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Abstract

During development, precise temporal and spatial gradients are responsible for guiding axons to their appropriate
targets. Within the developing ventral midbrain (VM) the cues that guide dopaminergic (DA) axons to their forebrain
targets remain to be fully elucidated. Wnts are morphogens that have been identified as axon guidance molecules.
Several Wnts are expressed in the VM where they regulate the birth of DA neurons. Here, we describe that a precise
temporo-spatial expression of Wnt5a accompanies the development of nigrostriatal projections by VM DA neurons. In
mice at E11.5, Wnt5a is expressed in the VM where it was found to promote DA neurite and axonal growth in VM primary
cultures. By E14.5, when DA axons are approaching their striatal target, Wnt5a causes DA neurite retraction in primary
cultures. Co-culture of VM explants with Wnt5a-overexpressing cell aggregates revealed that Wnt5a is capable of repelling
DA neurites. Antagonism experiments revealed that the effects of Wnt5a are mediated by the Frizzled receptors and by
the small GTPase, Rac1 (a component of the non-canonical Wnt planar cell polarity pathway). Moreover, the effects were
specific as they could be blocked by Wnt5a antibody, sFRPs and RYK-Fc. The importance of Wnt5a in DA axon
morphogenesis was further verified in Wnt5a2/2 mice, where fasciculation of the medial forebrain bundle (MFB) as well as
the density of DA neurites in the MFB and striatal terminals were disrupted. Thus, our results identify a novel role of Wnt5a
in DA axon growth and guidance.
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Introduction

Dopamine (DA) neurons within the ventral midbrain (VM)

project to the striatum and prefrontal cortex forming the

nigrostriatal, mesocortical and mesolimbic pathways, which are

important for motor and cognitive functions. DA neuron

dysfunction is associated with a number of neurological and

psychiatric disorders. Abnormal development of the nervous

system may contribute to these disorders; hence, the importance

of understanding the processes involved in DA neuron maturation

and connectivity. Whilst the cues that orchestrate the birth of

midbrain DA neurons are well established, the signals regulating

DA neurite morphogenesis (including neurite growth, axon

guidance and synaptogenesis) are less well defined.

Several studies have identified cellular and molecular signals

that participate in establishing these pathways (see review by [1]),

including Ephrins [2–4], Semaphorins [5–9], Netrins and Slits

[10,11], Engrailed-1 [12,13], and Sonic hedgehog [14]. In this

study we asked whether Wnts also regulate DA axon morpho-

genesis.

Wnt1 and Wnt5a are important morphogens for VM

development, regulating proliferation, differentiation and survival

of DA neurons [15–24]. Wnts also participate in axon guidance

elsewhere in the central nervous system [25–30]. Specifically,

Wnt5a repels corticospinal axons [31–33], commissural axons [34]

and cortical axons in the corpus callosum [35,36], and promotes

neurite elongation of cortical neurons [33].

Wnt5a is a highly conserved diffusible protein whose signal is

transduced by Frizzled (Fz) receptors and/or co-receptors

including the atypical tyrosine kinases Ryk and Ror2. Dependent

on the receptor and cell type, Wnt5a has been shown to activate

three signaling pathways: the Wnt/b-catenin/canonical pathway,

the Wnt/calcium/non-canonical pathway, and the Wnt/planar

cell polarity (PCP)/non-canonical pathway [37–39]. However,

little is known about which of these pathways and downstream

signaling components mediate Wnt5a’s influence on axon growth

and guidance. Moreover, it is not known whether Wnt5a promotes

neuritogenesis and axonal growth of DA axons in the nigrostriatal

system. We therefore set out to determine whether Wnt5a plays a

role in DA axon growth and guidance and examined the

PLoS ONE | www.plosone.org 1 March 2011 | Volume 6 | Issue 3 | e18373



involvement of some of the candidate Wnt5a receptors and Wnt

signaling components.

