,449,859 52,223,606 11.1 5.7 83.2

Liver Total 9 4,673,697 5,964,424 81,889,062 92,527,182 5.1 6.4 88.5

Liver DGE 2 9,124,996 3,377,497 4,770,979 17,273,472 52.8 19.6 27.6

Liver polyA Frag 4 36,957,011 14,711,900 19,748,540 71,417,451 51.7 20.6 27.7

Liver DGE Frag 2 12,074,196 5,126,958 6,533,234 23,734,388 50.9 21.6 27.5

Liver polyA cellulose 16 2 8,119,632 5,290,388 7,932,243 21,342,264 38.0 24.8 37.2

Liver polyA cellulose 26 2 7,040,565 3,833,472 454,005 11,328,042 62.2 33.8 4.0

Liver Flow Through 2 412,972 531,004 14,474,302 15,418,277 2.7 3.4 93.9

HL60 polyA 1 4,001,738 466,516 782,963 5,251,217 76.2 8.9 14.9

HL60 polyA tRet 1 8,678,984 2,031,609 1,806,003 12,516,596 69.3 16.2 14.4

HL60 Total 3 1,136,662 792,147 14,393,135 16,321,944 7.0 4.9 88.2

HL60 Total tRet 3 935,863 1,441,219 12,884,604 15,261,686 6.1 9.4 84.4

HL60 DGE 1 4,448,499 509,554 1,183,895 6,141,947 72.4 8.3 19.3

HL60 DGE tRet 1 3,919,856 1,808,924 3,955,218 9,683,999 40.5 18.7 40.8

HL60 Selected Primers 3 5,266,758 1,357,640 7,965,596 14,589,995 36.1 9.3 54.6

Brain polyA 4 6,883,542 5,788,016 4,847,539 17,519,097 39.3 33.0 27.7

Brain RiboMinus 4 2,993,303 4,328,560 26,472,617 33,794,480 8.9 12.8 78.3

Brain Total 2 918,388 1,686,869 17,460,401 20,065,658 4.6 8.4 87.0

Brain DGE 1 540,681 1,194,013 909,609 2,644,303 20.4 45.2 34.4

doi:10.1371/journal.pone.0019287.t001

Table 2. Correlations among K562 RNA samples.

K562 Total RiboMinus rep1 RiboMinus rep2 polyA rep1A polyA rep2A polyA rep1B polyA rep2B

Total 0.95 0.94 0.82 0.81 0.82 0.82

RiboMinus rep1 0.98 0.86 0.85 0.86 0.86

RiboMinus rep2 0.88 0.88 0.88 0.88

polyA rep1A 0.99 1.00 1.00

polyA rep2A 0.99 1.00

polyA rep1B 1.00

doi:10.1371/journal.pone.0019287.t002
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Figure 1. Comparison of K562 RNA selected in different ways. The same sample of total K562 RNA was used to prepare polyA RNA and
RiboMinus RNA as described in Materials and Methods. The normalized RPM was then compared on a log-log plot for two replicate samples of polyA
RNA (A), polyA RNA relative to RiboMinus RNA (B), and RiboMinus RNA relative to the starting Total RNA (C).
doi:10.1371/journal.pone.0019287.g001
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caused by the difference in expression patterns between the two

samples. The liver sample has more transcripts with very high or

very low expression levels (Table 4). Low expressing transcripts are

inherently more variable. However, the same pattern of polyA

samples being highly correlated with each other (0.98–0.99) and

much less correlated with RiboMinus (0.60–0.74) and total RNA

(0.63–0.71) samples is maintained. To further test technical

replication, polyA RNA was selected and processed independently

by two scientists. polyA rep1 and rep2 were made by one scientist

and polyA rep3, rep4, and rep5 were made by a different scientist.

The pair-wise correlations were 0.99 for samples prepared either

by the same or by different scientists (Figure 2). Thus, highly

reproducible results can be obtained when the same protocol is

carried out independently.

The polyA samples discussed thus far were prepared using a

single selection with oligo-dT magnetic beads. Another common

method involves one or two selections using oligo-dT cellulose.

According to the product manufacturers, the oligo-dT on the

beads we used was 25 nt and the oligo-dT on the cellulose was a

mix ranging from 12–25 nt. polyA RNA selected once with oligo-

dT cellulose shows a similar amount of rRNA (33%) to polyA

RNA selected once with beads. A second round of oligo-dT

cellulose selection yielded a sample with only 3.6% rRNA. As

shown in Table 3, the correlation of total or RiboMinus RNA with

polyA RNA selected once with cellulose (R = 0.71–0.74) is about

the same as polyA RNA selected once with beads (R = 0.62–0.73).

