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Abstract

Background: Normal urinary bladder function requires bidirectional molecular communication between urothelium,
detrusor smooth muscle and sensory neurons and one of the key mediators involved in this intercellular signaling is ATP.
Ectonucleotidases dephosphorylate nucleotides and thus regulate ligand exposure to P2X and P2Y purinergic receptors.
Little is known about the role of these enzymes in mammalian bladder despite substantial literature linking bladder diseases
to aberrant purinergic signaling. We therefore examined the expression and distribution of ectonucleotidases in the mouse
bladder since mice offer the advantage of straightforward genetic modification for future studies.

Principal Findings: RT-PCR demonstrated that eight members of the ectonucleoside triphosphate diphosphohydrolase
(NTPD) family, as well as 59-nucleotidase (NT5E) are expressed in mouse bladder. NTPD1, NTPD2, NTPD3, NTPD8 and NT5E
all catalyze extracellular nucleotide dephosphorylation and in concert achieve stepwise conversion of extracellular ATP to
adenosine. Immunofluorescent localization with confocal microscopy revealed NTPD1 in endothelium of blood vessels in
the lamina propria and in detrusor smooth muscle cells, while NTPD2 was expressed in cells localized to a region of the
lamina propria adjacent to detrusor and surrounding muscle bundles in the detrusor. NTPD3 was urothelial-specific,
occurring on membranes of intermediate and basal epithelial cells but did not appear to be present in umbrella cells.
Immunoblotting confirmed NTPD8 protein in bladder and immunofluorescence suggested a primary localization to the
urothelium. NT5E was present exclusively in detrusor smooth muscle in a pattern complementary with that of NTPD1
suggesting a mechanism for providing adenosine to P1 receptors on the surface of myocytes.

Conclusions: Ectonucleotidases exhibit highly cell-specific expression patterns in bladder and therefore likely act in a
coordinated manner to regulate ligand availability to purinergic receptors. This is the first study to determine the expression
and location of ectonucleotidases within the mammalian urinary bladder.
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Introduction

ATP is increasingly recognized as an important signaling

mediator in the urinary bladder and is secreted both by the

bladder epithelium or urothelium [1–3] and by neurons.

Urothelium releases ATP both lumenally into the urine space

and serosally. The mechanism underlying this release is not well

understood but kinetic studies have shown that ATP secretion is

markedly stimulated by stretch, indicating mechanically sensitive

signaling pathways in response to bladder filling [2,4]. ATP

released lumenally from umbrella cells is thought to play a role in

autocrine signaling while release from the serosal surfaces permits

interaction with stromal elements including afferent neurons and

possibly the detrusor as well [2,5]. ATP is also released along with

norepinephrine by postganglionic parasympathetic nerves that

innervate the bladder smooth muscle resulting in a biphasic

mechanical response that consists of an initial rapid twitch,

followed by a sustained contraction [6].

Upon release, ATP can bind to purinergic receptors of the P2X

and P2Y families and initiate ion transport or G-protein-coupled

receptor signaling, respectively. P2X receptors, P2X1, P2X2,

P2X3, P2X5, P2X6 and P2X7 are differentially expressed

throughout the bladder [7] and loss of P2X3 from afferent nerve

fibers in a knockout mouse was shown to alter voiding behavior by

shifting the micturition reflex to greater fill volumes [8]. P2Y2 and

P2Y4 also appear to be expressed [9] indicating a diverse

repertoire of purinergic responsive receptors throughout all tissue

elements of the bladder. Furthermore, abnormalities in ATP

release and in purinergic receptor expression have been noted in

numerous studies of human bladder disease as well as in animal

models of bladder pathology. These include interstitial cystitis [10–

12], urinary urgency and incontinence [13], bladder inflammation

[14], spinal cord injury-induced bladder dysfunction [15], detrusor

overactivity [16–17] and outlet obstruction [18–20].