Materials and Methods

Animals
Ethics statement. This study conformed to the Australian

National Health and Medical Research Council’s published Code

of Practice for the Use of Animals in Research, and experiments

were approved by the Florey Neuroscience Institutes animal ethics

committee (#07-040).

Embryos were isolated from time-mated C57BL/6 mice or

Sprague Dawley rats. Animals were time mated overnight and

visualization of a vaginal plug on the following morning was taken

as embryonic day (E) 0.5. B6;129S7-Wnt5atm1Amc/J (subsequently

referred to as Wnt5a2/2 mice) were obtained from Jackson

Laboratories (JAX, H Strain 004758) and maintained on a mixed

B6:129 background [40]. Wnt5a embryos were collected at E12

and E18.

In situ hybridization and immunohistochemistry
Embryos were isolated in ice-cold PBS, fixed overnight in 4%

paraformaldehyde, followed by overnight immersion in 30%

sucrose in PBS. Embryonic day 11.5 (E11.5), E12 and E14.5

embryos were cryosectioned on either a sagittal or coronal plane at

a thickness of 14 mm. E18 embryos were cryosectioned at 16 mm.

In situ hybridization (ISH) was performed as previously described

[41], using a DIG-labelled single-stranded RNA probe for Wnt5a

[40]. Following ISH, the tissue was again fixed using 4%

paraformaldehyde prior to immunohistochemistry for tyrosine

hydroxylase (TH; the rate-limiting enzyme in dopamine synthesis

and marker of DA neurons and neurites).

Immunohistochemistry was performed on 4% paraformalde-

hyde-fixed cultures and slides as previously described [20]. The

following primary antibodies were used: rabbit anti-TH (1:250 or

1:1500, PelFreez); sheep anti-TH (1:500, PelFreez); mouse anti-

bIII-tubulin (TUJ1; 1:1000, Promega). Appropriate fluorophore-

conjugated (Cy2 and Cy3, Jackson ImmunoResearch Laborato-

ries) secondary antibodies (or biotinylated secondary antibody

together with the Vector Laboratories ABC immunoperoxidase

kit) were used for visualization.

Quantitative real-time PCR
Given the lack of reliable antibodies to detect many of the Wnt

ligands and receptors histochemically, we relied on quantitative

real-time PCR (Q-PCR) to assess the expression of Wnt5a, Ryk

and Fz3 within VM, and more specifically within DA neurons.

Ventral midbrains were isolated and dissociated from E11.5

Tyrosine Hydroxylase-GFP (TH-GFP) reporter mice, in which all

DA neurons express GFP [42]. Dissections are described in further

detail below. At least five TH-GFP+ embryos were used for each

dissection with four independent dissections performed. Using

previously described methods [43], fluorescence-activated cell

sorting (FACS) was used to separate GFP+ cells (dopamine

neurons) from GFP2 cells (non-TH+ neurons within the VM) in

order to identify the source of Wnt5a, Ryk and Frizzled-3 in the

midbrain. Following sorting, total RNA was isolated using the

PicoPure kit (Arcturus). Alternatively, the ventral midbrain (VM),

dorsal midbrain (DM) and the rest of the embryo (E) were

microdissected from four independent E11.5 mouse litters.

Following tissue isolation, total RNA was isolated using the

RNeasy Micro kit (Qiagen).

RNA was reverse transcribed using Superscript III First-Strand

Synthesis supermix for qRT-PCR (Invitrogen) and Q-PCR was

carried out using the SYBR GreenERTM qPCR SuperMix

Universal (Invitrogen) on an ABI7700 sequence detection system

(Applied Biosystems, Foster City, CA) using the comparative

DDCT method [44]. Oligonucleotide sequences were as follows:

HPRT forward, 59- CTTTGCTGACCTGCTGGATT -39

HPRT reverse, 59- TATGTCCCCCGTTGACTGAT -3 9

Wnt5a forward, 59- AATAACCCTGTTCAGATGTCA -39

Wnt5a reverse, 59- TACTGCATGTGGTCCTGATA -39

Ryk forward, 59- CGCTCTGTCCTTTAACCTGC -39

Ryk reverse, 59- CCAGTTCAATCCTTTTCATGC -39

Fz3 forward, 59- CAGTCTGCTACATGAGGTG -39

Fz3 reverse, 59- CGCCACTAATATTGTCACCT -39

Ventral Midbrain Primary Cultures
The ventral midbrain of E11.5 and E14.5 mouse (or E13.5 rat)

embryos was microdissected in chilled L15 media (Invitrogen).