The twice-selected RNA correlates less well (R = 0.63–0.66),

presumably due to a more efficient removal of non-polyadenylated

RNAs that are still present in the total and RiboMinus samples. If

one examines the RNA that flows through the column during the

second round of polyA selection, it has a higher proportion of

rRNA (89%) than the starting sample but also contained

significant residual amounts of polyA RNA. Most of the

differences between the once and twice selected RNAs (Figure

S1) occur in transcripts that also change markedly on going from

total RNA to polyA RNA.

The non-rRNA reads in the flow through mirror what is

selected but there are also interesting differences. Most of the reads

that are underrepresented in the second selection relative to the

flow through are either short non-coding RNAs or very long

mRNAs. The former may have shorter than average polyA tails

and hence less likely to stably bind the matrix. Many are detected

in DGE experiments, suggesting some level of polyadenylation.

The very long RNAs are probably overrepresented in the flow

Table 3. Correlations among Liver RNA samples.

Liver
RiboMinus
Scientist 1

RiboMinus
Scientist 2

polyA
Scientist 1

polyA
Scientist 2

polyA
Fragmented DGE

polyA1
cellulose

polyA2
cellulose

Total 0.93 0.92 0.70 0.67 0.67 0.71 0.71 0.63

RiboMinus Scientist 1 0.93 0.73 0.62 0.70 0.75 0.74 0.66

RiboMinus Scientist 2 0.67 0.63 0.63 0.69 0.68 0.60

polyA Scientist 1 0.99 0.99 0.87 0.98 0.97

polyA Scientist 2 0.99 0.86 0.98 0.98

polyA Fragmented 0.86 0.98 0.98

DGE 0.86 0.83

polyA1 cellulose 0.97

doi:10.1371/journal.pone.0019287.t003

Table 4. Number of expressed collapsed transcripts.

5–10 .10–50 .50–100 .100-1K .1K–10K .10K Total

Total Liver 4378 8155 1477 1114 89 11 15224

Ribo- Liver 4399 8078 1392 1082 91 10 15052

polyA Liver 3992 6365 1076 1038 90 11 12572

DGE Liver 4332 6872 996 1007 95 10 13312

polyA 16 Liver 4069 6294 1048 1004 89 12 12516

polyA 26 Liver 3740 5663 1004 1024 90 13 11534

Total K562 3199 8697 2153 1710 57 6 15822

Ribo- K562 3101 8360 2171 1716 65 5 15418

polyA K562 2878 6925 2231 1901 105 1 14041

DGE K562 3087 7476 1848 1497 131 2 14041

Total Brain 3803 10196 2503 1667 48 3 18220

Ribo- Brain 3848 10357 2506 1598 49 3 18361

polyA Brain 3733 9092 2204 1819 54 5 16907

DGE Brain 3290 10031 2394 1692 55 4 17466

doi:10.1371/journal.pone.0019287.t004
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through because they are more likely to suffer degradation during

processing. Conversely, the transcripts that tend to be underrep-

resented in the flow through include short, ribosomal protein

encoding mRNAs that are probably less susceptible to degrada-

tion. Transcripts that show the greatest variation among the

different polyA selection strategies are those that change most

dramatically upon examination of total RNA versus any polyA

RNA.

Selected Primers and spikes
Another indirect method for elimination of rRNA reads has

been described [26] in which cDNA is primed using non-random

hexamers, selected to avoid reverse transcription of rRNA. This

approach was shown to achieve markedly lower numbers of rRNA

reads with non-rRNA going from 22% with random hexamers to

87% with non-random hexamers with brain RNA [26]. We

carried out the same approach with HL60 total RNA to determine

the performance of cDNA made with selected primers relative to

cDNA made after rRNA depletion or polyA selection. The use of

selected primers caused the desired reduction in rRNA reads non-

ribosomal reads improving from 11% with random hexamers to

45% with selected hexamers. However, the impact on the non-

rRNA reads was not uniform with differential effects on many

transcripts. It is possible that even better specificity versus rRNA

could be obtained with optimized hybridization conditions. As a

class, the most affected RNAs were the very short, non-coding

ones (less than 200 nt) though, there were widespread effects on

other transcripts as well (Figure S2, R = 0.75).

Certain samples were also spiked with a set of seven RNAs

produced by in vitro transcription and combined in known absolute

proportions [6]. These RNAs were added to a liver polyA sample

prior to cDNA synthesis and analyzed as part of the overall

experiment. When the known lengths of these RNAs were

accounted for, their detected abundance was well correlated with

the proportions in the initial sample (R.0.99, see Text S1 and

Figure S3 for additional details).

