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Abstract

Non-centralized recommendation-based decision making is a central feature of several social and technological processes,
such as market dynamics, peer-to-peer file-sharing and the web of trust of digital certification. We investigate the properties
of trust propagation on networks, based on a simple metric of trust transitivity. We investigate analytically the percolation
properties of trust transitivity in random networks with arbitrary in/out-degree distributions, and compare with numerical
realizations. We find that the existence of a non-zero fraction of absolute trust (i.e. entirely confident trust) is a requirement
for the viability of global trust propagation in large systems: The average pair-wise trust is marked by a discontinuous
transition at a specific fraction of absolute trust, below which it vanishes. Furthermore, we perform an extensive analysis of
the Pretty Good Privacy (PGP) web of trust, in view of the concepts introduced. We compare different scenarios of trust
distribution: community- and authority-centered. We find that these scenarios lead to sharply different patterns of trust
propagation, due to the segregation of authority hubs and densely-connected communities. While the authority-centered
scenario is more efficient, and leads to higher average trust values, it favours weakly-connected ‘‘fringe’’ nodes, which are
directly trusted by authorities. The community-centered scheme, on the other hand, favours nodes with intermediate in/
out-degrees, in detriment of the authorities and its ‘‘fringe’’ peers.
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Introduction

Several social and technological systems rely on the notion of

trust, or recommendation, where agents must make their decision

based on the trustworthiness of other agents, with which they

interact. One example are buyers in markets [1], who may share

among themselves their experiences with different sellers, or

lenders which may share a belief that a given borrower will not be

able to pay back [2]. Another example are peer-to-peer file-

sharing programs [3], which often must know, without relying on a

central authority, which other programs act in a fair manner, and

which act selfishly. In the same line, an even more direct example

is the web of trust of digital certification, such as the Pretty Good

Privacy (PGP) system [4,5], where regular individuals must certify

the authenticity of other individuals with digital signatures. In all

these systems, the agents lack global information, and must infer

the reliability of other agents, based solely on the opinion of trusted

peers, thus forming a network of trust. In this paper, we present an

analysis of trust propagation based on the notion of transitivity: If

agent a trusts agent b, and agent b trusts agent c, then, to some

extent, agent a will also trust agent c. Based on this simple concept,

we define a trust metric with which the reliability of any reachable

agent may be inferred. Instead of concentrating on the minutiae of

trust propagation semantics, we focus on the topological aspect of

trust networks, using concepts from network theory [6]. Using

random networks as a simple model, we investigate the necessary

conditions for trust to ‘‘percolate’’ through an entire system. We

then apply the concepts introduced to investigate in detail the PGP

web of trust, possibly the best ‘‘real’’ example of a trust

propagation system, which is completely accessible for investiga-

tion. We focus on the role of the strongly connected nodes in the

network — the so called trust authorities — which represent a

different paradigm of trust delegation, in comparison to the

decentralized community-based approach, which is also heavily

present in the network.

This paper is divided as follows. In section 1 we define the trust

metric used; in section 2 we consider the problem of trust

percolation in random networks with different trust weight

distributions. In in section 3 we turn to the analysis of the PGP

network, and provide an extensive analysis of its topology, and of

trust propagation according to different trust distribution scenarios.

Finally, we provide some final remarks and a conclusion.

Analysis

1 Trust metric
Trust is the measure of belief that a given entity will act as one

expects. It is often associated with positive, desirable attributes, but

it may not always be the case (e.g. one may have trust that

someone will act undesirably). Humans use trust to make decisions

when more direct information is unavailable. In general, humans

will decide their level of trust based on arbitrary, heuristic rules,

since there is no formal consensus on how to evaluate trust. We

will deliberately avoid the detailed formalization of these rules, and

instead rely on two simplifications: 1. We will treat trust simply as

a probability that a given assessment about an agent is true or false

(e.g. fair/reliable or not); 2. We further assume that this belief is

transitive, i.e. if agent a trust agent b, which in turn trusts agent c,

then a will also trust c, to some extent. This makes trust

propagation easier to analyse, while retaining its most intuitive

properties.
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We will consider a system of N agents which form a directed

trust network: Each agent v (represented by a vertex, or node) has

a number of interactions (represented by directed edges, or links)

with other agents fuig for which a value cv,ui
[ ½0,1� of direct trust is

defined a priori, and which can be interpreted as a probability. This

value represents a direct experience agent v had with ui, which is

not inferred from any other agent. We note that this value fully

reflects the directed nature of the network, so that if there is also an

edge ui?v, the value of cui ,v is in independent of cv,ui
— in other

words, direct trust does not need to be reciprocal. Additionally, we

do not assume that there is an inherent self-loop from each vertex

to itself. If a self-loop v?v exists, we do not ascribe any special

meaning to the diagonal element cv,v, which can be arbitrarily

chosen just as any other direct trust value. We then define the

inferred trust tij [ ½0,1� from agent i to any agent j, which is somehow

based on the values of cv,ui
, which is somehow based on the values of

cv,ui
. In a simple situation where there is only one possible path

between any two given nodes (e.g. the network is a directed tree, as

the example on the left in Fig. 1), one could simply multiply the values

of c along the single path to obtain t, e.g. tAlice,Bob~c1c3, in the

example of Fig. 1 (throughout this work, a path is always considered

to be self-avoiding, i.e. no edge or vertex is visited twice). In general,

however, the situation may be more complicated, as in the example

on the right of Fig. 1, where there is a variety of possible (often

‘‘contradictory’’) transitive paths between most pairs of nodes.

