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Abstract

Background: DNA-based vaccines have been safe but weakly immunogenic in humans to date.

Methods and Findings: We sought to determine the safety, tolerability, and immunogenicity of ADVAX, a multigenic HIV-1
DNA vaccine candidate, injected intramuscularly by in vivo electroporation (EP) in a Phase-1, double-blind, randomized
placebo-controlled trial in healthy volunteers. Eight volunteers each received 0.2 mg, 1 mg, or 4 mg ADVAX or saline
placebo via EP, or 4 mg ADVAX via standard intramuscular injection at weeks 0 and 8. A third vaccination was administered
to eleven volunteers at week 36. EP was safe, well-tolerated and considered acceptable for a prophylactic vaccine. EP
delivery of ADVAX increased the magnitude of HIV-1-specific cell mediated immunity by up to 70-fold over IM injection, as
measured by gamma interferon ELISpot. The number of antigens to which the response was detected improved with EP
and increasing dosage. Intracellular cytokine staining analysis of ELISpot responders revealed both CD4+ and CD8+ T cell
responses, with co-secretion of multiple cytokines.

Conclusions: This is the first demonstration in healthy volunteers that EP is safe, tolerable, and effective in improving the
magnitude, breadth and durability of cellular immune responses to a DNA vaccine candidate.
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Introduction

In 1993, Ulmer et al. first described the ability of naked plasmid

DNA encoding an influenza protein to induce a protective immune

response in mice [1], likely through transfection of myocytes and

cross-presentation to antigen-presenting cells (APCs), as well as

direct uptake of apoptotic cells by APCs [2]. Since then, DNA

vaccines have been utilized in a variety of experimental clinical

settings including candidate vaccines against cancer, malaria,

hepatitis B, and HIV-1 [3–7]. Unfortunately, the robust cellular

and humoral immunogenicity elicited by standard intramuscular

injection of DNA vaccines in small animals has not translated

to humans, as stand alone DNA vaccines have been weakly

immunogenic in clinical trials. Although a few DNA vaccines have

been licensed for use in animals, there are currently no DNA

vaccines licensed for human use [8]. Consequently, the focus of

many DNA vaccine strategies has shifted to their ability to ‘‘prime’’

the immune response before boosting with a recombinant live viral

vector, such as adenovirus or modified vaccinia Ankara (MVA)

[9–12], or with protein [13].

DNA vaccines offer several advantages over vaccines based on

recombinant live viral vectors. Subjects may have pre-existing
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immunity to the viral vector itself, as in the case with adenovirus

serotype 5-based vaccines, thereby limiting their effectiveness

[14,15]. Anti-vector immunity also develops rapidly after vacci-

nation with recombinant viral vectors, effectively limiting the

number administrations [16]. DNA vaccines are not limited by

such constraints, and can be safely administered repeatedly to

humans [17]. In addition, DNA vaccines can be rapidly produced

using relatively simple, low-cost manufacturing procedures and

exhibit a favorable thermostability profile. Such features would

confer obvious advantages in large-scale global vaccination

campaigns.

One major factor thought to contribute to the weak immuno-

genicity of DNA vaccines in humans is the relatively poor up-

take of the vaccine by myocytes and other cells when injected

intramuscularly (IM) [18]. In vivo electroporation (EP) is a

technique that significantly increases the immunogenicity of

DNA vaccines via co-administration of small, localized electrical

fields to increase the transfection efficiency of the injected DNA

[19,20] and the recruitment of immune cells such as dendritic

cells, T and B lymphocytes to the site of immunization [21,22].

Animal studies in animals have shown that in vivo EP increases the

immunogenicity of DNA vaccines encoding a number of antigens

[23–32]. In humans, in vivo EP has been successful at delivering

chemotherapeutic agents directly to tumors [33]. More recently,

DNA vaccines encoding tumor antigens have been administered to

cancer patients by EP as potential immunotherapy [34,35].