Fragmentation
Fragmentation of RNA and/or cDNA has been used

previously [6] to achieve more even sequence coverage

throughout the length of transcripts. This has the benefit of

allowing more exons to be detected with the same number of

reads and potentially lessening the impact of secondary/tertiary

structures on priming efficiency in very long RNAs. However, the

effect that fragmentation may have on transcript representation

has not been previously determined. As shown in Figure S4, there

is a very high correlation (R = 0.99) between fragmented/

unfragmented sample pairs though there are more outliers at

high and medium expression levels than expected for truly

identical samples. There is a trend for the fragmented protocol to

have lower expression for shorter RNAs. Many of these are non-

coding RNAs and shorter coding transcripts such as ribosomal

proteins. These classes of transcripts will be lost or underrepre-

sented using protocols that include size selection or fragmenta-

tion. As shown in Figure S5, there is very little impact on

transcripts longer than 1 kb but the impact becomes increasingly

significant below that length. Overall, for all transcripts with

.100 RPM in either sample, the ratio of unfragmented to

fragmented expression is weakly correlated with log(median

length) (R = 20.38). Transcripts of less than 1000 nt have a

median 1.3 fold higher expression level when comparing

unfragmented to fragmented transcripts.

Figure 2. Comparison of liver polyA prepared by two individuals. The same sample of total liver RNA was used to prepare polyA by two
different individuals as described in Materials and Methods. The normalized RPM for all transcripts with greater than 1 RPM is shown on a log-log
plot.
doi:10.1371/journal.pone.0019287.g002
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Digital Gene Expression
In addition to RNA Seq methods in which reads are captured

from throughout the transcript length, it is also possible to use tag-

based approaches in which reads are obtained only from the 59 or

39 end of each transcript. This should lead to improved counting

though at the expense of characterizing splice and other sequence

variants. Single-molecule Digital Gene Expression (DGE) has been

described using yeast polyA RNA [11]. Total RNA is used which

minimizes sample handling. A primer is hybridized to the polyA

tail and then reverse transcribed to the end of the RNA. For

relatively short RNAs (,2 kb), most molecules are extended to the

59 end. Many longer RNAs are also fully extended but random

cleavages that occur during sample processing and less than

perfect RT processivity lead to stops throughout the RNA. As with

RNA Seq, first strand cDNA is polyA tailed. With DGE, the large

fraction of reads arising from the 59end make it easier to count as

well as provide a direct experimental determination of the

initiation site.

Because DGE should produce one read rather than many reads

per RNA molecule, the agreement between the two methods is not

perfect (Figure 3). DGE also detects a greater number of genes

relative to polyA samples and this is true for all tissues/cells tested.

A large part of this is due to non-coding RNAs and short RNAs

that are not well detected by RNA Seq, most likely due to the

small number of priming sites in short RNA. With DGE, all

polyadenylated transcripts, short or long, will have a single

priming site and thus detected in their proper proportions. If all

the genes that are expressed at 50 RPM or higher in any of the

liver RNA Seq or liver DGE samples are examined for the most

extreme differences in expression ratios, 14 genes are found to be

.1006higher in DGE than RNA Seq while none is that extreme

in the other direction. Of the 14 genes present at high amounts in

DGE, nine are short, non-coding RNAs. The most extreme over-

expressers in DGE are the snoRNAs NR_002955, NR_002956,

and NR_002973 which are found at .1000 RPM in DGE while

present at less than 6 RPM in RNA Seq.

Transcriptome Complexity
A noticeable impact of the double polyA selection is a loss in

complexity of the sample with many genes missing. It is

pronounced even at the level of annotated transcripts and has

been shown to be even more extreme among unannotated

transcripts [28]. The bead-selected liver polyA sample has about

2500 fewer transcripts than either the total or RiboMinus sample

and is very similar to the 16 cellulose selected sample in terms of

transcript count (Table 4). The 26 oligo-dT cellulose-selected

sample lacks an additional 1038 transcripts beyond the reduced

number obtained with the bead-selected RNA.

Differential Expression
While examination of static gene expression levels is instructive,

it is generally of more interest to study changes in gene expression.