While much research has focused on P1 and P2 receptors,

purinergic signaling is also critically regulated by ectonucleotidases,
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which degrade ATP and UTP to their respective nucleosides. These

enzymes act to limit, both temporally and quantitatively, the

exposure of P2 receptors to their ligands [21]. They also preclude

desensitization responses resulting from overstimulation. Further-

more, stepwise conversion creates potent metabolites, like ADP and

adenosine, which may then continue to act through other receptors

with different affinities and locations [22]. There are four main

families of ectonucleotidases; NTPDs (ectonucleoside triphosphate

diphosphohydrolases), NPPs (nucleotide pyrophosphatase/phos-

phodiesterases), alkaline phosphatases and ecto-59-nucleotidase

(NT5E). The families differ primarily in their substrate specificities,

with NTPDs highly specific for ATP/UTP/ADP/UDP [21] while

NPPs [23–24] catalyze phosphohydrolysis on a broader range of

substrates including lysophospholipids and choline phosphate esters

[22,25–27]. Alkaline phosphatases are even more promiscuous with

broad substrate specificities that overlap with those of the NPPs.

Dysregulation of nucleotide metabolism and alterations to the

activities of ectonucleotidases has been shown convincingly in many

pathological conditions including diabetes, hypertension, acute

stroke, chronic renal failure, cancer, myocardial infarction,

leukemia and epilepsy [21,28–29].

The presence of ectonucleotidases in bladder has not been

studied systematically; however their existence was inferred, since

the half-life of ATP is very different depending on which side of

the urothelium it is released from. In Ussing chamber studies,

Lewis and Lewis showed that both constitutive and stretch-

induced ATP release from the luminal surface of rabbit bladders

increase ATP concentration in a linear fashion with continuous

accumulation, whereas serosal ATP rises and then plateaus – the

kinetics of which are consistent with its initial release and then

subsequent consumption [2].

Our long term goal is to develop an in-depth understanding of

the regulation of purinergic signaling in bladder and its

importance to normal and abnormal bladder function. Since

secreted nucleotides are potent stimulators which may exert both

autocrine and paracrine effects, our focus in these experiments was

to determine the expression and location of cell-surface ecto-

hydrolytic members of the NTPD family (NTPD1, -2, -3, and -8).

Furthermore, as this group is not capable of completing the final

phosphohydrolysis step which results in production of adenosine –

another important signaling molecule, we also characterized tissue

distribution of NT5E in bladder. Our findings suggest specific and

synergistic mechanisms for the control of nucleotide availability

throughout the stratified layers of the bladder.

Materials and Methods

Animals
Mice used in this study were C57BL/6J mice (19–21 g) from

Charles River Laboratories (Wilmington, MA). Mice were

euthanized by inhalation of 100% CO2. After euthanasia and

thoracotomy, the bladders were rapidly excised and processed as

described below. All animal studies were carried out with the

approval of the Beth Israel Deaconess Medical Center Institutional

Animal Care and Use Committee (Protocol #051-2009).

Antibodies and labeled probes used for
immunofluorescence (IF) and immunoblotting (IB)

Affinity-purified monoclonal rat anti-NTPD1 antibody (IF),

affinity-purified polyclonal sheep anti-NTPD2 antibody (IF/IB),

affinity-purified polyclonal sheep anti-NTPD3 antibody (IB) and

affinity-purified monoclonal rat anti-NT5E antibody (IB) were

purchased from R&D systems (Minneapolis, MN). Affinity-

purified polyclonal rabbit anti-NTPD8 (IF/IB) was purchased

from Sigma (St. Louis, MO). Affinity-purified polyclonal goat anti-

NTPD8 antibody (IF) and anti-aquaporin 3 (IF) antibodies were

purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA).

Affinity purified goat polyclonal anti-CGRP antibody was

purchased from ABCAM Inc. (Cambridge, MA). The following

antibodies were from SCR’s laboratory: affinity-purified polyclon-

al rabbit anti-NTPD1 antibody (IB), affinity-purified polyclonal

rabbit anti-NTPD2 antibody (IF/IB); affinity-purified polyclonal

rat anti-NT5E antibody (IF). Antibodies to FSP1 and aSMA were

kind gifts from the laboratory of Dr. Raghu Kalluri (Beth Israel

Deaconess Medical Center). Secondary donkey anti-rabbit/goat/

rat antibodies conjugated to Alexa 488 or horseradish peroxidase

(HRP), and Topro-3 and rhodamine-phalloidin were purchased

from Invitrogen-Molecular Probes (Carlsbad, CA).