ADVAX is a clade C/B’ DNA vaccine candidate against HIV-1

[36]. When previously administered IM as a three vaccination

regimen without EP to healthy volunteers at three different dosage

levels, it proved to be safe but weakly immunogenic, inducing low-

level, transient cellular responses, but no humoral response [37].

In this study, we sought to determine whether intramuscular

administration of ADVAX via in vivo EP would be safe, tolerable

and acceptable in healthy volunteers, and whether EP delivery

would enhance immunogenicity compared to standard IM

injection.

Methods

Study Setting
The study was conducted at the Rockefeller University Hospital

in New York City, USA.

Participants
Healthy men and women aged 18–60 years were eligible for

participation if they were not at high risk for HIV-1, as defined by

having none of the following activities in the six months prior to

enrollment: unprotected vaginal or anal sex with a known HIV-1-

infected person or casual partner, injection drug use, acquisition

of a sexually transmitted disease, or sex work for money or drugs.

Participants agreed to safe sexual practices and to effective

contraception to avoid pregnancy throughout the duration of

the 14-month study. Participants had to demonstrate a clear un-

derstanding of the possibility of HIV-1 seropositivity due to

vaccine-induced antibodies. Exclusion criteria included chronic

medical conditions, clinically significant abnormal laboratory

parameters, infection with Hepatitis B or C virus, recent receipt

of a vaccine or blood transfusion, any implanted electronic sti-

mulation device, or deltoid skin fold thickness of greater than

40 mm.

Ethics Statement
The study was approved by the Institutional Review Board of

the Rockefeller University Hospital. All participants in this study

provided written informed consent after appropriate review,

discussion and counseling by the clinical study team. The trial

was conducted in partnership with Ichor Medical Systems, Inc.

and the International AIDS Vaccine Initiative (IAVI), and

sponsored by the Bill and Melinda Gates Foundation Collabora-

tion for AIDS Vaccine Discovery. The study was conducted in

compliance with International Conference on Harmonisation -

Good Clinical Practice (ICH-GCP) guidelines.

Interventions
Candidate Vaccine. The ADVAX vaccine candidate is a 1:1

mixture of two DNA plasmids containing clade C/B’, codon-

optimized HIV-1 gene sequences. The first plasmid expresses Env

under the CMV promoter and Gag under the human elongation

factor 1a (PhEF1a) promoter, while the second expresses Pol

under the CMV promoter and a Nef-Tat fusion under the

PhEF1a promoter, as previously described [36]. A Phase-1 clinical

trial of ADVAX injected IM has been reported previously [37].

Electroporation Procedure. The disposable electroporation

cartridge was loaded with placebo or ADVAX by the Rockefeller

University Hospital Pharmacy and then adjusted to one of three

depth settings, corresponding to pre-defined ranges in skin fold

thickness. The cartridge was loaded into the EP device and applied

to the deltoid muscle. Intramuscular administration of ADVAX or

placebo was followed immediately by the application of electrical

stimulation (TriGridTM Delivery System, Ichor Medical Systems,

San Diego, CA). The spacing of the TriGridTM electrode array

was 6 mm in a diamond-shaped configuration, and the electri-

cal field was applied at an amplitude of 250 V/cm of electrode

spacing for a 40 msec total duration applied as three pulses over a

400 msec interval, resulting in brief deltoid muscle contractions.

All electroporation procedures were performed by a single, trained

physician.

Study Design. The study design is summarized in Table 1.

