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Abstract

Background: Chemistry and particularly enzymology at surfaces is a topic of rapidly growing interest, both in terms of its
role in biological systems and its application in biocatalysis. Existing protein immobilization approaches, including
noncovalent or covalent attachments to solid supports, have difficulties in controlling protein orientation, reducing
nonspecific absorption and preventing protein denaturation. New strategies for enzyme immobilization are needed that
allow the precise control over orientation and position and thereby provide optimized activity.

Methodology/Principal Findings: A method is presented for utilizing peptide ligands to immobilize enzymes on surfaces
with improved enzyme activity and stability. The appropriate peptide ligands have been rapidly selected from high-density
arrays and when desirable, the peptide sequences were further optimized by single-point variant screening to enhance
both the affinity and activity of the bound enzyme. For proof of concept, the peptides that bound to b-galactosidase and
optimized its activity were covalently attached to surfaces for the purpose of capturing target enzymes. Compared to
conventional methods, enzymes immobilized on peptide-modified surfaces exhibited higher specific activity and stability,
as well as controlled protein orientation.

Conclusions/Significance: A simple method for immobilizing enzymes through specific interactions with peptides
anchored on surfaces has been developed. This approach will be applicable to the immobilization of a wide variety of
enzymes on surfaces with optimized orientation, location and performance, and provides a potential mechanism for the
patterned self-assembly of multiple enzymes on surfaces.
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Introduction

Surface-immobilized enzymes play an important role in many

biocatalytic processes and industrial applications [1,2]. The

activity, stability and selectivity of enzymes can be improved if

they are immobilized properly on surfaces [1,3]. Many conven-

tional protein immobilization methods [1], which rely on

nonspecific absorption of proteins to solid supports or chemical

coupling of reactive groups within proteins, have inherent

difficulties, such as protein denaturation, poor stability due to

nonspecific absorption [4,5], variations in the spatial distance

between enzymes and the enzyme-to-surface distance [6], and the

inability to control protein orientation [1,5]. New strategies for

enzyme immobilization are needed which allow the precise control

over orientation and position and thereby provide optimized

activity [7]. Peptides represent a promising class of potential

protein-anchoring/modulating molecules due to their large

chemical diversity [8] and the existence of well-established

methods for library synthesis [9]. There is a growing realization

that, by using peptides as building blocks, it is possible to create

synthetic structures with affinities and specificities comparable to

natural antibodies [10,11]. Peptide or small molecule ligands that

bind to a unique region of a protein can be used for orienting the

protein and modulating its activity through specific ligand-protein

interactions on a solid support [11–13]. In this work, we present a

method for creating peptide-modified surfaces that immobilize a

target enzyme with optimized orientation and activity.

Results

Previously, we described an approach for screening high-density

peptide arrays to identify specific peptide sequences that anchor

enzymes to surfaces and modulate their activity [13]. To

demonstrate the utility of this approach more generally for

optimized enzyme immobilization, two 20-mer peptides,

YHNNPGFRVMQQNKLHHGSC (referred to as YHNN) and

QYHHFMNLKRQGRAQAYGSC (referred to as QYHH) were

selected from a microarray of 10,000 peptides based on their

ability to bind b-galactosidase (b-gal) and optimize its surface-

immobilized activity (Table S1 in File S1). These peptides were

then synthesized and covalently conjugated to aminated micro-

wells, modifying the surface and mediating the binding of b-gal

through specific peptide-enzyme interactions (Figure 1a). As

controls, two inhibitory peptides, RVFKRYKRWLHVS-

RYYFGSC (RVFK) and PASMFSYFKKQGYYYKLGSC

(PASM), and one weak-binding peptide, EFSNPTAQVF-
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PDFWMSDGSC (EFSN), were also used to modify aminated