Perhaps the simplest way of defining a trust metric would be to

consider only the best transitivity path between two nodes, i.e., the one

where the trust transitivity is maximum,

su,v~max P
feig

cei

� �
, Vfeig [PuVv, ð1Þ

where PuVv is the set of all paths from u to v, feig is the set of

edges in a given path, and ce is the direct trust associated with a

given edge (if there is no path from u to v, we consider the value of

su,v to be zero. Additionally, we consider the diagonal values of

best trust to be equal to one, i.e. su,u~1). This definition is an

attractive one, since it corresponds directly to the concept of

minimum distance on weighted graphs, which is defined as the

sum of weights along the path with the smallest sum. This is easily

seen by noticing that Pfeig cei
~expf{

X
feig

vei
g, with

vei
~{lncei

§0 being the edge weights (with the special value

of vei
~? if cei

~0). However, it is clear that this approach leads

to an optimistic bias, since the best path obviously favors large

values of trust, and uses only a small portion of the information

available in the network. As an illustration consider the network on

the right of Fig. 1, where the value of sAlice,Bob is

1|0:9|0:6~0:54, via Dave and Chuck. However, if Chuck is

directly consulted, the transitivity drops to 0:3|0:6~0:18. In

principle, there is no reason to prefer any of the two assessments

over the other. One may attempt to rectify this by considering

instead all possible paths between two nodes,

~ttu,v~

X
uVv

vuVv P
e[uVv

ce

X
uVv

vuVv

, ð2Þ

where vuVv is a weight associated with a given path uVv. It

should be chosen to minimize the effect of a very large number of

paths with very low values of trust, without introducing an

optimistic bias on the final trust value. One apparently good

choice is to consider the transitivity value of the path itself, but not

including the last edge,

vuVv~ P
e[uVv

cez(1{ce)d(e,e?v)½ �, ð3Þ

where e?v is the last edge in the path, and d is the Kronecker

delta. The usage of Eq. 3 is apparently appropriate since it not

only avoids a bias in the final value of ~ttu,v, but also vuVv has a

simple interpretation as being the value of trust on the final

recommendation, which is completed by the last edge. While this

may seem reasonable, and uses all available information in the

network, it has two major drawbacks: 1. It is very computation-

ally costly to consider all possible paths between two nodes, even

in moderately sized networks. It would represent an unreasonable

effort on part of the agents to use all this information. 2.

Computed as in Eq. 2, the value of ~ttu,v has the unsettling

behaviour of tending to zero, whenever the number of paths

become large (as they often are), even when paths are differently

weighted. Consider a simple scenario where the network is a

complete graph, i.e. all possible edges in the network exist, and all

of them have the same direct trust value c. Since there are
N{2

l

� �
l! paths of length lz1 between any two vertices, the

value of inferred trust between any two nodes can be calculated

as

Figure 1. Examples of trust networks. Left: A directed tree. Right: A more realistic example. The edges in blue are the ones which contribute to
the value of trust from Bob to Alice, according to Eq. 7.
doi:10.1371/journal.pone.0018384.g001
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~ttu,v~

XN{2

l~0

N{2

l

� �
l!c2lz1

XN{2

l~0

N{2

l

� �
l!cl

ð4Þ

~cN{1

exp
1

c2

� �
C N{1,

1

c2

� �

exp
1

c

� �
C N{1,

1

c

� � ð5Þ

ƒcN{1exp
1

c2
{

1

c

� �
, ð6Þ

where C is the upper incomplete gamma function, from which it is

easy to see that limN??~ttu,v~0 for cv1. This is an undesired

behavior, since one would wish that such highly connected

topologies (which often occur as subgraphs of social networks,

known as cliques) would result in higher values of trust. In order to

compensate for this one would have to use a more aggressive

weighting of the possible paths. We propose the following

modification, which combines some features of both previous

approaches: Instead of considering all possible paths, we consider

only those with the largest weights to all the in-neighbours of the

target vertex, as shown in Fig. 2. This leads to a trust metric

defined as

tu,v~

X
w

Aw,v sG\fvg
u,w

� �2

cw,vX
w

Aw,vsG\fvg
u,w

, ð7Þ

where the path weights are the best trust transitivity to the in-

neighbours, sG\fvg
u,w , which are calculated after removing the target

vertex from the graph (so that it cannot influence its own trust),

and Aw,v is the adjacency matrix, defined as

Aw,v~
1 if there is an edge w?v,

0 otherwise:

�
ð8Þ

Like for su,v, we assume that tu,v~0 if there is no path from u to v,

and tu,u~1, for any u. We note that the term sG\fvg
u,w

� �2

comes

from the multiplication of the trust being averaged, sG\fvg
u,w cw,v, and

its corresponding weight sG\fvg
u,w . We call this trust metric pervasive

trust, and it corresponds to the intuitive strategy of searching for the

nodes with a direct interaction with the target node (the final

arbitrators), and weighting their opinions according to the best

possible trust transitivity leading to them. It can be seen that this

definition does not suffer from the same problems of Eq. 2, again

by considering the same complete graph example, with uniform

direct trust c. Since in this situation every target vertex has N{2
in-neighbours different from the source, and the shortest path to

each of these in-neighbours is of length one, the value of pervasive

trust can be easily calculated as

tu,v~
(N{2)c3zc

(N{2)cz1
, ð9Þ

for u=v, which converges to tu,v&c2 for N&1. Thus the indirect

opinions with value c2 dominate the direct trust value c, but the

inferred value does not vanish, as with the definition of Eqs. 2 and 3.

Considering again the example on the right of Fig. 1, we obtain the

value tAlice,Bob~(0:92|0:6z(0:9|0:7)2|0:3)=(0:9z0:9|0:7)
&0:4, from the edges outlined in blue in the figure. Additionally,

the definition of pervasive trust works as one would expect in the

trivial example on the left of Fig. 1, where su,v and tu,v have the same

values.

We note that the numerical computation of su,v can be done by

using Dijkstra’s shortest path algorithm [7,8], which has a

complexity of O(NlogN). Thus the entire matrix su,v can be

calculated in O(N2logN) time. The same algorithm can be used to

calculate tu,v, but since each target vertex needs to be removed

from the graph, and thus a new search needs to be made for each

different target, this results in O(N3logN) time. It is possible to

improve this by performing searches in the reversed graph, i.e., for

each target vertex v, the contribution to tu,v from all sources u can

be calculated simultaneously, after v is removed, by performing a

single reversed search from each of the in-neighbours of v to each

source u. This way, the entire tu,v matrix can be computed in

O(kN2logN) time (where k~E=N is the average in/out-degree of

the network), which is comparable to the computation time of su,v

for sparse graphs.