However, care must be taken in such analyses. For example, it has

been previously noted [31] that differential expression differences

are length dependent when determined via RNA Seq though not

with microarrays. This can be partially explained by the increased

sampling of longer transcripts which reduces the variation and

allows smaller expression differences to be observed. To compare

our results with the previous study, a similar analysis was

performed. Liver and K562 polyA RNA were compared for

significant expression differences using a 2-sided T-test with a

multiple testing correction factor for the 18335 genes with at least

Figure 3. Comparison of liver DGE vs. RNA Seq polyA. The same sample of total liver RNA was used directly for DGE or was polyA purified. The
resulting cDNA for the two methods was then tailed and sequenced as described in Materials and Methods. The normalized RPM for all transcripts
with greater than 1 RPM is shown on a log-log plot.
doi:10.1371/journal.pone.0019287.g003
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5 RPM in any sample. Because of the different tissue sources, a

large number (5239) of transcripts was found to be differentially

expressed. The same analysis of liver polyA prepared by different

scientists yielded only 5 of 13910 transcripts as being differentially

expressed after correction.

Transcripts were binned by length in groups of 400 and the

fraction of genes that were differentially expressed plotted versus

mean transcript length of the bin. As observed previously with

other sequencing platforms and expected based on increased

sampling, a higher proportion of long transcripts are observed to

be differentially expressed (Figure 4A). However, amplification-

based sequencing platforms suffer from a sharp drop in detection

of differential expression below 1000 nt, likely due to their

difficulties in detecting short transcripts [31], that is not observed

with this data set. If expression levels were constant as a function of

length, one would expect a continued drop in detection of

differential expression below 1000 nt because of the shorter length

over which sampling is possible. However, the shorter RNAs

include many highly expressed transcripts that skew the median

expression level of the shorter bins. The 233 differentially

expressed transcripts in the two shortest bins include 45 non-

coding RNAs, 35 histones, and 9 ribosomal proteins. In contrast,

DGE analysis of the same samples yields a much more even length

dependence above 1000 nt (Figure 4B) because only a single read

is generated from each transcript. The increased expression levels

of transcripts less than 1000 nt leads to higher levels of detectable

differential expression with DGE.

Comparison of a tissue with a cell line provides a rich source of

differentially expressed transcripts but may not adequately reflect

the issues faced with systems of greater biological interest. For a

more relevant model, RNA was prepared from HL60 cells

growing in standard growth media or growing in the presence of t-

retinoic acid (t-Ret) to induce differentiation [32]. Many

transcripts are dramatically changed and there is a high level of

consistency among the different RNA samples when examining

those that are markedly altered (see Text S1). Among the most

significant gene expression changes are the downregulation of c-

Myc and the upregulation of THBS1 and CTSD, all of which

change by more than 1000 RPM and greater than 206.

The importance of looking beyond just polyA RNA is

highlighted by our observations of differential expression with

many non-coding and histone RNAs in total RNA. Histone

mRNAs are known to lack a polyA tail and their 39 ends are

processed by a variety of proteins including Stem Loop Binding

Protein [33]. Of the 43 histone transcripts with an expression level

.100 RPM in total RNA from HL60 cells, all are downregulated

by t-Ret treatment, by an average 2.26. As expected due to the

lack of polyA tail, only one gene shows an expression level

.100 RPM in the polyA and DGE samples and there are no

consistent expression changes among the entire set of histones in

those samples. SLBP is also downregulated 2.96 with t-Ret

treatment in total RNA and 1.96each in polyA or DGE samples.

Thus, these expression changes, which are similar to other

conditions in which DNA replication in cells ceases [34], are

entirely missed when only the polyA fraction is examined.

Similarly, the non-coding RNAs NR_002955, NR_002970, and

NR_002977 are all found at less than 2 RPM in both polyA

samples but are present with .20 RPM in both untreated

RiboMinus samples and are increased at least an additional 56
by t-Ret treatment.

Genomic Bin analysis
Because of the limitations imposed by incomplete annotation of

the transcriptome and oversampling of longer transcripts, we have

explored other methods for analyzing expression. By examining

bins of uniform size across the whole genome, it is possible to

eliminate both the effect of transcript length and the issue of

collapsing a complex set of overlapping and poorly characterized

transcripts into a master list. As an example, we compared K562

and liver RNA samples (Figure 5). The genomic sequence was split

into 100 bp bins and the number of reads in each bin counted.

The K562/liver ratio of reads was calculated for each bin that had

at least 0.95 RPM (corresponding to at least 3 reads prior to the

normalization in the sample with the smallest number of reads,

liver). 69,890 exonic, 12,929 intronic and 9,438 intergenic bins

were identified corresponding to transcripts expressed .36higher

in K562. For liver RNA, 36,679 exonic, 26,570 intronic and

18,464 intergenic bins were .36 more highly expressed. The

increased number of more highly expressed intronic and

intergenic bins in liver occurred despite the fact that the liver

sample had a lower fraction of non-exonic reads than K562 and

suggests that non-exonic reads tend to be more clustered in liver

and more dispersed in K562.