microwells (Table S1 in File S1). b-Gal immobilized on YHNN-

and QYHH-surfaces exhibited much higher activity than b-Gal

immobilized on control peptide-modified surfaces (Figure 1b). The

relative specific activities of b-Gal immobilized on peptide-

modified microwells were shown in Table 1, which were

calculated for each surface by dividing the total bound enzyme

activity by the total binding intensity. Conventional surface

immobilization approaches were also tested including SMCC-

activated (SMCC 6) and NHS-activated (NHS 7) covalent

attachment, as well as noncovalent amine-surface attachment

(Amine 8). In Table 1, YHNN- and QYHH– modified surfaces

resulted in a specific activity of bound enzyme that was ,2-fold

greater than amine noncovalent binding and nearly 3-fold greater

than NHS attachment. In addition, the YHNN- and QYHH–

modified surfaces have the advantage of specifically associating

with b-Gal in a protein mixture. This was shown by binding b-Gal

in a solution containing 3% Bovine serum albumin (BSA). YHNN-

and QYHH– modified surfaces showed 15-fold more bound

enzyme activity than the amine surface and 20-fold more than the

NHS surface (Figure S1 in File S1).

In addition, YHNN- and QYHH-modified surfaces were also

found to improve the thermal and pH stability of immobilized b-

Gal. The thermal stability of bound b-Gal was ,16-fold greater

on the peptide-modified surfaces than free enzyme in solution after

incubating at 55uC for one hour (Figure S2 in File S1) and more

than 2-fold better than enzyme immobilized to either the NHS or

amine surfaces. Immobilization of b-Gal on YHNN- and QYHH-

modified surfaces also shifted the pH optimum from pH 8 in free

solution to 7 on the surface. Long-term enzyme stability to storage

on surfaces was greatly improved on peptide-modified surfaces,

particularly when peptide modification was combined with the use

of a hydrogel (5% polyvinyl alcohol) coating. b-Gal immobilized in

this way and stored dry for one week at room temperature retained

,35% of its original activity. In contrast, enzyme similarly

immobilized and stored on amine surfaces retained less than 5%

Figure 1. Enzyme immobilization on peptide-modified surfaces. (a) The overall process for conjugating peptides to aminated microwells
through specific reactions between C-terminal cysteines and maleimide-activated surfaces. (b) Activity of b-Gal immobilized on different surfaces.
25 nM b-Gal is first incubated with modified microwells for one hour and then enzyme activity is measured at 25uC as a function of time using
100 mM Resorufin b-D-galactopyranoside as the substrate. YHNN, QYHH, RVFK, PASM and EFSN represent b-Gal bound to various peptide-modified
surfaces (see text). SMCC and NHS represent enzyme covalently bound via thiol and amine conjugation, respectively. AMINE represents enzyme
bound noncovalently to an aminated surface. (c) Proteolytic mapping of peptide binding to tetrameric b-Gal with binding regions circled (Green).
Each subunit is labeled with a unique color showing the symmetry of the b-Gal structure. The binding regions (amino acids 419–447) are highlighted
in blue. The substrate-binding sites of b-Gal are circled with right color (Glu461, Met502, Tyr503 and Glu537) according to reference 16.
doi:10.1371/journal.pone.0018692.g001
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activity and NHS surfaces retained ,14% (Figure S3 in File S1). If

one considers both the increased binding capacity of the peptide-

modified surfaces and their increased stability to storage, there was

20-fold more enzyme activity per surface area after storage on the

peptide-modified surfaces than either the amine surfaces or the

NHS surfaces, a significant factor in the commercial immobiliza-

tion and storage of enzymes.

The apparent Kd values of the YHNN- and QYHH-modified

surfaces were ,5 nM and ,4 nM for b-Gal, respectively (Figure

S4 in File S1). The apparent kcat and Km constants for immobilized

b-Gal were measured on peptide-modified iodoacetyl resin, which

has a large binding capacity and allows for the quantification of

the absolute amount of bound enzyme (Figure S5 in File S1). kcat

values were ,46 s21 for the YHNN- surface and ,53 s21 for the

QYHH- surface, similar to the kcat of ,58 s21 under the same

conditions for the free enzyme. The apparent Km values of b-Gal

bound to the YHNN- and QYHH-modified surfaces were

,240 mM and 250 mM, respectively, compared ,130 mM for

the free enzyme. The apparent increase in Km for the surface-

bound enzyme may be due to slow diffusion of substrate molecules

to the surface and local substrate depletion [14].