This study was randomized, dose-escalating, and double blind

with respect to active vaccine candidate or saline placebo, but not

with respect to dose group or mode of administration (IM versus

EP). The randomization schedule was prepared by the Rockefeller

University Hospital Pharmacy, using a web-based program at

randomization.com. Each of the 3 cohorts consisted of 2 or 3

subjects randomized to receive 4 mg ADVAX IM (HD-IM), 2 or

3 subjects randomized to receive placebo EP, and 8 subjects

receiving ADVAX EP. The dose of ADVAX delivered by EP

varied with each cohort in a dose-escalating design: 0.2 mg

(LD-EP), 1 mg (MD-EP) or 4 mg (HD-EP). Dosage levels were

based on previously tested concentrations of ADVAX [37], with

the intent to determine whether EP delivery of ADVAX provided

any dose-sparing effect as measured by immunogenicity. In total,

40 subjects were enrolled. Blinded safety and tolerability in each

cohort were evaluated by an independent Data and Safety

Monitoring Board in a blinded manner prior to initiation of

Table 1. Study Design.

Placebo
(Saline/EP)

ADVAX IM
(4.0 mg) ADVAX EP

Group 1 2 2 8 (0.2 mg)

Group 2 3 3 8 (1.0 mg)

Group 3 3 3 8 (4.0 mg)

Study Total 8 8 24

doi:10.1371/journal.pone.0019252.t001
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enrollment of the next dosage cohort. After all volunteers had

received both scheduled vaccinations, the trial was amended to

include a third vaccination at week 36 in volunteers randomized

to receive EP in the high-dose group cohort (n = 8 ADVAX, n = 3

placebo), in order to determine whether a third vaccination at the

highest dose could further enhance immunogenicity. The protocol

for this trial and supporting CONSORT checklist are available as

supporting information; see Checklist S1 and Protocol S1.

Objectives
The primary objective was to evaluate the safety and tolerability

of ADVAX delivered intramuscularly via in vivo EP at one of three

dose levels versus ADVAX delivered by standard intramuscular

injection and placebo delivered via EP in healthy HIV-uninfected

adults. The secondary objective was to evaluate the humoral and

cellular immunogenicity of ADVAX-EP versus ADVAX-IM.

Outcomes
Vaccine Reactogenicity, Safety, Tolerability, and Acce-

ptability. Primary endpoints were designed to evaluate the

safety of ADVAX in human volunteers. Local reactogeni-

city (including pain, tenderness, erythema, edema, skin damage,

induration, and formation of crust, scab or scar) and systemic

reactogenicity (including fever, chills, headache, nausea, vomiting,

malaise, myalgia, arthralgia, and rash) were assessed within 30–45

minutes after each vaccination in the clinic, by telephone

three days following vaccination, and by history and physical

examination one week after vaccination. Subjects were moni-

tored for adverse events, general health and clinical laboratory

parameters at each study visit. Subjects randomized to receive

ADVAX or placebo via EP were asked to complete a ques-

tionnaire rating their pain on a five-point scale at three time points

during and after the EP procedure, as well as the perceived

acceptability of the procedure for use in the setting of preventive

immunization 30–45 minutes after each vaccination.

Immunological Analyses. Secondary endpoints evaluated

the cellular and humoral immunogenicity of ADVAX at 0, 1, 2,

and 4 weeks after each vaccination as well as at weeks 16, 24, 36,

48, and 56. Cellular immunogenicity was assessed by IFNc
ELISpot on frozen peripheral blood mononuclear cells (PBMCs)

stimulated by peptides matched to the Clade C/B’ sequences

encoded in the vaccine as previously described [37].

For each pool, the ELISpot value was defined as the mean

replicate (maximum 4) count minus the mean background count.

Four criteria had to be fulfilled for an ELISpot value to be

considered positive: 1) for each peptide pool, a single value had to

be greater than the maximum of all pre-vaccination and all

placebo values for that pool, and .38 Spot Forming Units (SFU)/

106 cells; 2) the mean count had to be .4 times the mean

background SFU; 3) the mean background had to be ,55 SFU/

106 cells; and 4) the coefficient of variation had to be #70% across

the replicate wells.