Discussion

Measurement of RNA expression levels has been critical for

understanding many pathways and biological systems. Up until

recently, it has only been possible to examine a small number of

transcripts over a wide range of expression levels using qPCR or a

large number of transcripts over a narrower range of expression

levels using microarrays. With the advent of RNA Seq and DGE

technology, it is now possible to measure both a wider dynamic

range of expression and in an unbiased manner at a genome-wide

scale, a combination unachievable with any other technology.

With the exquisite sensitivity and precision now made possible by

next generation sequencing technologies, choice of sequencing

platform, sample preparation methods, and the nature of the

source RNA are increasingly important in setting the overall

precision and reproducibility of the measurements allowed by this

technique. Thus, these choices can significantly influence the

results obtained.

Measurement of expression levels for transcripts having a high

number of reads is inherently more precise than measuring

transcripts with fewer reads. However, when using random

hexamer priming for generating cDNA, the number of reads

arising from a given transcript depends not only on the number of

such transcripts in a cell but also on its length because longer

RNAs have more opportunities for priming (and hence more

reads). Thus, the absolute number of reads is frequently further

adjusted to Reads per thousand (K) nucleotides Per Million reads

(RKPM). Unfortunately, this adjustment eliminates the simple

relation between read count and precision. Furthermore, any

length normalization is imperfect because so many annotated loci

have multiple transcripts of different lengths. Length normaliza-

tion is intended to fix the differences in the number of hexamer

priming sites, but this is not an ideal surrogate as RNA secondary

structure and GC content also play major roles in priming

efficiency [6].

Furthermore, attempting to correct RNA Seq data for length

increases the correlations among all pairs of datasets, not just

those that should be dependent on length. As discussed in Text

S1, normalization of data using randomized transcript lengths

rather than real lengths also results in an increased correlation

relative to unnormalized data (Figure S6), demonstrating the

presence of a mathematical artifact in this approach. While there

are ways to reduce this artificial induction of correlation caused

by length ‘‘correction’’, they do not take into account whether

Protocol Dependence of Gene Expression Measurement
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there may actually be a biological basis for a correlation between

length and expression. To avoid the issue of inducing false

correlations, we have used RPM rather than RPKM except for

spike analysis.

One method for avoiding overcounting of long transcripts is the

use of a tagging approach in which only a single read arises from

each transcript. This eliminates many of the counting issues

introduced by multiple tag approaches but reduces the evenness of

Figure 4. Length dependence of differential expression. Transcripts were divided into bins of 400 in order of increasing length for all
transcripts. Four separate channels each of liver and K562 polyA for RNA Seq (A) and two separate channels for DGE (B) were averaged and all
transcripts with greater than 5 RPM in either liver or K562 total RNA were analyzed for differential expression. In each set, two-sided t-tests were
performed and the resulting differences examined for statistical significance. With both RNA Seq and DGE, the individual significance results were
corrected for multiple testing by dividing the raw significance by the number of transcripts in the analysis. The number of transcripts in each bin that
was differentially expressed was then used to calculate per cent differential expression. This value is lower for DGE than for RNA Seq due to the lower
number of channels analyzed. Additionally, the median expression level for all transcripts in each bin was calculated and plotted in RPM.
doi:10.1371/journal.pone.0019287.g004
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Figure 5. Analysis of expression using genomic bins. Three different genomic regions (A, B, C) are compared for expression with RiboMinus
depleted RNA from liver and K562 samples. The vertical bars of varying heights show the expression level in each bin and the constant height bars
designate those bins which are over-expressed at least 36 in either sample. Known annotated genes are labeled. In C, there is a 550 kb region with
no annotated genes which is highly expressed in K562 but not liver and corresponds to a very long intergenic region (vlinc) on chromosome 4 [28].
The corresponding chromosomes and the coordinates of the regions (hg18 version of the genome) are shown.
doi:10.1371/journal.pone.0019287.g005
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coverage. The DGE protocol generates a single read predomi-

nantly from the 59 end of the transcript via selective priming from

the 39 end [11], providing a direct indication of transcription

initiation. Even though DGE reads arise from polyadenylated

RNA within the total RNA starting material, DGE detects more

genes than found with standard polyA RNA preparations (Table

4). Thus, the choice of DGE versus RNA Seq will depend on

whether a researcher is more interested in overall gene expression

or even coverage. Other tagging approaches such as SAGE and

CAGE would have similar benefits for counting and minimizing

rRNA reads without employing a separate fractionation step

[13,15].