Peptide-protein binding sites for YHNN and QYHH were

determined by proteolytic mapping using reversible formaldehyde

cross-linking [15]. YHNN and QYHH both bound to the same

protein fragments (residues 419–447) at the subunit interface of b-Gal

(Figure S6 in File S1). b-Gal from E. coli is only active in its tetrameric

form [16], and it may be that YHNN and QYHH enhance the

activity and stability of b-Gal by stabilizing its tetrameric structure.

Point-variant screening [17,18] was applied to the YHNN

peptide to improve both the affinity and activity of bound enzyme.

132 single-point variants, containing all substitutions of the amino

acid set {Y, A, D, S, K, N, V, W} in each of the 17 randomized

positions, were synthesized, printed on a microarray and analyzed

for affinity and activity. Figure 2a shows the binding level vs.

activity of b-Gal for each single-point variant, normalized to the

YHNN- lead peptide. Several variants increased both binding level

and activity, (region ii), including variant V9Y (YHNNPG-

FRYMQQNKLHHGSC) which increased binding by 1.5-fold

and specific activity by nearly 3-fold compared to the YHNN- lead

peptide (Table S2 in File S1). V9Y conjugated to an aminated

microwell increased both the binding and the specific activity of

immobilized b-Gal by ,2-fold compared to YHNN. This

corresponds to a total bound enzymatic activity on the V9Y-

modified surface that is ,12-fold greater than the NHS surface

and more than 5-fold greater than the amine surface (Figure S7 in

File S1). Combining two advantageous point mutations into a

single peptide (e.g.V9Y and N13Y, Supplemental Table S2 in File

S1) resulted in an increase in the affinity of the peptide for binding

to b-Gal but did not significantly enhance the specific activity of

bound enzyme compared to single-point variants.

The library of single-point variants was also screened for

enhanced thermal or pH stability of immobilized b-Gal. For

thermal stability screening, enzyme was bound to microarrays

containing the 132 single-point variants, at room temperature, and

then the arrays were incubated at 55uC for one hour and assayed

for activity at room temperature. A few point variants improved

the resulting activity of bound b-Gal by nearly 50% compared to

the YHNN- lead peptide (Figure 2a, circled region, and Table S3

in File S1). pH stability was screened by incubating enzyme-bound

arrays in buffers ranging from pH 6 to pH 9 for one hour and

then assaying activity at the pH used for incubation. In Figure 2c,

some variants were found to significantly improve the specific

activity of bound b-Gal at both low (pH 6) and high (pH 9) pH

compared to the YHNN- lead peptide (e.g. Q12A,

YHNNPGFRVMQANKLHHGSC shows a 4.1-fold activity

increase at pH 6 and a 2.8-fold increase at pH 9, Table S4 in

File S1).

Discussion

We describe a rapid, systematic and general approach for

modifying a surface in such a way that an enzyme can both bind

tightly to the surface and maintain or even enhance its activity.

Peptides can be rapidly selected from microarrays and covalently

conjugated to surfaces for capturing target proteins. Peptide-

modified surfaces improve both the specific activity and stability of

bound b-Gal compared to free enzyme or to conventional enzyme

surface immobilization approaches. In addition, the affinity and

activity of one of the peptide-modified surfaces was further

improved by single-point variant screening. Variants were found

that not only improved activity under normal conditions, but

enhanced thermal stability and increased enzyme activity at

extreme pH. The surface modification is also specific for a

particular enzyme, and thus the binding and activity enhancement

can be patterned, opening the door for the development of multi-

enzyme systems that are organized using a top-down patterning of

surface modification combined with self-assembly of enzymatic

systems on those surfaces. This approach appears to be applicable

Table 1. Normalized activity and affinity of b-Gal immobilized on surface-modified microwellsa.

Surface for protein immobilization
Binding affinity
(Norm.) Activity (Norm.)