Figure 1. Participant Flow Diagram.
doi:10.1371/journal.pone.0019252.g001
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ELISpot-positive samples at the peak responding time point in

the high-dose EP group, along with the respective baseline

samples, were tested for phenotype, cytokine secretion, and

antigen-specific proliferation using polychromatic flow cytometry.

Cryopreserved PBMCs were co-incubated with 2 mg peptide pools

or 1 mg SEB (Sigma-Aldrich, St. Louis, MO), CD107 PECy5

(Becton Dickinson, San Jose, CA), Brefeldin A (Sigma-Aldrich,

Poole Dorset, UK) and BD Golgistop (Becton Dickinson, San Jose,

CA) for 6 hours at 37uC. Cells were stained with 50 mL LIVE/

DEADH Fixable Blue Dead Cell Stain Kit (Invitrogen, Eugene,

OR), anti-CD4 QD605, anti-CD8 pacific orange (Invitrogen,

Paisley, UK), anti-CD27 FITC (Becton Dickinson, San Jose, CA),

and anti-CD45RO (Beckman Coulter, High Wycombe, UK), and

stained intracellularly with anti-CD3 QD655 (Invitrogen, Paisley,

UK), anti-IFN-c PE Cy7, anti-MIP-1b PE, anti-TNF-a A700 and

anti-IL-2 APC (Becton Dickinson, San Jose, CA). At least 500,000

events were acquired on a custom-built BD LSR II cytometer.

Data were analyzed using FlowJo (Treestar), PESTLE and SPICE

(courtesy of Mario Roederer, Vaccine Research Center) software.

A response was considered positive if it fulfilled the following three

criteria: 1) the percentage of cytokine-producing cells after antigen

stimulation was at least three times greater than the percentage of

cytokine-producing cells in the mock pool at the same post-

vaccination time point, 2) the response to the same antigen was

negative at pre-vaccination baseline, and 3) the absolute response

was $0.05%.

Humoral immunogenicity. Binding antibodies to clade C

gp120 (NIH AIDS Reagent Program) were assessed by ELISA at

pre-vaccination baseline and two weeks after each vaccination, as

previously described [37]. In parallel, anti-gp160, anti-p24, or

anti-gp36 Group M/O antibodies were assessed using the

Genetic SystemsTM HIV-1| HIV-2 PLUS O EIA Kit (Bio-Rad

Laboratories, Hercules, CA), at the New York State Department

of Health. Samples that were positive were further evaluated by

the Genetic SystemsTM HIV-1 Western Blot Kit (Bio-Rad Labo-

ratories, Hercules, CA) and for viral load quantification using the

Roche Amplicor HIV-1 Monitor v1.5 RNA-PCR Kit (Roche

Diagnostic Systems, Indianapolis, IN) to differentiate a response to

vaccine from incident HIV-1 infection. Results were monitored by

an independent physician to maintain blinding of the clinical study

team.

Statistical Methods
Data from all participants, including those lost to follow up and

those not completing the vaccination series, were included in the

analyses, as per the participant flow diagram in Figure 1. Fisher’s

exact test was used to test differences in the rate of local and

systemic reactogenicity events between groups, and the Cochran-

Armitage test was used to investigate trends in event rates with

increasing ADVAX EP dosage. Differences in magnitude of

ELISpot responses between each EP dose group and the IM group

were analyzed using the non-parametric Wilcoxon 2-sample test

(t approximation), with significance set at p,0.017 to allow for

three tests per antigen. All tests are 2-tailed.

Results

Recruitment and Participant Flow
Enrollment occurred from October 2007 through October

2008. As shown in Figure 1, 73 volunteers were screened for this

study, of which 40 were enrolled. The majority of the 33 screen

failures were due to abnormalities on screening laboratories or

urinalysis. All volunteers completed their vaccination schedule, but

three participants did not complete the trial for reasons unrelated

Table 2. Volunteer Demographics.