RT-PCR analysis
Whole bladder RNA was extracted by a QIAGEN RNeasy Mini

kit (Valencia, CA). RNA samples were treated with DNase I to

remove potential genomic DNA contamination, and control

reactions were performed in the absence of reverse transcriptase

or in the presence of a control primer pair. Reverse transcription

was carried out according to instructions for RETROscript

(Ambion, Austin, TX). Primers were designed using Primer3

software (http://frodo.wi.mit.edu/primer3/) and standard PCR

conditions were as follows: 95uC/10 min then 35 cycles of 95u/30 s;

50–60u/30 s; 72u/60 s followed by 72u/10 min. Optimal annealing

temperature was experimentally determined. Primer pairs for each

NTPD isoform are shown in Table 1. PCR products were run on a

2.0% agarose gel containing ethidium bromide to visualize the PCR

products. Products were compared to a 100-bp ladder (PGC

Scientific, Frederick, MD), which was used to estimate the size of the

reaction products.

Western blot analysis of ectonucleotidases in bladder
Excised bladders were put in 1 ml ice cold radio-immunopre-

cipitation assay buffer (RIPA; 50 mM Tris pH 8.0, 150 mM

NaCl, 1% v/v NP-40, 0.5% w/v deoxycholic acid, 0.1% w/v

SDS) containing Complete Mini Protease Inhibitor Cocktail

tablets (Roche, Germany). Proteins were resolved by SDS-PAGE

and transferred to Immun-Blot PVDF membrane (BioRad

Laboratories, Hercules, CA), and the blots were probed with

specific antibodies as described earlier, followed by the appropriate

species-specific secondary antibodies conjugated to HRP. Bands

were detected using ECL Plus Western Blotting reagents (GE

Healthcare, Piscataway, NJ) and CL-X Posure film (Thermo

Scientific, Rockford, Il). The film was developed, scanned and

images were contrast corrected with Photoshop (San Jose, CA),

before importing into Adobe Illustrator CS3 (San Jose, CA).

Immunofluorescence analysis of ectonucleotidases in
bladder

Excised bladders were fixed in 4% (w/v) paraformaldehyde

dissolved in 100 mM sodium cacodylate (pH 7.4) buffer for 2 h at

room temperature. In some cases, tissue was fixed by 100%

methanol (4̊C) for 5 min. Fixed tissue was cut into small pieces

with a razor blade, cryoprotected, frozen, sectioned (5 mm), and

incubated with primary antibodies (1:100 –1:500 dilution) for 2 h

at room temperature as described previously [30]. After washing

away unbound primary antibody, the sections were incubated

with a mixture of Alexa 488-conjugated secondary antibody

(diluted 1:100), rhodamine-phalloidin (1:50), and Topro-3

(1:1,000). The sections were washed with PBS, postfixed with

4% (wt/vol) paraformaldehyde, and mounted under coverslips

Ectonucleotidases in Mammalian Bladder
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with p-diaminobenzidine-containing mounting medium. All

immunofluorescent localization data shown are representative

images of staining performed on at least three individual

bladders. As bladder is a highly distensible tissue, bladder

sections prepared from individual animals varied greatly in tissue

shape, folding and thickness, making quantitation with image

analysis problematic. However, the clear architecture of the

bladder, with readily defined layers and of structures within layers

e.g. blood vessels, allowed us to assess the reproducibility of

cellular expression with confidence. There was little variability

noted between expression patterns from animal to animal.

Scanning laser confocal analysis of fluorescently labeled
cells

Imaging was performed on a Zeiss LSM-510 confocal

microscope equipped with argon and green and red helium-neon

lasers (Thornwood, NY). Images were acquired by sequential

scanning with a 63X (1.4 numerical aperture) planapochromat oil

objective and the appropriate filter combinations. Serial (z)

sections were captured with a 0.25 mm step size. The images

(512 & 512 pixels) were saved as TIFF files. Serial sections were

projected into one image using LSM-510 software. The contrast

level of the final images was adjusted in Adobe Photoshop, and the

images were imported into Adobe Illustrator CS3.

Results

Expression of all eight members of the NTPDase family and 59-

nucleotidase (NT5E) were examined in whole bladder extracts

(Fig. 1). A broad expression profile at the level of mRNA for all of

these enzymes was observed suggesting the presence of complex

cellular and tissue regulation of nucleotide availability as well as a

substrate scavenging capability.

Immunoblotting of whole bladder lysates for NTPD1, -2, -3, -8

and NT5E demonstrated that all five proteins were detected at or

Table 1. Primers used for PCR of Nucleotidase Enzymes.