Specific activity
(Norm.)

1 YHNNPGFRVMQQNKLHHGSC 0.960.03 2.160.1 2.260.1

2 QYHHFMNLKRQGRAQAYGSC 0.960.02 2.360.1 2.460.2

3 RVFKRYKRWLHVSRYYFGSC 0.960.05 0.160.01 0.160.01

4 PASMFSYFKKQGYYYKLGSC 0.560.1 0.360.06 0.560.1

5 EFSNPTAQVFPDFWMSDGSC 0.160.01 0.0560.01 0.460.1

6 SMCC 0.260.02 0.0360.01 0.160.1

7 NHS 0.860.1 0.660.1 0.860.1

8 Amine 1.060.1 1.060.1 1.060.1

aTypes of surfaces: 1 and 2 are selected peptide-modified surfaces; 3 and 4 are control surfaces modified by inhibitory peptides; 5 is a control surface conjugated with a
weak-binding peptide; 6–8 are the conventional surfaces used for covalent or noncovalent enzyme immobilization, defined as in Figure 1, legend. All of the data is
normalized to that of the amine surface, 8.

doi:10.1371/journal.pone.0018692.t001
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to the immobilization of a wide variety of enzymes on surfaces

with optimized performance, and provides a potential mechanism

for the patterned self-assembly of multiple enzymes on surfaces.

Materials and Methods

Chemicals
Resorufin b-D-galactopyranoside (RBG) and Alexa Fluor 647

were purchased from Invitrogen (Eugene, OR). b-galactosidase (b-

Gal, E.coli), polyvinyl alcohol (PVA, M.W.: 124,000,186,000), 4-

nitrophenyl phosphate (PNPP), Phosphate Buffered Saline (PBS)

and Tris Buffered Saline (TBS) were obtained from Sigma (St.

Louis, MO). BS3 (Bis[sulfosuccinimidyl] suberate), alkaline

phosphatase-conjugated strepavidin and iodoacetyl resin were

purchased from Pierce (Rockford, IL). Sulfo succinimidyl-4-(N-

maleimidomethyl) cyclohexane-1-carboxylate (Sulfo-SMCC) was

purchased from bioWORLD (Dublin, OH). Aminated microwell

plates were ordered from Corning. A 4 mg/mL stock solution of

b-Gal was prepared in 10 mM potassium phosphate buffer with

0.1 mM MgCl2 at pH 7.4.

Enzyme immobilization on modified microwells
Peptides were conjugated to aminated microwell surfaces

through the specific reaction between C-terminal cysteines and

the maleimide-activated surfaces, as shown in Figure 1a. 10 mM

SMCC was prepared in 16 PBS buffer, pH 7.4. Next, 30 mL of

SMCC was added into each aminated microwell and incubated

for one hour at room temperature. The microwell plate was then

briefly washed with pure water three times. Then, 30 mL of a

300 mM peptide solution, prepared in 16PBS pH 7.4 plus 1 mM

TCEP, was added to the appropriate SMCC-activated microwells.

The reaction was incubated for 4 hours at room temperature, in

the dark. After the conjugation reaction was complete, the

microwells were washed for 5 minutes in 16TBST, three times,

followed by three washes in water. To immobilize the enzyme on

peptide-modified surfaces, 30 mL of 25 nM biotin-labeled b-Gal

was incubated in the peptide-modified microwells for two hours in

10 mM phosphate buffer, pH 7.3 with 100 mM MgCl2 and 0.05%

Tween 20 (v/v%), at room temperature. The microwells were

washed for 5 minutes in 16TBST, three times, followed by three

washes in phosphate buffer. At this point, the b-Gal-bound

microwells were ready for testing. b-Gal was labeled with biotin

using EZ-Link Sulfo-NHS-Biotinylation Kit purchased from

Pierce (labeling ratio: ,two biotin per enzyme molecule). Figures

S8–10 in File S1 show the detailed optimization procedures for

peptide-modified surfaces.