1.1 Comparison with other trust metrics. Other trust

metrics have been proposed in the literature, mainly by computer

scientists, seeking to formalize the notion of trust in peer-to-peer

computer systems. Some are quite detailed, like the usage of

subjective logic by Jøsang et al [9], and others are comparable with

the simplistic approach taken in this work, such as Eigentrust [3]

and more recently TrustWebRank [10]. These last metrics are

based on the notion of feedback centrality [8], which is usually defined

as some linear system involving the adjacency matrix. The

Eigentrust metric requires the trust network to be a stochastic

matrix (i.e. the sum of the trust values of the out-edges of all

vertices must sum to unity) and the inferred trust values are given

by the steady state distribution of the corresponding Markov chain

(i.e. the left eigenvector of the stochastic matrix with unity

eigenvalue, hence the name of the metric). Thus the inferred trust

values are global properties, independent of any source vertex (i.e.

non-personalized), which is non-intuitive. Additionally, the

requirement that the trust network is stochastic means that only

relative values of trust are measured, and the absolute information is

Figure 2. Illustration of the paths used to calculate tu,v

according to Eq. 7. The vertices wi are the in-neighbours of v, and
the values si~sG\fvg

u,wi
are the values of best trust (Eq. 1) from u to wi , with

vertex v removed from the graph.
doi:10.1371/journal.pone.0018384.g002
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lost. Furthermore, such an approach is strongly affected by the

presence of loops in the network, which get counted multiple

times, which is also non-intuitive as far as trust transitivity is

concerned. The metric TrustWebRank [10] tries to fix some of

these problems by borrowing ideas from the PageRank [11]

algorithm, resulting in a metric which also requires a stochastic

matrix, but is personalised. However, in order for the algorithm to

converge, it depends on the introduction of an damping factor which

eliminates the contribution of longer paths in the network,

independently of its trust value. This is an a priori assumption

that these paths are not relevant, and may not correspond to

reality. Additionally, the strange role of loops in the network is the

same as in the Eigentrust metric. However, since there is no

consensus on how a trust propagates, and the notion of trust lacks

a formal, universally accepted definition, in the end there is no

‘‘correct’’ or ‘‘wrong’’ metric. We only emphasize that our

approach is derived directly from the simple notion of trust

transitivity, is easy to interpret, propagates absolute values of trust,

and makes no assumption whatsoever about the network topology,

and direct trust distribution.

Results

1 Trust percolation
Trust transitivity is based on the multiplication of direct trust

values, which may tend to be low if the paths become long.

Therefore, it is a central problem to determine if the trust

transitivity between two randomly chosen vertices of a large

network vanishes if the system becomes very large. This provides

important information about the viability of trust transitivity on

large systems. As a simple network model, we will consider

random directed networks with arbitrary in/out-degree distribu-

tions [12]. We will also suppose that the direct trust values in the

range between c and czdc will be independently distributed with

probability rc(c)dc, where rc(c) is an arbitrary probability density

function (PDF). The objective of this section is to calculate the

average best trust transitivity SsT, given by Eq. 1, and the average

pervasive trust StT, Eq. 7, between randomly chosen pairs of

source and target vertices. In random networks, the value of

average pervasive trust will be given simply as StT~SsTScT, since

the best paths to the in-neighbours of a given vertex are

uncorrelated, and the probability that they pass through the node

itself tend to zero, in the limit of large network size. Therefore we

need only to concern ourselves with the average best trust

transitivity SsT.

Directed networks are composed of components of different

types and sizes: For each vertex there will be an out-component,

which is the set of vertices reachable from it, and an in-component,

which is the set of vertices for which it is reachable. A maximal set

of vertices which are mutually reachable is called a strongly connected

component. Random graphs often display a phase transition in the

size and number of these components: If the number of edges is

large enough, there will be the sudden formation of a giant (in-,

out-, strongly connected) component, which spans a non-vanishing

fraction of the network [6,12]. The existence of these giant

components is obviously necessary for a non-vanishing value of

trust to exist between most vertices, but it is not sufficient, since it is

still necessary that the multiplication of direct trust values along

most shortest paths do not become vanishingly small. As an

illustration, consider a sparse graph (i.e. with finite average in/out-

degree), with a arbitrary in/out-degree distributions. In the

situation where there is a sufficiently large giant out-component

in the graph, the average shortest path from a randomly chosen

root vertex to the rest of the network is given approximately [12]

by

l&
ln(N=SkT)

ln(Sk2T=SkT)
, ð10Þ

independently of the out-degree distribution (as long as SkT and

Sk2T are finite positive), where N is the number of vertices, SkT is

the average out-degree and Sk2T is the average number of second

out-neighbours, and it is assumed that N&SkT and Sk2T&SkT
(an analogous expression for the distance from the entire network

to a randomly chosen target can be obtained by replacing SkT and

Sk2T with the average in-degree and second in-neighbours, SjT
and Sj2T respectively). Since the edges are weighted, the average

length of the best paths can differ from l, but can never be smaller.

Thus, an upper bound on the average best trust is given by

SsT~o(maxfcigl
),

where maxfcig is the maximum value of direct trust in the

network. In the situation where maxfcigv1, we have that

limN??SsT~o(0), since limN?? l~?. Therefore, if there are

no values of c~1 in the network, the average trust will always be

Figure 3. Neighbourhood of vertex v with out-neighbours fwig
with direct trust fcig. The best trust from v to an arbitrary vertex u,
sv,u , is given as a function of fcig and fswi ,ug, according to Eq. 11.
doi:10.1371/journal.pone.0018384.g003

Figure 4. Schematic representation of the self-consistency for rz(sz) in Eq. 14. Each term corresponds to the probability of the vertex
having a given number of out-neighbours, and the maximum best trust transitivity being equal the desired value.
doi:10.1371/journal.pone.0018384.g004
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zero in sparse networks. The only possible strategies for non-

vanishing values of average trust is either to have a non-zero

fraction of c~1 (which we will call absolute trust), or for the network

to be dense, such that l remains finite for N??.

With the above consideration in mind, we now move to

calculate the average trust transitivity values. We will obtain a self-

consistency condition for the distribution of best trust transitivity

values, by describing the direct neighbourhood of a single vertex,

similarly to what was done in [12] to obtain the distribution of

component sizes. For simplicity, we will consider only the situation

where the in- and out-degrees of the vertices are uncorrelated. The

approach is based on the following observation. Consider two

randomly selected vertices, v and u, and the best trust from v to u,

s:sv,u, which is distributed according to a PDF rs(s). Let fwz
i g

be the set of out-neighbours of v (we assume that the probability of

u[fwz
i g vanishes for N??), with direct trust values fcig, as

illustrated in Fig. 3. It is clear that the value of s can be written as a

function of the best trust from each out-neighbour wz
i to u, swz

i
,u,

as

s~maxfciswz
i

,u
g: ð11Þ

We note that an analogous equation can be obtained in the

opposite direction, by considering the in-neighbours fw{
i g of u,

with direct trust values fc’ig, and their best trust values fsv,w{
i
g,

s~maxfc’isv,w{
i
g: ð12Þ

Each equation above can be used to establish a self-consistency

equation for appropriately defined auxiliary distributions, which

can be combined to obtain rs(s), as will be explained below. The

main intuitive notion which will be explored is that on

uncorrelated random graphs, the properties of a given vertex

and its out/in-neighbours should be the same on average.