RNA and cDNA fragmentation are frequently used to improve

evenness of coverage across the length of transcripts so splice

junctions and SNPs can be more efficiently detected. However,

this improved coverage comes at the expense of reduced coverage

of short RNA species. Short RNA species are produced from

many locations [35], so the importance of more even coverage of

exons must be weighed relative to the the cost of missing other

RNAs. Comparing fragmented and unfragmented samples can be

done but it must be with the realization that expression levels for

short transcripts will be affected. Similarly, efforts to improve the

precision of mRNA measurements by selecting the polyA fraction

come at the expense of losing 25% of the annotated transcripts

(Table 4) and far more unannotated transcripts [28]. Some

transcripts can also yield highly variable results because they are

differentially removed by polyA selection.

Total RNA and rRNA-depleted RNA have significantly more

reads mapping to unannotated regions of the genome than does

polyA RNA, suggesting they should be used as the source of RNA

in transcriptome profiling if a comprehensive survey is desired.

While rRNA-depleted samples still contain a significant number of

rRNA reads, the fraction corresponding to non-rRNA, non-

mitochondrial reads increases by several fold and allows sufficient

precision to make differential expression experiments practical for

most transcripts. Furthermore, we have observed that the use of a

larger number of probes (30 versus 8) or other commercial kits

such as RiboZero for rRNA removal significantly improves

depletion (data not shown) thus enhancing the number of

informative reads.

Annotated sequences provide genomic bounds to which one can

either map the sequence reads directly or within which one can

sum all the mapped reads to generate transcript counts.

Unannotated transcripts do not offer this opportunity. Computa-

tional methods have been developed to reconstruct transcript

structures based on overlapping reads [36]. However, such

methods were based on data derived from polyA+ RNA, which

has a much simpler expression profile in annotated regions

compared to that of total RNA and it remains to be seen whether

such methods would be useful for deconvoluting individual

transcripts found in regions such as those in Figures 5B and 5C.

An alternative method would be to split a genome into a set of

overlapping bins of variable sizes. Differentially-expressed tran-

scripts are detected based on the number of reads that fall within

each bin in each sample. Different bin-sizes would preferentially

detect different transcripts. For example, longer transcripts would

benefit from larger bins as opposed to exons that would be better

detected with shorter, exon-size bins. Additional experimentation

will be required to characterize the transcripts underlying each

bin. For example, high-throughput implementation of Rapid

Amplification of cDNA ends [37] and 59 and 3; ends as

determined by tagging approaches could be used to better

understand each genomic region.

There are also technical limitations that force particular choices

on experimenters. Most next-gen sequencing platforms require

amplification just prior to sequencing and, in many cases, also

amplify cDNA earlier in the protocol. These steps can introduce

bias based on GC-content and length. One recent protocol

eliminated cDNA amplification [20] but still required RNA

ligation as well as amplification for sequencing. Because the 59 end

of many RNAs is capped or otherwise modified, it is frequently not

amenable to ligation without additional enzymatic treatment and

thus these exons can drop out of the sequencing pool (data not

shown). Technical issues caused by a protocol or sequencing

platform may cancel out when transcripts are compared in a

differential expression study even when the absolute expression

levels are incorrect. However, the degree to which technical

artifacts are reproducible and thus offset each other may vary. For

example, one pair of libraries prepared and sequenced identically

with the standard Illumina protocol [20] was not well correlated

(R = 0.48 when calculated including only genes with at least one

sample with .5 RPM compared to the inflated R = 0.82 when

including non-expressed genes), unacceptably variable by most

standards while another pair of libraries prepared using a different

method was highly correlated (R.0.99). Thus, it cannot be

assumed that technical issues will always cancel out.