Enzyme Sequence of Primers (59-39) Expected Product size (bp)

NTPD1 TTTAGCGTTTTGTGTGGTTTTATATGTT 444

CTGCCAAGTTCTTGGTAATAGAATGTTA

NTPD2 AACCAGTCCATCTGAAGATCCAGATAAT 410

AGTAGAAAGCAGAAAAGGCTATGAAGTT

NTPD3 TATTTTTATTTTGCAGCGTGTATTTGTT 479

CATAACTTTTATGTCTATGGGCATTTTG

NTPD4 GCAGGAAGAAGTAGCTAAAAACCTGTTA 432

CAGTAGTAGAACTCAGAGAAGCCGTAGA

NTPD5 AAATCCTCAACCTTTTTAACTTTTCTCA 570

ACAGTTCAGTTTTATTTATGGCTCCTCT

NTPD6 CTAAGCAACACATTCCTTATGATTTCTG 599

GACTTCTGATACTCTACTGGCACACAG

NTPD7 GTGTGTTGAGAGATCTAGTCAGAAGTCC 556

TAAATACTAAAACAGATGCAGCGAAAAC

NTPD8 GGACTAGGTAGAAACCAAGCTGAAGTAG 506

CAACTTGATCTATATTCTGGGATTGATG

NT5E GCTAGATATCAAGACTCACACACACAAA 526

CACAGGAGTTAATAAGAACCAGTGTTGT

doi:10.1371/journal.pone.0018704.t001

Figure 1. Expression of ectonucleotidases in mouse bladder by
RT-PCR. Expression of ectonucleotidases was detected by RT-PCR from
total RNA isolated from mouse bladder. Specific primers for each
enzyme are given in Table 1. RT-PCR reaction products were resolved
on 2% agrose gels and visualized by staining with ethidium bromide.
Numbers above or beneath the DNA bands are expected product sizes
(in bp). A) ENTPD family, B) NT5E.
doi:10.1371/journal.pone.0018704.g001
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Figure 2. Western blotting for four ectoenzymes of the NTPD family and NT5E. Lysates of mouse bladder (25 mg protein/lane) were
resolved by SDS-PAGE, and Western blots were probed with antibodies specific for five ectonucleotidases. Protein bands of the correct molecular
weight were detected for each enzyme.
doi:10.1371/journal.pone.0018704.g002

Figure 3. Immunolocalization of NTPD1 in different regions of the bladder. Cryosections of mouse bladders were labeled with antibodies
to NTPD1 (green), rhodamine phalloidin to label the actin cytoskeleton (red) and Topro-3 to label nuclei (blue). Color merged panels are shown on
the right. A) NTPD1 staining at the level of the urothelium; white arrows indicate tight junctions between superficial umbrella cells, B) NTPD1 staining
at the level of the lamina propria, C) NTPD1 staining at the level of the detrusor smooth muscle. White scale bars = 10 mm.
doi:10.1371/journal.pone.0018704.g003
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near their predicted molecular weights of 57 kDa, 54 kDa,

59 kDa, 54 kDa and 64 kDa respectively (Fig. 2). NTPD1 and

NTPD3 migrate somewhat higher than predicted and we attribute

this to glycosylation or other post-translational modifications.

Immunoblotting confirmed that these antibodies exhibited high

specificity for the target antigens with little cross-reactivity to other

proteins. Variability in expression levels between animals was

assessed by running triplicate bladders (from three individuals) and

quantitating band density for all five enzymes. When normalized

to b actin staining, the % coefficient of variation (standard

deviation/mean*100) was less than 15% for all (data not shown).

Immunostaining of frozen bladder sections was performed for

all five proteins of interest. By counterstaining actin with

rhodamine-phalloidin (shown as red staining in middle panels,

Figs. 3, 4, 6, 7, 8) we are able to clearly identify cell layers and

tissue boundaries throughout the bladder. Confocal immunoflu-

orescent laser scanning microscopy revealed that NTPD1 is

expressed at high levels in endothelium of vascular elements

occurring prominently within the lamina propria and is also

present throughout the detrusor smooth muscle (Fig. 3b and 3c).

There was no evidence for NTPD1 in the urothelium which is

typically three cell layers deep (Fig. 3a). Merged panels on the right

show that the protein is in or near plasma membranes as expected.