Covalent attachment of b-Gal to NHS (N-Hydroxysuccinimide)-

activated surfaces was performed using BS3 homogeneous amine-

reactive cross-linker, as recommended by the manufacturer. First,

30 mL of 2 mg/mL BS3 prepared in 16 PBS, pH 7.4 was

incubated with the aminated microwells for half an hour. Then,

the microwells were briefly washed with nanopure water, three

times, to remove unreacted BS3 molecules. Finally, 30 mL of

biotin-labeled b-Gal was incubated with the microwells for one

Figure 2. Point-variant screening of a lead peptide, YHNN. b-Gal
was bound to a microarray containing 132 YHNN variants and its
activity was measured. (a) The activity of bound b-Gal on microarrays as
a function of the amount of enzyme bound to a particular variant
feature at room temperature. (i) Variants with poor affinity and activity;
(ii) Variants with stronger affinity and higher activity; (iii) Variants with
stronger affinity but relative lower activity. All data is normalized to the
binding and activity values for the lead peptide, YHNN. (b) Thermal-
stability assay. b-Gal was bound to the microarray containing YHNN
variants as in (a) at room temperature, followed by incubation in

phosphate buffer at 55uC for one hour. Enzyme activity was then
assayed at room temperature. The selection region (circled) contains
variants that bind to the enzyme with higher relative specific activity
(the ratio of binding to activity) under thermal stress compared to
YHNN after incubation at high temperature. (c) pH activity range assay.
YHNN variant microarrays were bound to b-Gal as in (a) and incubated
at room temperature in buffers with pHs ranging from 6 to 9 for one
hour and then assayed for activity at the pH of incubation. The black
line is the specific activity of b-Gal bound to the lead peptide, YHNN.
doi:10.1371/journal.pone.0018692.g002
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hour, which were then washed three times in 16TBST, followed

by three washes in phosphate buffer.

The activity assay of surface-bound b-Gal was performed on a

SpectraMax M5 96-well plate reader (Molecular Device, Sunny-

vale, CA) by adding 100 mL of 100 mM RBG into the wells. The

relative amount of surface-bound b-Gal was measured using an

enzyme linked immunosorbant assay (ELISA). b-Gal was first

labeled with biotin. Alkaline phosphatase-conjugated strepavidin

(0.4 mg/ml) was diluted at 1:1000 in 16PBS, 0.05% (v/v) Tween

20. Next, 30 mL of streptavidin solution was added to the b-Gal-

bound wells and incubated for one hour at room temperature. The

streptavidin solution was then removed and the plate was washed

three times with TBST buffer and three times with TBS buffer.

Then, 200 mL of 1 mM PNPP was added to each well. The

alkaline phosphatase activity was subsequently measured by

reading the absorbance increase at 405 nm on the M5 plate

reader. The b-Gal binding level was determined from the activity

of alkaline phosphatase-conjugated strepavidin bound to the wells.

Determining Michaelis constants of immobilized b-Gal
The determination of the enzyme kinetic constants (KM and kcat)

of immobilized b-Gal was performed on peptide-modified iodoa-

cetyl polyacrylamide resin (UltraLink, Pierce, 50–80 mm diameter).

To modify the bead surface with peptide, peptide solutions were

incubated with iodoacetyl resin for one hour in 50 mM Tris buffer,

5 mM EDTA, pH 8.5. The unreacted iodacetyl groups were then

capped with 50 mM L-cysteine. The amount of peptide immobi-

lized on a bead surface was determined by comparing the peptide

concentration of the unbound fraction (the remaining free peptide

concentration after binding to the surface) to the starting

concentration through absorbance changes at 280 nm. b-Gal was

captured on the peptide-modified beads using the same protocol

which immobilized the enzyme in the microwells, above. The

amount of bead-immobilized b-Gal was measured by comparing

the protein concentration of the unbound fraction to the starting

protein concentration, determined at 280 nm. KM and Vmax (and

thus kcat, using the total enzyme concentration) of b-Gal

immobilized on peptide-modified beads were determined by fitting

the activity vs. substrate concentration curves in the GraphPad

program using the fitting equation of ‘‘Y = Vmax*X/(Km+X)’’.