Method of Administration Electroporation IM Total

ADVAX Dose (mg) 0.2 1.0 4.0 Placebo 4.0

Number of Volunteers 8 8 8 8 8 40

Timing of Administration (week) 0, 8 0, 8 0, 8, 36* 0, 8, 36* 0, 8 N/A

Gender Male 6 3 3 2 7 21

Female 2 5 5 6 1 19

Ethnicity Race

Not Hispanic and Not Latino White 5 6 3 5 3 22

Black or African American 1 0 5 2 1 9

Multiracial 0 1 0 0 1 2

Total 6 7 8 7 5 33

Hispanic or Latino Race

White 1 1 0 0 2 4

Multiracial 1 0 0 0 0 1

Other/Unknown 0 0 0 1 1 2

Total 2 1 0 1 3 7

Age at enrollment (years) Mean 33.0 29.9 37.1 33.6 39.1 34.6

Range 18–59 21–53 24–52 19–52 21–58 18–59

Body Weight (kg) Mean 76.8 68.4 78.4 82.6 77.0 76.6

Range 58–100 52–85 46–115 53–120 50–99 46–120

*Only those volunteers in the high dose cohort (HD-EP, n = 8, and Placbeo-EP, n = 3) received a 3rd vaccination at Week 36.
doi:10.1371/journal.pone.0019252.t002
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to the vaccine or the study (lost to follow-up). Baseline

demographic and clinical characteristics for all trial participants

are summarized in Table 2.

Reactogenicity and Adverse Events
Overall, ADVAX delivered by standard IM injection or by EP was

safe and well-tolerated, although most volunteers in all dose groups

reported mild-moderate local pain and/or tenderness. The propor-

tion of volunteers with mild-moderate local pain and/or tenderness

as assessed by the clinical study team within 30–45 minutes of

vaccination differed significantly (p,.001) among the 5 dose groups,

being smaller in the HD-IM group (2/8) than in any of the EP groups

(6/8 EP-placebo and 8/8 each ADVAX EP group). There was no

significant difference in self-assessed local reactogenicity within 4 days

following the vaccination (p = 0.291). Most local reactions resolved

within one day; all resolved within 7 days. The maximum severity

of systemic reactogenicity events after any ADVAX or placebo

administration was mild when assessed within 30–45 minutes of

vaccination in clinic and moderate within 4 days following

vaccination when assessed by the volunteer. All systemic reactions

resolved within 2 days. Differences in systemic reactogenicity among

the 5 study groups were not statistically significant (clinic: p = 0.252,

self-assessment: p = 0.291).

Of the 139 non-serious adverse events, 123 (89%) were mild.

One volunteer, who was in the MD-EP group, and who received

saline placebo, experienced a serious adverse event (hospitalization

for coronary artery disease) 109 days after his second vaccination,

which was unrelated to study vaccine or procedure. None of the

moderate or severe adverse events were related to vaccination,

and none of the volunteers discontinued the study due to adverse

Figure 2. Tolerability and Acceptability of Electroporation. Volunteers randomized to receive ADVAX or placebo via EP completed a
questionnaire to rate the tolerability of the procedure on a 5 point pain scale at three different time points during and after EP (Panel A), and the
acceptability of the procedure for future vaccination (Panel B). Results represent a total of 75 responses from 32 volunteers.
doi:10.1371/journal.pone.0019252.g002
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events. The distribution of mild and moderate adverse events was

not significantly different among the 5 dose groups (p = 0.414,

Fisher’s exact 2-tailed test). Table S1 summarizes all adverse

events by System Organ Class (SOC). There were no differences

in clinical laboratory parameters among study groups or trends

within any study group over time. None of the volunteers deve-

loped anti-double-stranded DNA antibodies.