NTPD2 was also absent from the urothelium (Fig. 4a) but was

distributed differentially in the lamina propria (Fig. 4b). The

merged images in Fig. 4a and 4b show a region immediately

subjacent to urothelium which is actin positive but NTPD2-

negative (see asterisks). In the more distal region of the lamina

propria, dispersed but interlinked cells with non-uniform mor-

phology are NTPD2-positive. This positive staining pattern

extends deep into the detrusor in an organized filamentous

pattern which clearly delineates and surrounds smooth muscle

bundles (Fig. 4c). These cells exhibit narrow elongated and

branched cell processes. We therefore explored the possibility that

NTPD2 positive cells were fibroblasts, myofibroblasts or neuronal

in origin by co-staining with antibodies for fibroblast-specific

protein-1 (FSP1; Fig. 5a), a-smooth muscle actin (aSMA; Fig. 5b)

and calcitonin gene related peptide (CGRP; Fig. 5c) respectively.

The merged images shown in Fig. 5 clearly illustrate that NTPD2

does not colocalize with any of these three cell markers. FSP1- and

aSMA-positive cells were predominantly found in the region of the

lamina propria proximate to the urothelium. aSMA staining also

Figure 4. Immunolocalization of NTPD2 in different regions of the bladder. Cryosections of mouse bladders were labeled with antibodies
to NTPD2 (green), rhodamine phalloidin to label the actin cytoskeleton (red) and Topro-3 to label nuclei (blue). Color merged panels are shown on
the right. A) NTPD2 staining at the level of the urothelium, B) NTPD2 staining at the level of the lamina propria; white asterisks (*) indicate areas
positive for actin but negative for NTPD2 in the lamina propria. C) NTPD2 staining at the level of the detrusor smooth muscle. White scale
bars = 10 mm.
doi:10.1371/journal.pone.0018704.g004
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indicates blood vessels within the lamina propria (Fig. 5b).

Coimmunostaining of neurons revealed that NTPD2 expressing

cells are distinct, however in Fig. 5c it can be seen that there is a

close association between a well defined neuron and surrounding

NTPD2 positive cells. Endothelia did not express NTPD2, in

contrast to the expression pattern seen for NTPD1 (Fig. 3b).

The urothelium is a major source of ATP released in bladder

[1–4] therefore we were interested to know if any of the NTPDases

were expressed by these cells. Fig. 6 shows that NTPD3 is

specifically expressed in the urothelium and is differentially

localized to the plasma membranes of intermediate and basal

cells (Fig. 6a and 6d). The presence of lateral actin staining and

corresponding tight junctions in the superficial umbrella cells can

be seen in the top middle panel (Fig. 6a). However, there is little

evidence for colocalization of NTPD3 at lateral borders of the

umbrella cells, indicating that the superficial cells of the

urothelium are unlikely to express this enzyme. Antibody staining

within the lamina propria is localized to cells within blood vessels

and detrusor shows no evidence for NTPD3. A different primary

antibody to NTPD3 confirmed the intermediate and basal cell

distribution of NTPD3 (Fig. 6d) by precise colocalization with

aquaporin 3, a marker of these cell membranes.

NTPD8 immunostaining of bladder showed a diffuse relatively

non-differentiated signal throughout several regions and there was

little evidence for a concentration at cell boundaries (Fig. 7a).

There is however a suggestion from the merged images that

NTPD8 may be present in the superficial cells of the urothelium

but the lack of clear membrane localization for this surface enzyme

requires caution in interpretation. To demonstrate the efficacy of

the antibody, liver sections were immunostained as a positive

control (Fig. 7b). Mouse liver showed specific and higher intensity

staining patterns with appropriate cell border localization to

canaliculi. A different primary antibody to NTPD8 was also tried

but gave identical staining patterns on both bladder and liver

sections (not shown). We conclude that expression of NTPD8 may

be low and that antibody staining is not sufficiently sensitive to

define its location with certainty. RT-PCR (Fig. 1) supports this

conclusion with NTPD8 signal lower than for other family

members.

NT5E which is responsible for the conversion of AMP to

adenosine was clearly absent from urothelium (Fig. 8a) and from

lamina propria (Fig. 8b) but was present throughout detrusor

smooth muscle in a pattern very similar to that seen for NTPD1

(Fig. 8c).