While it would be desirable to ignore the costs of any

experimental plan and make technical choices solely based on

optimizing the experimental outcome, the reality is that the cost of

sequencing and analysis means that a cost-blind approach is rarely

possible. Thus, each technical choice must be a trade-off between

cost and quality of results. For example, for a full view of RNA

expression, sequencing polyA RNA results in the loss of a

tremendous number of transcripts, but, use of total RNA can

yield 5–25-fold fewer non-ribosomal, non-mitochondrial reads

[28] which substantially reduces the precision of all expression

values and limits the ability to detect low-expressing RNAs. If cost

were no object, one could simply sequence more but the size of

most experiments makes this prohibitively expensive. Use of rRNA

depletion is a reasonable compromise to achieve lower cost while

retaining comprehensiveness of coverage. In our original experi-

ence, many samples generated using RiboMinus depletion contain

up to ,50% rRNA reads, the more recent rRNA depletion

procedures are much more efficient (see above) and thus more cost

effective. Most importantly, such methods allow provide a more

comprehensive view of the transcriptome at a cost similar to polyA

selection. Similarly, choosing fragmentation of RNA or cDNA for

detecting splice junctions or SNPs is more efficient but this limits

the ability to see short transcripts. This situation is more

complicated in amplification-based protocols because amplifica-

tion efficiency can be an issue for both short and long RNAs.

There is no perfect set of technical choices for transcriptome

analysis but, armed with the knowledge of the impact that various

choices have on the outcome, experimenters can choose the best

set of parameters to match their scientific needs and resources and

realize the potential limitations in their analysis. RNA Seq, DGE

and related methods provide valuable tools for biologists that allow

detailed characterization of both the level of expression of known

transcripts with unparalleled precision and the identification of

novel transcripts. However, these techniques are subject to

artifacts and biases, no matter what the sequencing platform or

method of RNA processing. Less sensitive or comprehensive

technologies have clear deficits with respect to what can be seen

and not seen. The large amount of data generated by sequencing-

based technologies can lull the experimenter into thinking one has

a complete and accurate picture of gene expression. This is clearly

not the case as technical choices affect the results. These choices
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and their associated caveats should be made knowingly so that

conclusions can be drawn in as biologically-relevant a manner as

possible while understanding the limitations of those conclusions.

Materials and Methods

RNA
Total RNA was obtained from commercial sources from the

following cell lines and tissues: K562 (Ambion), normal liver and

normal brain (Clontech), and HL60 (ATCC; CCL-240). The

HL60 RNA was extracted from cells grown under 2 different

conditions (cell treatment and RNA extraction by MIR Preclinical

Services): 1. untreated, 2. treated with retinoic acid (RA) to induce

differentiation (0.1%DMSO+1 mM RA for 5 days).

Before further fractionation, total RNA was treated with DNase

I as follows: 50 mg of total RNA was mixed with 10 ml of 106
DNase I buffer (Roche), 2 ml of RNaseOut (Invitrogen) and 8 ml of

recombinant DNase I (10 U/ml, Roche) and incubated for

45 minutes at 37uC. The RNA was then purified using the

RNeasy MinElute kit (Invitrogen).

The DNase I-treated total RNA was either unfractionated (total

RNA) or fractionated using one of the following methods: 1.

Depleted of ribosomal RNA (rRNA) using the RiboMinus kit

(Invitrogen) 2. polyA fraction was selected using a magnetic bead-

based purification kit (Dynabeads mRNA purification kit, Invitro-

gen) or, 3. polyA fraction was selected using the oligo-dT cellulose

method (Micro Poly(A)Purist Kit, Ambion). Some RNA samples

were fragmented by heating at 95 C for 10 min prior to cDNA

synthesis.

Preparation of RNA for sequencing
100–400 ng of DNase I -treated RNA, except where noted, was

mixed with the following reagents from the SuperScript III kit

(Invitrogen). First 10 ml of 50 ng/ml Random Hexamers and 2 ml

of 10 mM dNTPs were added in the total volume of 25 ml. When

employing selected primers, the same conditions were used. The

mixture was then placed in a thermocycler and heat denatured at

65uC for 5 min followed by rapid cooling on ice. Next, 5 ml of 106
cDNA synthesis buffer, 5 ml of 0.1 M DTT and 10 ml of 25 mM

MgCl2 were added. The samples were returned to the thermo-

cycler and allowed to incubate at 15uC for 20 min. Then, 2.5 ml of

RNaseOut and 2.5 ml of SuperScript III reverse transcriptase were

added and the samples were incubated at 25uC for 10 min, 42uC
for 40 min, 55uC for 50 min and 70uC for 10 min.

After reverse transcription, RNA was removed by adding 1 ml of

RNaseH (Invitrogen) and 1 ml of RNase If (New England BioLabs)

to each sample and incubating at 37uC for 30 min. The cDNA

was then purified by two rounds of purification over Performa

columns (EdgeBio) and quantified using a NanoDrop spectropho-

tometer.