Therefore, certain distributions associated with variables on the

left hand side of Eqs. 11 and 12, are also associated with variables

which appear on the right hand side. In order to express the self-

consistencies in detail, we need to introduce two auxiliary

variables sz and s{ and their PDFs rz(sz) and r{
s (s{). The

PDF rz
s (sz) will be associated with Eq. 11 and the out-degree

distribution, and r{
s (s{) with Eq. 12 and the in-degree

distribution. Without loss of generality, we describe only the

self-consistency for rz
s (sz) in detail, since the development for

r{
s (s{) can be obtained in an entirely analogous fashion, by

replacing the out-degree with the in-degree. In order to transform

Eq. 11 into a self-consistency equation, we need to define yet

another auxiliary distribution, ~bbz(x), which is the cumulative

probability that szcvx, with c being the direct trust, distributed

according to rc(c), given by

Figure 5. Average values of best trust SSsTT and pervasive trust SStTT as a function of the fraction of edges with absolute trust c. Top
left: Networks with Poisson in- and out-degree distributions, and uniform trust distribution. Top right and bottom right: Poisson distribution, and
single-valued trust distribution. Bottom left: Zipf distribution, and single-valued trust distribution. Solid lines correspond to analytical solutions, and
symbols to numerical realizations of several networks of different sizes: 104 (red), 105 (green) and 106 (blue) nodes. The dashed line shows the average
direct trust ScT~(cz1)=2.
doi:10.1371/journal.pone.0018384.g005
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~bbz(x)~

ð1

0

dcrc(c)~rrz
s (x=c), ð13Þ

where ~rrz
s (sz)~

Ð sz

0
dxrz

s (x) is the cumulative distribution of sz.

Now, if we suppose that the best trust values fswz
i

,ug from the out-

neighbours fwz
i g of v are distributed according to rz

s (swz
i

,u), we

obtain that the cumulative probability that the right hand side of

Eq. 11 is less than x is given by ½~bbz(x)�k, where k is the out-degree

of vertex v. A full self-consistency equation for rz
s (sz) can be

obtained by supposing that the value of s is distributed according

to the same distribution as swz
i

,u, and considering all the possible

out-degrees and their respective probabilities, as follows (see Fig. 4):

The cumulative probability that svrzsz, where rz is an

arbitrary value which will not influence the self-consistency, will

be given by the sum of the probabilities that vertex v has out-

degree k multiplied by the cumulative probability that

maxfc’isv,w{
i
gvrzsz for all k out-neighbours. Concisely, this

can be expressed as

~rrz
s (sz)~

X
k

pk½~bbz(sz)�k, ð14Þ

where pk is the out-degree distribution. Note that while Eq. 14 is a

self-consistency condition from which rz
s (sz) can be obtained

(given rc(c) and pk), it cannot be used to obtain rs(s) directly,

because of the arbitrary value rz which does not influence Eq. 14.

We note however that, as mentioned previously, Eq. 12 can be

used to obtain an equation for s{ and r{
s (s{) which is entirely

analogous to Eq. 14, with pk replaced by the in-degree distribution

pj . This equation is also not affected by an analogous arbitrary

value r{. Since we have two self-consistency relationships which

are defined up to two arbitrary values, they can be used to

complement each other by formulating the ansatz that rz~s{

and r{~sz, which leads to

s~szs{: ð15Þ

With this connection it is possible to obtain rs(s) from rz
s (sz) and

r{
s (s{) simply as

rs(s)~

ð1

0

dszrz
s (sz)r{

s (s=sz)=sz, or ð16Þ

~

ð1

0

ds{rz
s (s=s{)r{

s (s{)=s{, ð17Þ

and the average SsT~
Ð 1

0
dssrs(s) more directly as

SsT~

ð1

0

ð1

0

ds{dszs{szr{
s (s{)rz

s (sz) ð18Þ

~Ss{TSszT: ð19Þ
By rewriting Eq. 14 in terms of the generating functions of the in-

and out-degree distributions,

G(z)~
X

j

pjz
j F (z)~

X
k

pkzk, ð20Þ

one obtains the self-consistency equations in a more compact

form,

~rr{
s (s)~F (~bb{(s)) ð21Þ

~rrz
s (s)~G(~bbz(s)): ð22Þ

These are integral equations, for which there are probably no

general closed form solutions. However, it is possible to solve them

numerically by successive iterations from an initial distribution,

which we chose as ~rr0(s)~H(s{1), where H(x) is the Heaviside

step function. From the numerical solutions the average values can

be obtained as Ss{T~

ð1

0

dsr{
s (s)s~1{

ð1

0

ds~rr{
s (s) (where the

last expression is obtained by integration by parts), and in

analogous fashion for SszT. The average value of best trust

transitivity SsT is then given by Eq. 19.

We turn now to the conditions necessary for non-vanishing

average trust transitivity. Both Eqs. 21 and 22 accept the trivial

solution ~rr{=z
s (s)~H(s), which corresponds to r{=z

s (s)~d(s), i.e.

the average best trust is zero. As discussed previously, for other

solutions to be possible, we need to consider a non-vanishing

fraction of edges with absolute trust c~1 in the network. Here we

will consider direct trust distributions of the form,

rc(c)~cd(c{1)z(1{c)r’c(c), ð23Þ

which correspond to a fraction c of edges with c~1, and a

complementary fraction (1{c) with c given with probability

density r’c(c). We will consider two different versions of r’c(c): A

uniform distribution r’c(c)~1, and a single-valued distribution

r’c(c)~d(c{g), with g~1=2. We will use two different in/out-

degree distributions, the Poisson and Zipf, and their respective

generating functions,

pj~
SjTje{SjT

j!
G(z)~eSjT(z{1) ð24Þ

Table 1. Summary of statistics for the whole PGP network
(above) and the largest strongly connected component
(below).

N E SjT r a c

2513677 703142 &0:28 0:45 {0:02152(12) 0.02321(9)

39796 301498 &7:58 0:69 0:0332(3) 0:461(2)

N is the number of vertices (keys), and E is the number of edges (signatures),
SjT is the average in-degree, r is the average reciprocity, a is the assortativity
coefficient and c is the average clustering coefficient.
doi:10.1371/journal.pone.0018384.t001
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pj~
j{t

f(t)
G(z)~

Lit(z)

f(t)
, ð25Þ

where f(t) is the Riemann f function, and Lin(x) is the nth

polylogarithm of x. For simplicity, we will consider only the

situation where pj~pk, and both the in-degree j and the out-

degree k are independently distributed.

In Fig. 5 are plotted the values of SsT and StT, as a function of

c, for the different distributions. It is also compared with numerical

computations on actual network realizations of different sizes. The

main feature observed is a first-order transition from vanishing

trust to positive trust, at specific values of c. This is an interesting

feature, since it seems at first to be at odds with traditional

percolation theory, which predicts a second-order transition.