Figure 5. NTPD2 does not colocalize with fibroblasts, myofibroblasts or neurons. Cryosections of mouse bladders were coimmunostained
with NTPD2 (green) and antibodies to marker proteins for A) fibroblasts – FSP1 (red), B) myofibroblasts – aSMA (red) and C) afferent nerves – CGRP
(red). Nuclei are blue and color merged panels are shown on the right. Scale bars = 10 mm.
doi:10.1371/journal.pone.0018704.g005
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Discussion

The importance of purinergic signaling for urinary bladder

function has become clear, with a broad spectrum of bladder

pathologies now known to exhibit aberrant purinergic metabolism.

ATP release from the urothelium is significantly elevated in aging

[31], interstitial cystitis [10–11], in spinal cord injury [15], during

inflammation [14] and in syndromes of detrusor overactivity

resulting in urgency and/or incontinence [32]. Furthermore

overactive bladder has been shown to broadly downregulate the

expression of P2X receptors in detrusor [13,17] while conversely

P2X3 was upregulated in sensory nerve fibers from patients with

neurogenic detrusor overactivity [33]. P2X3 is also upregulated in

a model of outlet obstruction in rats [18] while human patients

with outlet obstruction had elevated P2X1 [19] and P2X2 [34]

receptors in their bladder smooth muscle. P2X2/X3 are also

elevated in urothelium of patients with interstitial cystitis [35–36].

Furthermore, visceral pain originating from tube and sac-like

Figure 6. Immunolocalization of NTPD3 in different regions of the bladder. Cryosections of mouse bladders were labeled with antibodies
to NTPD3 (green), rhodamine phalloidin to label the actin cytoskeleton (red) and Topro-3 to label nuclei (blue). Color merged panels are shown on
the right. A) NTPD3 staining at the level of the urothelium, B) NTPD3 staining at the level of the lamina propria, C) NTPD3 staining at the level of the
detrusor smooth muscle, D) NTPD3 staining with a different antibody from (A) at the level of the urothelium. Aquaporin 3 (AQP3), a marker of
intermediate and basal cell plasma membranes colocalizes with NTPD3. White scale bars = 10 mm.
doi:10.1371/journal.pone.0018704.g006
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organs is now thought to be critically dependent on ATP signaling

between epithelia and adjacent sensory neurons [37-41]. There-

fore painful bladder syndromes of mysterious etiology might occur

through mechanisms in which nucleotide signaling is dysregulated

or accentuated.

The existence of ATP/ADP degrading enzymes on the surface

of cells had been recognized for decades, but molecular

identification of the first member of the NTPDase family

(NTPDase 1) was not elucidated until the mid-1990s [21]. It is

now understood that these enzymes modulate purinergic signaling

through effects on ligand availability to P1 and P2 receptors in

virtually every tissue of the body and have been shown to play

important functional roles in vasculature and the immune and

nervous systems [21]. The experiments presented here, are

therefore intended to define the expression and localization

patterns of NTPDs. We believe this is the first systematic attempt

to catalog and describe the location of ectonucleotidases within the

mammalian urinary bladder.

We successfully amplified specific mRNA for all eight members

of the NTPD family as well as for NT5E, thus confirming the likely

importance of modulating nucleotide concentrations within

bladder tissue elements (Fig. 1).

Our goal in this study was to characterize the distribution of

nucleotide-hydrolyzing enzymes which could modulate the

signaling of secreted ATP/UTP. Therefore we focused in more

detail on the four cell surface localized enzymes known to

specifically catabolize extracellular ATP (NTPD1, -2, -3 and -8) as

well as NT5E. Western blotting confirmed that all five were

expressed in bladder, but using immunofluorescence we were only

able to unequivocally confirm the localization of four, since

NTPD8 exhibited low expression levels. Figure 9 schematically

illustrates our findings with each enzyme specifically expressed by

particular cell types.

NTPD1 is the major ectonucleotidase responsible for degrading

ATP within the vasculature and our data clearly show that it is

prominently expressed in endothelial cells within bladder. It has

been shown to play a key role in hemostasis and thrombosis with

complex effects on platelet aggregation [42]. It is likely therefore

that its presence in vascular elements within the bladder is not

specific to this tissue.

The presence of NTPD1 and NT5E in the cell membranes of

smooth muscle cells suggests important functional roles related to

muscle contraction and relaxation during the voiding cycle.