Tolerability and Acceptability of Electroporation
Figure 2 summarizes the tolerability (Panel A) and acceptability

(Panel B) of the electroporation procedure. The intensity of pain was

greatest immediately after electrical stimulation of the muscle, but

improved rapidly within 30 minutes post vaccination. For all 3

assessments, the proportions of volunteers reporting uncomfortable,

intense or severe discomfort were not significantly different among

the 4 EP dose groups. The level of tolerability was independent

of age, gender, body weight, skin fold thickness, vaccination in

dominant versus non-dominant arm, or sequence of vaccination.

The majority of participants indicated that they would undergo the

procedure for a vaccination to protect against either a life threatening

illness for which we have no alternative vaccine such as HIV-1 (97%),

or, to improve the protection achievable with existing vaccines

against a non-life threatening illness such as influenza (91%).

Cellular Immunogenicity
IFNc ELISpot results are summarized in Table 3. Positive IFNc

ELISpot responses after two vaccinations occurred in 0/8 (0%),

1/8 (13%), 5/8 (63%), and 6/8 (75%) volunteers in the HD-IM,

LD-EP, MD-EP and HD-EP groups, respectively. The response

rate in the HD-EP group increased to 7/8 (88%) after the third

vaccination. There were no positive responses to any peptide

pool among the placebo recipients, by definition. There was a

dose-dependent increase in the number of antigens to which

a response was detected.

As shown in Figure 3A, delivery of the same dose of ADVAX

via EP (HD-EP) resulted in a 70-fold increase in the mean IFNc
ELISpot response to Env over the HD-IM response at Week 10,

the time of peak cellular immune response after the second

vaccination. Responses to the Pol, Gag, and Nef-Tat antigens in

the HD-EP group increased by 22, 13, and 19 fold over the mean

HD-IM IFNc ELISpot, respectively. There was a clear dose

response in the fold increase to each antigen, as the MD-EP IFNc
ELISPOT responses to Env, Pol, Gag, and Nef-Tat increased by

40, 7, 3, and 5-fold over HD-IM responses, respectively. There

was no correlation between age of volunteer and magnitude of

IFNc ELISpot response within any of the groups.

Figure 3B depicts the sum of all mean IFNc ELISpot

background-subtracted counts for each antigen over time by dose

group. The magnitude of response increased in the electropora-

tion groups in a dose-dependent manner. The strongest IFNc
ELISPOT responses were to Env, and the weakest were to Gag.

Responses persisted in 1/8 volunteers in the MD-EP and 2/8

volunteers in the HD-EP group until the end of the trial (Week 56).

Figure 4 depicts all individual background-subtracted IFNc
ELISpot counts for each peptide pool at Week 10. One volunteer

in the HD-EP group missed the Week 10 visit, but completed all

Table 3. Summary of IFNc ELISpot Positive Responses.

Group EP Placebo IM High EP Low EP Mid EP High

ADVAX Dose 0 mg 4.0 mg 0.2 mg 1.0 mg 4.0 mg

Volunteers with Positive Responses 0/8 (0%) 0/8 (0%) 1/8 (13%) 5/8 (63%) 7/8 (88%)

Env (SFU/million) n 0 0 1 5 6

mean n/a n/a 193 224 273

median n/a n/a 193 201 275

25–75%ile n/a n/a n/a 176–229 186–336

range n/a n/a 193 161–440 150–595

Pol
(SFU/million)

n 0 0 0 2 5

mean n/a n/a n/a 56 84

median n/a n/a n/a 56 78

25–75%ile n/a n/a n/a 46–66 59–115

range n/a n/a n/a 39–74 44–158

Gag
(SFU/million)

n 0 0 0 0 2

mean n/a n/a n/a n/a 85

median n/a n/a n/a n/a 83

25–75%ile n/a n/a n/a n/a 68–95

range n/a n/a n/a n/a 48–133

Nef Tat
(SFU/million)

n 0 0 0 1 3

mean n/a n/a n/a 80 98

median n/a n/a n/a 80 96

25–75%ile n/a n/a n/a n/a 82–115

range n/a n/a n/a 80 75–128

doi:10.1371/journal.pone.0019252.t003
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subsequent study visits. For each antigen, the magnitude of

the background-subtracted count in the MD-EP and HD-EP

groups tended to be higher than in the HD-IM group, although

only statistically significant (p,.017) p-values are depicted on the

graph. The difference in background-subtracted SFU between the

LD-EP and HD-IM groups and between the Placebo-EP and

HD-IM groups was not statistically significant.