However, we point out that the order parameter SsT is very

different from what usually characterises a percolation transition,

namely the relative size of the largest connected component.

Although we used a similar technique to obtain SsT, there is no a

priori reason to expect its transition to be continuous, and indeed it

seems not to be the case. It is possible, however, to identify a very

direct connection to the conventional percolation transition, given

by the values c� where the transition for SsT occurs: If one

considers the subgraph composed of all the vertices and only the

edges with c~1, it can be easily concluded that this subgraph is a

random graph on its own, since the values of c are randomly

distributed on the edges. Its in/out-degree distributions will in

general be different than for the complete graph, with an average

given by cSkT. For a Poisson distribution, the usual percolation

transition occurs when the average in/out-degree is one [12],

which, for the c~1 subgraph, corresponds to c�~1=SkT. These

are indeed the transition points observed for SsT, when in/out-

degree distributions are Poisson. Therefore, the transition values

c� correspond exactly to the critical values of the formation of a

giant component of the subgraph composed only of edges with

c~1. It is worth observing that on finite graphs, the average trust

does not vanish very rapidly, and is still non-zero for relatively

large networks with N~106 vertices, even when c~0. This

seems to be simply a finite size effect, intensified by the the so-

called small-world property, where the average shortest path

scales slowly as l*lnN, as in Eq. 10. As can be seen in in Fig. 5,

for some of the networks of size up to 106 vertices, the values of

vsw below the transition have not yet converged to a value

which no longer depends on N, which clearly indicates a finite

size effect. This is further corroborated by the values of SsT for

c~0, which are sometimes above zero, even though in this

situation they must be equal to zero in the limit N??, as

explained in detail previously. This very strong finite size effect

means also that in practical situations where networks are large

but finite, cwc� it is not a strictly necessary condition for system-

wide trust propagation.

Another interesting feature is the behaviour of the average trust

in graphs with Zipf in/out-degree distribution. There, the

transition to positive trust is of second order, and the critical

points are also c~1=SkT. Additionally, the values of average trust

are smaller than in networks with Poisson in/out-degree

distribution and the same average in/out-degree, for intermediary

values of c after the transitions. This is due to the smaller path

multiplicity of graphs with scale-free distribution: Even though the

Figure 6. Number of keys and signatures as a function of time for the strongly connected component of the PGP network, and
waiting time distribution between new keys and signatures. The straight lines are power-laws Dt{j , with j~1:3 (top) and j~0:18 (bottom).
doi:10.1371/journal.pone.0018384.g006
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average shortest path length is smaller in such graphs, the number

of alternative paths is also smaller, due to the dominance of

vertices with smaller in/out-degree. Thus, if the shortest path

happens to have a small trust value, there will be a higher

probability there will not be an alternative path. In Fig. 5 it is

shown also the average best trust for 1vtv2, for which the

average in/out-degree diverges. For such dense networks, the

values of SsT are above zero for all values of cw0, which means

that any small (but existing) fraction of edges with c~1 can be

used by most shortest paths in this case.

2 The Pretty Good Privacy (PGP) Network
In this section we investigate trust propagation on the Pretty

Good Privacy (PGP) network. In a broad manner PGP (or more

precisely the OpenPGP standard [13]) refers to a family of

computer programs for encryption and decryption of files, as well

as data authentication, i.e. generation and verification of digital

signatures. It is often used to sign, encrypt and decrypt email. It

implements a scheme of public-key cryptography [14], where the

keys used for encryption/decryption are split in two parts, one

private and one public. Both parts are related in way, such that the

Figure 7. Several statistical properties of the PGP Network. Top left: In- and out-degree distributions, pj and pk respectively. The solid line
corresponds to a power-law with exponent 2:5. Top right: Average in- and out-degree of the nearest out-neighbours, as a function of the in- and
out-degree. Bottom left: Average lustering coefficient as a function of in- and out-degree. Bottom right: Distribution of community sizes, for the
unmodified and shuffled versions of the network. The solid lines correspond to power-laws with exponent 2:3 (top) and 3:8 (bottom).
doi:10.1371/journal.pone.0018384.g007

Figure 8. Reciprocity statistics of the PGP network. Left: Average out-degree as a function of the in-degree of the same vertex. Right:
Average edge reciprocity, as a function of the in or out-degree of the source vertex.
doi:10.1371/journal.pone.0018384.g008
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private key is used exclusively for decryption and creation of

signatures, and the public key only for encryption and signature

verification. Thus any user is capable of sending encrypted

messages and verifying the signature of a specific user with her

public key, but only this user can decrypt these messages and

generate signatures, using her private key, which she should never

disclose. The public keys are usually published in so-called key

servers, which mutually synchronize their databases, and thus

become global non-centralized repositories of public keys.

However, the mere existence of public key in a key server,

associated with a given identity (usually a name and an email

address) is no guarantee that this key really belongs to the

respective person, since there is no inherent verification in the

submission process. This problem is solved by the implementation

of the so-called web of trust of PGP keys, whereby a user can attach

a signature to the public key of another user, indicating she trusts

that this key belongs to its alleged owner. The validity of a given

key can then be inferred by transitivity, in a self-organized

manner, without the required presence of a central trust authority.

As such, this system represents an almost perfect example of a trust

propagation through transitivity.

As a rule, key signatures should only be made after careful

verification, which usually requires the two parties to physically

meet. Such a requirement transforms the web of trust into a

snapshot of a global social network of acquaintances, since the vast

majority of keys correspond to human users, which tend to sign

keys of people with which they normally interact. There is also a

tendency to sign keys (upon verification) from people which do not

belong to a close circle of acquaintances, with the sole purpose of

strengthening the web of trust with more connections. This

tendency is well reflected by the so-called ‘‘key signing parties’’,

where participants meet (usually after a large technological

conference) to massively sign each other’s keys [15]. Thus the

structure of the PGP network reflects the global dynamics of self-

organization of human peers in a social context.

This section is divided in two parts. In the first part we present

some aspects of the topology and temporal organization of the

network. In the second part we analyze the trust transitivity in the

network, in view of the trust metric we discussed previously.

2.1 Network topology. The PGP network used in this work

was obtained from a snapshot of the globally synchronized SKS key

servers (available at http://key-server.de/dump/) in November

2009. It is composed of N&2:5|106 keys and E&7|105

signatures with a very low average in-degree of SjT~0:28. This

means that many keys are isolated and contain no signatures.