Indeed, concerted actions are probable given what is known of

urinary bladder smooth muscle physiology. To initiate voiding,

parasympathetic nerves release ATP to stimulate bladder smooth

muscle contraction through P2X1 receptors [6]. NTPD1, also

present on these membranes, has approximately equal affinities for

ATP and ADP [25] and is therefore able to rapidly catalyze the

production of AMP. Following the contractile phase of voiding,

NTPD1 and NT5E acting coordinately could rapidly convert ATP

to adenosine in order to not only effect cessation of P2X1-

mediated muscle contraction, but to facilitate muscle relaxation

through A2b receptors. Relaxation is clearly a prerequisite for

accommodating the next filling cycle. Support for this hypothesis

comes from studies showing that adenosine receptor, A2b is

abundantly expressed in detrusor [43], and further, that adenosine

inhibits detrusor contraction elicited through carbachol, electrical

field stimulation, acetylcholine and potassium [44–46]. This model

suggests that ATP is responsible (in part) not only for the

contractile phase but also via NTPD1/NT5E activity, the relaxant

phase of the micturition cycle and could therefore be considered a

‘dual effector’.

NTPD2 shows an interesting partial distribution in lamina

propria, being present in the deeper layer adjacent to the

detrusor (illustrated schematically in Fig. 9). Within detrusor,

Figure 7. Immunolocalization of NTPD8 in bladder and liver. Cryosections of mouse bladders and livers were labeled with antibodies to
NTPD8 (green), rhodamine phalloidin to label the actin cytoskeleton (red) and Topro-3 to label nuclei (blue). Color merged panels are shown on the
right. A) NTPD8 staining of bladder, B) NTPD8 staining of liver. White scale bars = 25 mm.
doi:10.1371/journal.pone.0018704.g007
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NTPD2-positive cells circumferentially surround and are in

close proximity to smooth muscle bundles. Our data show

clearly these cells are unlikely to be typical fibroblasts or nerve

fibers. In fact based on their branched morphology, network

patterning, location around muscle bundles and their intimate

association with neurons (Fig. 5c), we considered the possibility

that they might be interstitial cells of Cajal (ICC). Despite

multiple attempts with different antibodies we were unable to

immunostain for the ICC marker, c-kit. c-kit positive ICC, or

pacemaker cells, have been convincingly demonstrated in

bladders from a number of species including human [47–48],

dog [49], pig [50], and guinea pig [51–52], however studies on

bladders of mice are mixed. Lagou et al. demonstrated ICC in

mouse bladder by morphology and by pharmacological

stimulation, however ICC were c-kit negative [53]. Likewise,

Pezzone et al. also failed to detect c-kit in mouse bladder despite

finding c-kit positive cells in the ureter [54]. In contrast to this

McCloskey et al. were able to show c-kit positive cells in mouse

bladder [55]. Despite our inability to colocalize c-kit with

NTPD2, there remains a strong circumstantial case for

considering that these cells may be ICC.

There are other possibilities also. They may represent a

subgroup of myofibroblasts which do not express aSMA. Cells

matching this description were identified as myofibroblasts by Liu

et al [56]. Dranoff et al. noted that NTPD2 was present in a novel

compartment of fibroblasts in liver, namely portal fibroblasts

which surround intrahepatic bile ducts [57]. In another study,

myofibroblasts were found to exhibit close contacts with nerve

varicosities in electron micrographs and the authors speculated

that myofibroblasts and their attached axonal varicosities could

collectively function as bladder stretch receptors [58]. Our data

show similar intimate contacts between NTPD2-positive cells and

neurons. Since this ectoenzyme is highly specific for ATP over

ADP (hydrolysis ratio of 1:0.05–1:0.3) it’s primary function is likely

to be in attenuating ATP signaling [25] and generating ADP/

UDP ligands for stimulating P2Y receptors in a cellular

compartment that lies close to and surrounds the detrusor. It is

possible given not only its proximity to smooth muscle but also to

nerve fibers that it may play an important role in degrading ATP

released as a neurotransmitter from efferent neurons. Fig. 9 shows

the cross-boundary distribution of NTPD2-positive cells in both

lamina propria and between muscle bundles in the detrusor.