Peptide mapping to b-Gal
The specific regions at which the peptides YHNN and QYHH

bind to b-gal were determined by reversible formaldehyde cross-

linking, as described previously.8,12 200 mL of a 150 mM peptide

solution was first conjugated to 100 mL of UltraLink iodoacetyl

resin using the method described above. To promote cross-linking,

the peptide-modified resin was incubated with 200 mL of 500 nM

b-Gal for two hours. 200 mL of 1% formaldehyde (v/v), prepared

in 16 PBS, was added to the enzyme-bound resin for 10 mins.

Then, the formaldehyde solution was removed quickly by

centrifugation. The resin was washed three times with 1 mM

Glycine, pH 2.5 to remove enzyme that did not undergo cross-

linking. Proteolytic digestion was performed by incubating the

enzyme-bound resin with 34 nM Glu-c in ammonium bicarbonate

buffer, pH 8.5, overnight at 37uC. Then, the resin was washed

again with Glycine, pH 2.5 to remove Glu-c and any fragments

that did not undergo cross-linking. The formaldehyde cross-linking

was reversed by incubating the resin with 20 mL nanopure water

at 70uC overnight. Following cross-link reversal, 100 mL of

nanopure water was added to the resin to dissolve the free Glu-

c-digested peptide fragments. The solution was spun to the bottom

of the spin-column and then dried, by evaporation, in a vacuum

centrifuge. The dried sample was re-dissolved with 10 mL of 1:1

acetonitrile:H2O containing 0.1% trifluoroacetic acid and satu-

rated alpha-cyano-4-hydroxycinammic acid matrix. The sample

was spotted on a standard MALDI-MS (Matrix-assisted laser

desorption/ionization mass spectrometry) target plate, and

analyzed using a Bruker Microflex MALDI-MS.

Microarray fabrication
Peptide microarrays containing 132, 20-mer single-point

variants of the YHNN peptide were generated using our

established, in-house printing method [19]. Each microarray was

prepared by robotically spotting peptides, in triplicate, on a glass

slide possessing an amino-silane surface coating. Synthesized

peptides (70% purity) were purchased from Sigma. The last three

carboxy-terminal positions of each peptide constituted a glycine-

serine-cysteine (GSC) linker, used for conjugating the peptides to

amino-silane surfaces through the C-terminal cysteine via a

maleimide linker, Sulfo-SMCC (Pierce, Rockford, IL). A Tele-

chem Nanoprint60 was used to spot approximately 500 pL of

1 mg/mL peptide prepared in 16 PBS for each feature on glass

slides with 48 Telechem series SMP2 style 946 titanium pins.

Enzyme assays on PVA-coated arrays
Enzyme assays on the microarrays were performed as described

in the previous work [13]. Briefly, a peptide microarray was first

prewashed with surface cleaning solvent (7.33% (v/v) acetonitrile,

37% isopropyl alcohol and 0.55% trifluoroacetic acid in water )

and then treated with capping buffer (3% (v/v) BSA, 0.02% (v/v)

mercaptohexanol, 0.05% (v/v) Tween20 in 16PBS) to block any

active SMCC linker on the array surface. The array was incubated

with a solution containing 10 nM AlexaTM 647- labeled b-Gal for

two hours, allowing the enzyme to bind with peptides on the array

surface. After washing off unbound enzymes, a fluorescent

substrate analogue (FDG) was mixed with a 5% PVA solution

and spin-coated onto the array surface for monitor the enzyme

activity. The FDG molecules (substrate) in the PVA layer were

converted to fluorescein (product), by the active enzymes bound to

specific peptides on the array surface. The fluorescein molecules

remained localized because of the PVA viscosity. Both the relative

binding level of AlexaTM 647-labeled enzyme and the relative

amount of fluorescein produced during the incubation period were

determined by dual color scanning. Each array experiment was

repeated at least three times under the same conditions for

statistical analysis.

Supporting Information

File S1 Additional figures and tables.

(PDF)
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