Next, a 39 poly-A tail was added to the cDNA samples. cDNA

(100 ng) was mixed with a control oligo to monitor tail length and

water in a total volume of 33.5 ml. The mixture was denatured at

95uC for 5 min followed by rapid cooling on ice. 5 ml of 2.5 mM

CoCl2, 5 ml of 106 terminal transferase (TdT) buffer (New

England BioLabs), 5 ml of 50 mM dATP and 1.5 ml of TdT (20 U/

ml, New England BioLabs) was then added and the samples were

incubated at 42uC for 1 hr, and at 70uC for 10 min.

The 39 ends of the polyA-tailed cDNA were then blocked with

biotin-ddATP. The sample was denatured at 95uC for 5 min

followed by rapid cooling on ice. 0.3 ml of 1 mM biotin-ddATP

(Perkin Elmer) and 1.5 ml of TdT were added followed by

incubation at 37uC for 45 min and 70uC for 10 min.

The control oligo was removed by digestion with the USER

enzyme (New England BioLabs). 1 ml of the USER enzyme (1 U)

was added to the sample and incubate at 37uC for 30 min.

The sample was then purified using AMPure beads (Agencourt)

by bringing the volume up to 60 ml with water and adding 72 ml of

the AMPure beads followed by incubation at room temperature

for 30 min with agitation. The beads were then captured on a

magnetic stand and washed twice with 70% ethanol. The beads

were then allowed to air dry for 5–7 min, resuspended in 20 ml of

water and left open for 30 min on the magnet. The eluate was

collected, the beads were resuspended again in 20 ml of water and

left for 5 min on the magnet. The eluate was collected again and

combined with the first eluate.

Typically, the samples were hybridized to the HeliScope flow

cell at a loading concentration of 100–350 pM.

Digital Gene Expression was performed as described [11].

Supporting Information

Figure S1 Varying methods of polyA selection. polyA

selection of liver RNA was carried out as described in Materials

and Methods using either beads or cellulose. Expression levels for

once-selected RNA are compared for beads and cellulose (A).

Additionally, a fraction of the polyA RNA selected once with

cellulose was selected again with cellulose to generate highly

selected polyA RNA. The expression differences between once

and twice selected RNA are shown (B).

(TIF)

Figure S2 Artifactual correlations induced by length
corrections. Four different liver RNA samples were compared

pair-wise for correlations with varying methods of correcting for

transcript length.

(TIF)

Figure S3 Selected versus random hexamer priming in
HL60 total RNA. cDNA was synthesized from HL60 Total

RNA using either random hexamers or hexamers selected to avoid

cDNA synthesis from ribosomal RNA. Expression levels for

transcripts with more than 5 RPM in either sample are shown on

a log-log plot.

(TIF)

Figure S4 Fragmented versus unfragmented liver
polyA. polyA RNA was prepared from liver. Prior to cDNA

synthesis, RNA was fragmented by heating to 95u in MgCl2. RNA

was then prepared identically and sequenced. RPM for fragment-

ed and unfragmented RNA is shown on a log-log plot.

(TIF)

Figure S5 Ratio of expression for unfragmented/frag-
mented liver polyA RNA. Liver RNA was fragmented after

polyA selection as described in Figure S1. The ratio of expression

was determined for all transcripts with greater than 50 RPM in

either sample. Transcripts were then binned based on the UCSC

median transcript length and average and median ratios of

expression determined for each bin.

(TIF)

Figure S6 Spike-in expression. Spike-in RNAs were provid-

ed by Dr. Brian Willi in Dr. Barbara Wold’s laboratory. These

were added to a liver RNA sample and prepared as described

above. Because the absolute number of molecules in the sample

was known, the counts were adjusted for the known lengths and

then plotted versus the known spike-in concentration. The number

of transcripts per nanoliter of spike is shown on the horizontal axis

and RPKM on the vertical axis. The single point below the
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diagonal is AGP which is only 325 nt long and represented by 3

reads and thus the least precise measurement among the spiked

RNAs, reinforcing the issues with converting RPM to RPKM.

Although two transcripts have lower RPKM than AGP, they are,

in fact represented by more reads (19 and 7, respectively) because

they are much longer (9786 and 1451 nt).

(TIF)

Table S1 Sequencing data summary. The sequence data

channels used in the analyses and various figures and tables are

listed with the machine used for sequencing, run date, and channel

number. The figures in which each channel are included on the X

or Y axis are noted as such or, if included in some other fashion,

by ‘‘Yes’’.

(XLS)

Text S1 Additional details on how sequence reads were aligned

and counted, how normalization and correlations of data were

carried out, and how spikes and expression differences were

analyzed is provided.

(DOC)
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