Figure 8. Immunolocalization of NT5E in different regions of the bladder. Cryosections of mouse bladders were labeled with antibodies to
NT5E (green), rhodamine phalloidin to label the actin cytoskeleton (red) and Topro-3 to label nuclei (blue). Color merged panels are shown on the
right. A) NT5E staining at the level of the urothelium, B) NT5E staining at the level of the lamina propria, C) NT5E staining at the level of the detrusor
smooth muscle. White scale bars = 10 mm.
doi:10.1371/journal.pone.0018704.g008
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NTPD3 is uniquely localized to the urothelium and interestingly

does not appear to present in umbrella cells but occurs in cell

membranes of the intermediate and basal cell layers. This explains

the observed difference in the kinetics of ATP hydrolysis on the

luminal and serosal surfaces [2]. Urothelial stretch-induced ATP

secretion lumenally, is likely to have autocrine signaling effects on

the apical membranes of umbrella cells while basal release suggests

paracrine effects serosally. A primary signaling target for the

urothelium is afferent neurons which are closely apposed to and

penetrate between basal cells of the lamina propria and even

urothelium. The signaling pathways activated by these interactions

may influence such diverse phenomena as intracellular Ca2+

signaling action potentials and exocytosis of other potent

mediators like nitric oxide, acetylcholine and prostaglandins [5].

NTPD3 likely modulates the strength or duration of this stimulus

on the cells in which it is expressed i.e. urothelium. Indeed if the

primary target for basally secreted ATP is cells in the stroma or

detrusor, its role might be to limit the potential for self-stimulation.

It is noteworthy that none of the NTPDs were present on the

luminal surface of umbrella cells which supports the finding that

ATP released apically from urothelium is likely to be long-lived

until its expulsion with voided urine.

The location of NTPD8 was uncertain since antibody staining

was diffuse and present in several regions. There was however a

suggestion that it may be concentrated within umbrella cells.

Given the strong expression of this protein within hepatic

canaliculus of liver, an epithelial expression pattern in bladder is

entirely reasonable. It is however, present at lower levels in the

bladder than in the liver.

Figure 9 presents schematically, a simplified overview of our

findings, with the bladder structurally divided into three distinct

strata; the urothelium, lamina propria and detrusor smooth

muscle. NTPD8 and NTPD3 are present exclusively in the

epithelium with NTPD3 restricted to the suburothelium. Within

the connective tissue elements of the lamina propria, NTPD1 may

be found in blood vessels while NTPD2 occurs in a specific subset

of cells which may be ICC. Further work will be necessary to

confirm if this is true. These cells lie proximal to the smooth

Figure 9. Model of urinary bladder showing differential distribution of nucleotidases. Three tissue layers of the bladder are shown with
the cells we have identified as expressing nucleotidases. For the sake of clarity, afferent and efferent neurons have not been included. Different cell
types are color coded with the banner arrows at left indicating which colored cells express which nucleotidases. Within the lamina propria, FSP1-
positive fibroblasts and a-SMA-positive myofibroblasts localize to the suburothelial region (purple cells) and appear absent or rare closer to the
detrusor smooth muscle. The region of the lamina propria adjacent to the smooth muscle is rich in NTPD2-positive cells. They also surround and
intercalate between muscle bundles. NTPD8 is indicated in umbrella cells with a question mark to reflect a degree of uncertainty and endothelium of
blood vessels are labeled with NTPD1.
doi:10.1371/journal.pone.0018704.g009

Ectonucleotidases in Mammalian Bladder

PLoS ONE | www.plosone.org 10 April 2011 | Volume 6 | Issue 4 | e18704



muscle and surround muscle bundles, but are not in the smooth

muscle itself. NTPD1 and NT5E however, are richly expressed

within the smooth muscle suggesting a functionally important

relationship.

This expression and localization study provides important novel

information about the signature of nucleotidases in mammalian

bladder. Knowledge of their tissue-specific distribution will allow

the design of rational functional studies to test the contribution of

each to normal micturition. For example the use of Cre-lox

technology to generate conditional knockouts in specific cell types

e.g. urothelium [59], can now be considered for these enzymes.

Altered purinergic signaling occurs frequently in bladder disease

and at present the involvement of ectonucleotidases in disease

processes is completely unknown. This study sets the stage for

further investigations of their role in both physiology and

pathophysiology. Furthermore, these ectoenzymes may one day

offer tempting therapeutic targets for conditions such as overactive

bladder or painful bladder syndrome.
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