Phenotypic analyses of the HD-EP T-cell responses at the time

of peak IFNc ELISpot response after the third vaccination are

summarized in Figure S1. Seven of 8 volunteers mounted res-

ponses detectable by ICS, of which 4 formed CD3+ CD4+
responses alone, 2 formed both CD3+ CD4+ and CD3+ CD8+
responses, and one formed only a CD3+ CD8+ T cell response.

The majority of responses were to Env, although 5/7 (71%) were

to more than one antigen. Figure S1 B indicates the distribution of

IFNc, IL-2, MIP1b, and TNFa co-secretion in the CD3+ CD4+
and CD3+ CD8+ T cell compartments. The majority of res-

ponding cells in both the CD4+ and CD8+ compartments

expressed a CD45RO+, CD27+ phenotype.

Humoral Immunogenicity
Only one volunteer in the HD-IM group developed weak

binding antibodies to clade C gp120 at 1:50 serum dilution one

week following vaccination that was sustained until week 8, after

which time he was lost to follow up. All other responses in all

volunteers at all time points were negative. One volunteer in the

HD-EP group tested positive on HIV-1 ELISA at Week 56 with a

simultaneous indeterminate western blot expressing a single gp160

band. A follow up test eight weeks later was negative for HIV-1

ELISA, western blot, and RNA-PCR (undetectable at ,50

copies/mL).

Discussion

This is the first demonstration that in vivo EP delivery of a DNA

vaccine is safe, tolerable and acceptable to healthy volunteers. The

level of tolerability was independent of age, gender, body weight,

skin fold thickness, handedness, or sequence of vaccination,

implying that such a technique could be evaluated on a wider

population scale.

Table 3 and Figure 3 demonstrate that EP significantly im-

proves the cellular immune response rate, magnitude, duration, and

breadth of response to multiple antigens, consistent with previous

results demonstrating the improved effect of EP in animal models

and in humans with cancer [33–35]. Vaccination with the same

4 mg dose with and without EP increased the cellular immune

Figure 3. Cellular Immune Response. Panel A depicts the fold increase over the HD-IM response in the mean of all IFNc ELISpot responses to
each antigen at Week 10, coinciding with the peak cellular immune response. Panel B depicts the sum of all mean ELISpot counts for each peptide
pool at each study time point for all ADVAX dose groups, color coded by antigen. SFU = spot forming units.
doi:10.1371/journal.pone.0019252.g003

Figure 4. Individual IFNc ELISpot Responses. All individual background-subtracted IFNc ELISpot counts to each antigen at study Week 10, the
peak response after the second administration. Horizontal lines indicate median values for each group. P-values indicate pair-wise comparisons of the
three EP responses with HD-IM responses using the non-parametric Wilcoxon 2-sample test (t approximation). Significance is set at p,0.017, since
there are 3 tests per antigen. Significant p values are depicted. SFU = spot forming units.
doi:10.1371/journal.pone.0019252.g004
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response rate from 0 to 88%. As indicated in Figure 3A, the

predominant responses were directed against Env, which may be

due to differences in expression of the various genes in ADVAX, or

due to a natural immunodominance. HIV-1 Env has been shown to

induce preferentially higher immune responses in humans vacci-

nated with a multigenic viral-vectored vaccine [38].