Therefore we will concentrate on the largest strongly connected

component, i.e. a maximal set of vertices for which there is a path

between any pair of vertices in the set. The number of vertices

N&4|104 in this component is much smaller, but the network is

much denser, with on average SjT&7:58 signatures per key (see

summarized data in table 1). It represents the de facto web of trust,

since the rest of the network is so sparsely connected that no trust

transitivity can be inferred from it. We note that keys may have

multiple ‘‘subkeys’’ which correspond to different identities (usually

different email addresses from the same person) and which can

individually sign other subkeys. For simplicity, in this work we have

collapsed subkeys into single keys, and possible multiple signatures

into a single signature. We have also discarded invalid, and revoked

keys and signatures.

The number of keys and signatures in the strongly connected

component has been increasing over time, as shown in Fig. 6. The

number of keys (which are now valid) was approximately the same

for some time and then slightly decreased for a period up to

around 2002, and has been increasing with an approximately

constant rate since then. We note that the number of keys may

decrease, since keys can expire or be revoked. The number of

signatures, on the other hand, seems to be increasing with an

accelerated rate, with an approximately constant acceleration,

which is similar to the rate of growth of the number of keys. This

means that the average in/out-degree of the network is increasing

with time, as can be seen in Fig. 6. Keys and signatures grow in an

organized manner, as shown by the waiting time distribution

between the creation of two subsequent keys or signatures, as

shown in Fig. 6. These distributions are broad for several orders of

magnitude, from the order of seconds to days, approximately

following a power-law in this region. The fact that keys and

signatures are often created only seconds apart, and the waiting

time distribution lacks any discernible characteristic scale, except

Table 2. The eleven keys with the largest number of signatures in the network, their respective in-degree j, out-degree k, average
in-degree of the nearest out-neighbours SjTout, clustering coefficient c, and date of creation.

Key ID Name j k SjTout c Date

D2BB0D0165D0FD58 CA Cert Signing Authority (Root CA)
,gpg@cacert.org.

965 1507 17:5(8) 0:0031 2003-07-11

2F951508AAE6022E Karlheinz Geyer (TUD)
,geyerk.fv.tu@nds.tu-darmstadt.de.

661 744 59(2) 0:0660 2004-12-07

DBD245FCB3B2A12C ct magazine CERTIFICATE
,pgpCA@ct.heise.de.

597 1348 18:3(12) 0:0033 1999-05-11

69D2A61DE263FCD4 Kurt Gramlich ,kurt@skolelinux.de. 406 644 71(3)) 0:0807 2002-10-17

948FD6A0E10F502E Marcus Frings ,protagonist@gmx.net. 387 381 82(5) 0:1110 2002-03-22

29BE5D2268FD549F Martin Michlmayr ,tbm@cyrius.com. 385 436 56(4) 0:0499 1999-08-04

566D362CEE0977E8 Jens Kubieziel ,jens@kubieziel.de. 369 414 73(4) 0:1098 2002-08-23

3F101691D98502C5 Elmar Hoffmann ,elho@elho.net. 352 1 348 0:1122 2005-02-17

957952D7CF3401A9 Elmar Hoffmann ,elho@elho.net. 348 311 84(5) 0:1086 2005-02-17

CE8A79D798016DC7 Josef Spillner ,josef@coolprojects.org. 344 429 71(4) 0:1007 2001-05-22

89CD4B21607559E6 Benjamin Hill (Mako) ,mako@atdot.cc. 325 319 70(5) 0:0801 2000-07-13

doi:10.1371/journal.pone.0018384.t002
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for a cut-off at large times (*1 day), shows that the network does

not grow in a purely random fashion (which would generate

exponentially-distributed waiting times, as in an homogeneous

Poisson process. If the Poisson process is non-homogeneous, with a

constantly accelerating rate, the waiting times would follow instead

a Weibull distribution, which also has an exponential tail), and

serves as a signature of an underlying organized growth process.

We will characterize the topology of the network by its in/out-

degree distribution and nearest-neighbours in/out-degree corre-

lations, as well as other standard network measures such as

clustering [16], reciprocity [17] and community structure [18]. We

will pay special attention to the most highly connected vertices,

some of which correspond to so-called certificate authorities and

display a distinct connectivity pattern, which has a special meaning

for trust propagation.

The network has very heterogeneous in/out-degree distribu-

tions, as can be seen in Fig. 7, with some keys having on the order

of 103 signatures. They are possibly compatible with a power-law

with exponent *2:5 for large in/out-degrees, but the distributions

are not broad enough for a precise identification. The number of

signatures on a given key (the in-degree) and the number of

signatures made by a the same key (the out-degree) are strongly

correlated, as can be seen in Fig. 8, which shows the average out-

degree SkT as a function of the in-degree j. This is explained by

the high reciprocity of the edges in the network, i.e. if a key a signs

a key b, there is a very high probability that key b signs key a as

well. This is easy to understand, since key verification usually

requires physical presence, and both parties take the opportunity

to mutually verify each other keys in the same encounter. The

edge reciprocity [17] is quantified as the fraction r~n<e =E, where

n<e is the number of reciprocal edges and E is the total number of

edges in the network. The PGP network has a high value of

r~0:69. The reciprocity is distributed in a slightly heterogeneous

fashion across the network, as is shown in Fig. 8, where is plotted

the average reciprocity of the edges as a function of the in- and

out-degrees of the source vertex. It can be seen that the keys with

very few signatures tend to act in a very reciprocal manner,

whereas the more prolific signers receive less signatures back. This

heterogeneity is further amplified when one considers the in/out-

degree correlation between nearest-neighbours, as shown in Fig. 7,

where it is plotted the average in- and out-degree, SjTnn and

SkTnn, of the nearest out-neighbours of the vertices in the network,

as a function of the in- and out-degree of the source vertex, j and

k. The in/out-degree correlation shows an assortative regime for

intermediary in/out-degree values (*10 – 40), meaning that

vertices with higher in/out-degrees are connected preferentially

with other vertices with high degree, but also some dissortative

features for vertices with very high and very low in/

out-degrees, where vertices with low in/out-degree are connected

preferentially with vertices with high in/out-degree, and vice versa.