The average magnitude of the anti-Env response in the HD-EP

recipients was 70-fold higher than the mean response to the same

antigen at the same dose delivered by standard IM injection (HD-

IM). There was also a 22, 13, and 19 fold increase in the mean IFNc
ELIspot response to Pol, Gag, and Nef-Tat, respectively, a

significant improvements over the 2–6 fold increases in cellular

immunity to DNA vaccines afforded by cytokine adjuvants such as

IL-12 and/or IL-15 in non-human primate studies [39]. EP also

provided a dose-sparing effect, as the 1 mg dose also improved the

immune response rate over the 4 mg IM vaccination. In addition, as

shown in Figure 3B, these responses were durable, persisting

through the end of the study, and broad, directed to multiple genes

expressed by the vaccine. It has been well-documented that immune

reponses to vaccines decrease with age [40]. It is therefore

encouraging that the magnitude of ELISPOT responses did not

wane with age, and were well-distributed among the volunteers,

aged 18–59.

Phenotyping of these responses by ICS demonstrated that this T

cell response tended to be a CD4+ T cell response, although a

balanced CD4/8 response could also be detected in 29% of

samples tested. The ability to elicit a strong CD4+ T cell response

is one characteristic of DNA vaccines, in comparison to some viral

vectors, which tend to elicit a predominantly CD8+ effector

response [41]. EP delivery also improved the quality of the T-cell

response, by inducing parallel secretion of IFNc, IL-2, TNFa, and

MIP1b in response to multiple antigens (Figure S1). These

qualities have been associated with long-term improved control of

HIV-1 infection and vaccine-induced protection from simian

immunodeficiency virus (SIV) in monkeys [42,43], although

correlates of protection required for an effective HIV-1 vaccine

remain unknown [44].

There is a wealth of data in animals demonstrating the ability of

EP to improve the magnitude, duration, and quality of the

humoral response to DNA vaccines [18–30], including prelimi-

nary reports in humans [35]. The low humoral responses in this

study were likely due to characteristics of ADVAX, rather than

ineffectiveness of the EP procedure, given the fact that ADVAX

was initially designed to prime cellular immune responses to a

matched modified Vaccinia Ankara (MVA)-based viral vaccine

[36], rather than elicit humoral immunogenicity. ADAVX did not

elicit a humoral response in humans after 3 IM vaccinations in a

previous Phase 1 clinical trial [37].

In addition to these immunological advantages, DNA vaccines

confer practical advantages for large scale global preventive vaccine

campaigns, including the ability for repeated vaccination, relatively

low cost and ease of manufacture, and favorable stability profile,

even at higher temperatures. This report demonstrates that stand

alone DNA vaccine regimens can elicit robust cellular immunoge-

nicity in a dose-dependent manner when delivered by in vivo EP. In

the future, this immunogenicity could be further enhanced by

improving DNA vector design, delivering DNA at higher

concentrations, with repeated administrations, and in conjunction

with adjuvants. EP delivery of DNA vaccines may also improve

priming before boosting with viral-vectored or protein vaccines. In

parallel, electroporation devices are being re-engineered to be

smaller and more portable. Thus, DNA-EP vaccine strategies may

prove to be a promising approach to the prevention and/or

treatment of multiple diseases, not limited to HIV-1.

Supporting Information

Figure S1 Phenotypic Analysis of Antigen-Specific T Cell
Responses. ELISpot responders from the high dose EP group

were characterized by intracellular cytokine staining (ICS) as

described in Methods. Panel A represents the distribution of CD3+
CD4+ and CD3+ CD8+ T cell responses. Panel B depicts the

polyfunctionality of the antigen-specific response in each T cell

compartment to all antigens, as assessed by co-secretion of IFNc,

IL-2, TNFa, and/or MIP1b.

(TIF)

Table S1 Summary of Adverse Events by MedDRA
System organ Class (SOC) and Dose Group. Number of

volunteers experiencing at least one adverse event in each SOC.

(DOC)

Protocol S1 Trial protocol.
(DOC)

Checklist S1 CONSORT checklist.
(DOCX)
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