This mixed connectivity pattern leads to a very low scalar

assortativity coefficient [19] of a~0:0332(3), which is an

unusually small value for social networks [20] (the scalar

assortativity coefficient is defined for an undirected graph as

Figure 9. Two example communities of the PGP network, and their in- and out-degree distributions. The colors on the vertices
correspond to the top-level domain (TLD) of the email addresses. Top: Community containing the CACert.org certificate authority. Bottom:
Community composed mostly of Austrian email addresses (.at TLD).
doi:10.1371/journal.pone.0018384.g009

Trust Transitivity in Social Networks

PLoS ONE | www.plosone.org 10 April 2011 | Volume 6 | Issue 4 | e18384



a~
1

s2
q

X
ij

ij eij{qiqj

� 	
where eij is the fraction of edges that

connect vertices of degrees i and j, qi~
X

j
eji and sq is the

standard deviation of the distribution qi. This definition yields

values in the range a[½{1,1�, with a~{1 for networks which are

maximally dissortative, and a~1 for maximally assortative. For

the PGP network, the direction of the edges was ignored in the

calculation of a). These differences become more clear when one

investigates more closely the keys with the largest in-degree in the

network, as it is shown in table 2. As with the rest of the network,

most of the largest keys belong to individuals, with the exception of

the first and third keys with the most signatures, which belong to

entities. These entities are known as certificate authorities and are

created by organizations with the intent of centralizing certifica-

tion. The largest authority is the community-driven CAcert.org

which issues digital certificates of various kinds to the public, free

of charge (See the CAcert.org website: http://cacert.org). The

second largest authority is the German magazine c’t, which

initiated a PGP certification campaign in 1997 (A second, older c’t

key is also still among the largest hubs, with 289 signatures. See

http://www.heise.de/security/dienste/Krypto-Kampagne-2111.

html for more details). These authorities interact with individuals

in a different manner, acting as a central mediator between loosely

connected peers. This is evident by the low clustering coefficient

(c&0:003), which is one order of magnitude lower than the other

(human) hubs (c*0:05 – 0:11), and the average in-degree of their

out-neighbours, which is also significantly smaller than their

human counterparts (*17 vs. 60 – 80, respectively). These

different patterns represent distinct paradigms of trust organiza-

tion: Authority vs. Community-based; each with its set of

advantages and disadvantages. An authority-based scenario relies

on few universally trusted vertices which mediate all trust

propagation. In this way, the responsibility of key verification is

concentrated heavily on these vertices, which reduces the total

amount of verification necessary, and is thus more efficient. The

most obvious disadvantage is that the authorities represent central

points of failure: if an authority itself is not trusted, neither will be

the keys it certifies. Additionally, this approach may increase the

probability of forgery, since only one party needs to be deceived in

order for global trust to be achieved. The complementary scenario

is the community-based approach, where densely-connected

clusters of vertices provide certification for each other. This

obviously requires more diligence from the participants, but has

the advantage of larger resilience against errors, since the

multiplicity of different paths between vertices is much larger. In

the PGP network both these paradigms seem to be present

simultaneously, as can be observed in detail by extracting its

community structure [18]. This is done by obtaining the

community partition of the network which maximizes the

modularity Q of the network, defined as

Q~
1

2E

X
ij

Aij{
kikj

2E


 �
d(si,sj), ð26Þ

where E is the total number of edges, Aij is the adjacency matrix

of the network, ki is the degree of vertex i, si is the community

label of vertex i and d is the Kronecker delta. According to this

definition, a partition with high values of Q is possible for networks

with densely-connected groups of vertices, with fewer connections

between different groups. The maximum value of Q~1 is

achieved only for "perfect" partitions of extremely segregated

communities. We note that the above definition is meaningful only

for undirected graphs, and thus we apply it to the undirected version

of PGP network, where the direction of the edges is ignored. We

used the method of Reichardt et al [21] to obtain the best

partition, which resulted in modularity value of Q&0:73. As a

comparison, we computed the modularity for a shuffled version of

the network, where the edges were randomly placed, but the in/

out-degrees of the vertices were preserved, which resulted in the

significantly smaller value Q&0:03. The distribution of commu-

nity sizes seems to have a power-law tail with exponent *2:3
(*3:8 for the shuffled network), characterizing a scale-free

structure. By isolating the individual communities, one can clearly

see strong differences between those in the vicinity of the certificate

authorities and ‘‘regular’’ communities. In Fig. 9 is shown two

representative examples of these two types of communities: On top

is the community around the CAcert.org certificate authority, and

is composed of 677 keys, with an average 6:9 signatures per key. Its

in/out-degree distributions are shown on the side, from which the

large discrepancy between the most central vertex and the rest of

the community can be observed. The colors on the vertices

correspond to the Top-Level Domain (TLD) of the email

addresses associated with each key, and serve as a coarse

indication of the geographical proximity of the individuals. For

the community containing CAcert.org, a high degree of

geographical heterogeneity is present. This is corroborated also

by the fact that there are fewer direct edges between individuals.

Figure 10. Average best trust SSsTT and pervasive trust SStTT, as a function of the fraction of edges with absolute trust c, for the PGP
network. The different curves correspond to the different trust distribution scenarios described in the text.
doi:10.1371/journal.pone.0018384.g010
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On the bottom of Fig. 9 it is shown a community composed almost

exclusively of keys with Austrian email addresses (.at TLD) which

show a completely different pattern, lacking any central authority.

It is smaller, with 287 keys, but denser, with 10 signatures per key.

This pattern is repeated for most of the largest communities in the

graph. Some non-centralized communities have a broader in/out-

degree distribution than the Austrian community, but only those

associated with certificate authorities display a centralized pattern

such as in the top of Fig. 9.

We now turn to the trust propagation on the PGP network.

2.2 Trust transitivity. In order to properly investigate trust

transitivity in the PGP network, it is necessary to know the direct

trust values associated with each signature, which indicate the level

of scrutiny in the key verification process. The OpenPGP standard

[13] defines four trust ‘‘classes’’ for signatures, according to the

degree of verification made. Unfortunately, these classes are

universally ignored, and most signatures fall into the ‘‘generic’’

class, from which no assertion can be made. Since the actual level

of verification of the keys is in fact unknown, we will investigate

hypothetical situations which represent different strategies the

PGP users may use to verify keys. In the last section we have

shown that the network is composed of different connection

patterns: community clusters and centralized trust authorities.

Depending on how these connection patterns are judged more

trustworthy, the values of transitive trust will be different. Here we

will consider three possible scenarios: 1. Random distribution, 2.

Authority-centered trust, and 3. Community-centered trust. In all

situations we will consider that all signatures have the same trust

value of c~1=2, except for a fraction c of edges which have

absolute trust c~1, which is selected as follows for each situation:

1. Random: The cE edges are chosen randomly among all E edges.

2. Authority-centered: The cE edges with the largest betweenness [22]

be are chosen, which is defined as

be~
X
i=j

sij(e)

sij

, ð27Þ

where si,j is the number of shortest paths from vertex i to j, and

sij(e) is the number of these paths which contain the edge e.

This distribution favours edges adjacent to nodes with high in/

out-degree, and also edges which bridge different communities.

3. Community-centered: The cE edges with the largest edge clustering te

are chosen, which is defined as

te~

P
i As(e),iAi,t(e)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ks(e)jt(e)

p , ð28Þ

where s(e) and t(e) are the source and target vertices of edge e,

Ai,j is the adjacency matrix, and ji and ki are the in- and out-

degrees of vertex i, respectively. This quantity measures the

density of out-neighbours of the s(e) which are also in-

neighbours of t(e), and simultaneously the density of in-

neighbours of t(e) which are out-neighbours of s(e) (this

definition is equivalent to a normalized version of the edge

multiplicity defined in [23–25]). This distribution favours edges

with belong to densely-connected communities. For instance,

the edges of a clique (i.e. a complete subgraph) will all have the

value te~1{1=(n{1), where n is the size of the clique, which

will approach the maximum value te?1 for a sufficiently large

clique size.

In Fig. 10 it is shown the average best trust transitivity, Eq. 1

and average pervasive trust Eq. 7 for the PGP network, as a

function of c according to the different approaches. We note that

no discontinuous transition is seen. This is probably due to the

numerous topological differences from purely random networks

(i.e. correlations, reciprocity, community structure, clustering), as

described previously, as well as relatively small size of the

network, all of which may cause the transition to disappear. The

authority-centered trust leads to significantly higher values of SsT
and StT, and the community-based distribution to the lowest

values. This is expected, since distributing trust according to the

edge betweenness essentially optimizes trust transitivity, putting the

highest values along the shortest paths between vertices. The

Figure 11. Average best in-trust SSsinTT and pervasive in-trust SStinTT, as a function of the in-degree j and the fraction of edges with
absolute trust c, for the PGP network. The different plots correspond to the different trust distribution scenarios described in the text: (a)
Random distribution, (b) authority-centered distribution and (c) community-centered distribution. The plots (d) correspond to a community-centered
distribution, done on a shuffled version of network, with the same degree sequence.
doi:10.1371/journal.pone.0018384.g011
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community-centered approach does exactly the opposite, favor-

ing intra-community connections, and results in the lowest values

of average trust. Thus, favoring the hubs and authorities is clearly

more efficient, if the objective is solely to increase the average trust

in the network. However, pure efficiency may not be what is

desired, since it relies in the opinion of a much smaller set of

vertices, which eases the job of dishonest parties, which need only

to convince these vertices in order to be trusted by a large portion

of the network. Some of these issues become more clear by

observing how nodes with different in-degrees receive trust with

each of these strategies, as show in Fig. 11. More specifically,

what is shown is the average pervasive and best in-trust for vertices

with different in-degrees, which are respectively defined as

sin
v ~

X
u=v

su,v=(N{1) and tin
v ~

X
u=v

tu,v=(N{1), for a

given vertex v. For a random distribution of direct trust, the

vertices with higher in-degree receive a natural bias in the values

of average best in-trust, SsinT, since the shortest paths leading to

them tend to be smaller. But the fair nature of the definition of t
compensates for this, and the values of StinT are almost

independent of the in-degree of the vertices. The highly

connected nodes become more trusted only with the authority-

centred approach. Interestingly, in this situation the nodes with

the smallest in-degrees also receive a large value of trust, since

most of them are ‘‘fringe’’ nodes connected only with the hubs

(see Fig. 7). The vertices with intermediary in-degrees are thus left

in the limbo, and are in effect penalized for their community

pattern. The almost symmetrically opposite situation is obtained

with the community-centered trust distribution, where both the

vertices with smallest and largest in-degrees receive the smallest

trust values, and the intermediary nodes are judged more

trustworthy due to their strong communities. We note that this

effect is not due simply to the way the values of trust are

distributed, but depend strongly on the existence of communities

in the network. This is evident when the same trust distribution is

applied to a shuffled version of the network, with the same in/

out-degree sequence, as is shown in Fig. 11. For such a network,

the community structure disappears, and the highly connected

nodes come again in the lead.

Discussion

We investigated properties of trust propagation on network

based on the notion of trust transitivity. We defined a trust metric,

called pervasive trust which provides inferred trust values for pairs of

nodes, based on a network of direct trust values. The metric

extends trust transitivity to the situation where multiple paths

between source and target exist, by combining the best trust

transitivity to the in-neighbours of a given target node, and their

direct trust to the target. The trust values so-obtained are

unbiased, personalized and well defined for any possible network

topology. Equipped with this metric we analyzed the conditions

necessary for global trust propagation in large systems, using

random networks with arbitrary in/out-degree distributions as a

simple model. We analytically obtained the average best trust

transitivity (as well as pervasive trust) as a function of the fraction c
of edges with absolute trust c~1. We found that there is a specific

value of c~c�, below which the average trust is always zero. For

c§c� the average value jumps discontinuously to a positive value.

Using the defined trust metric, we investigated trust propaga-

tion in the Pretty Good Privacy (PGP) network [4,5]. We gave an

overview of the most important topological and dynamical

features of the PGP network, and identified mixed connectivity

patters which are relevant for trust propagation: namely the

existence of trust authorities and of densely-connected non-

centralized communities. Based on these distinct patterns, we

formulated different scenarios of direct trust distribution, and

compared the average inferred trust which results from them. We

found that an authority-centered approach, where direct trust is

given preferentially to nodes which are more central, leads to a

much larger average trust, but at the same time benefits nodes at

the fringe of the network, which are only connected to the

authority hubs, and for which no other information is available.

Symmetrically, a community-centered approach, where edges

belonging to densely-connected communities are favoured with

more trust, results in less overall trust, but both the fringe nodes

and the authorities receive significantly less trust than average.

These differences are not simply due to the different ways the

direct trust is distributed, but rather to the fact that the dense

communities and the trust authorities are somewhat segregated.

These differences illustrate the advantages and disadvantages of

both paradigms of trust propagation, which seem to be coexist in

the PGP network. It also serves as an insightful example of how

dramatically the direct trust distribution can influence the

inferred trust, even when the underlying topology remains the

same.

In this work, we have concentrated on static properties of trust

propagation. However most trust-based systems are dynamic, and

change according to some rules which are influenced by the trust

propagation itself. One particularly good example is market

dynamics [1,2] where sellers (or borrowers) do not perform well if

they have a poor track record, which will be partially influenced by

trust. Thus, it remains to be seen how trust transitivity can be

carried over to such types of models, and what role it plays in

shaping their dynamics.
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