Note, stages in development of the dopamine systems occur

approximately 2 days later in rats than mice, hence E13.5 rat is

considered equivalent to E11.5 mouse. Whilst initial studies were

performed in mice, they were verified later in rats. Rat embryos

were used in all antagonism studies as greater volumes of VM

primary neurons can be obtained, necessary for the outlined

antagonism studies that required multiple conditions. The isolated

ventral midbrains were enzymatically dissociated in HBSS

containing 0.05% trypsin and 0.1% DNase for 12 minutes at

37uC. Cells were subsequently centrifuged and resuspended in

serum-free N2 medium consisting of a 1:1 mixture of F12 and

MEM supplemented with 15 mM HEPES buffer, 1 mM gluta-

mine, 6 mg/ml glucose (Sigma-Aldrich), 1 mg/ml bovine serum

albumin and N2 supplement (all purchased from Invitrogen). Cells

were seeded at a density of 125,000 cells per well in a 48-well plate

at 37uC, 5% CO2 for 72 hours.

Wnt5a recombinant protein (R&D Systems) was added to the

cultures at the time of cell seeding. For antagonism experiments

using secreted frizzled-related protein 1 (sFRP-1; 5 mg/ml, R&D

Systems), Wnt5a antibody (aWnt5a; 2 mg/ml, R&D Systems),

human RYK-Fc (3 mg/ml, see details below), goat anti-Frizzled3-

CRD (aFz3-CRD; 3 mg/ml, R&D Systems), Dickkopf-1 (Dkk1;

500 ng/ml, R&D Systems), casein kinase 1 inhibitor (D4476,

50 mM, Roche) or Rac-1 inhibitor (NSC233766, 500 nM,

Calbiochem), Wnt5a and the antagonist were added to the wells

15 minutes prior to seeding the VM cells.

To generate the RYK-Fc, the human RYK WIF domain

(residues 60–195 of Genbank accession number NP_002949.2)

was subcloned by PCR into pApex-3.Fc.FLAG, between an IL-3

signal peptide and the human IgG1 Fc domain, to create a fusion

protein with a carboxyl-terminal FLAG epitope tag. CHO-K1

cells were transfected with pApex-3.hRYKWD.Fc.FLAG using

FuGENE 6 (Invitrogen) and selection applied after 24 h (200 mg/

ml hygromycin B; Invitrogen). Stable colonies were picked after

7–9 days. The stable cell line hRYKWD.Fc.FLAG/CHO was

seeded into a medium FiberCell cartridge, 20 kDa (FiberCell

Systems), using DMEM (Invitrogen), 10% fetal bovine serum

(FBS) and 100 mg/ml hygromycin B. Extracapillary space media

from the FiberCell cartridge was collected every 2–3 d, filtered

using 0.22 mm filters (Millipore), and secreted protein was purified

using anti-FLAG M2 affinity gel (Sigma) as previously described

[45].

TH-immunoreactive (TH+) neurons from each primary VM

culture were analyzed from 3–5 independent cultures. Under all

culture conditions, sampling was commenced in the second field of

view from the left-hand side of the culture well. The first 30 TH+

cells found to be measurable (neurites intact and distinguishable

from other stained neurites, i.e. not intertwined with other TH+
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neurites) were quantified in order to avoid any potential sampling

bias. In each experiment, data was compared to the mean

normalized control value (set at 100%) to account for inter-

experimental variation. Photomicrographs of each DA neuron

(identified by TH+) were taken using a 206 objective (Olympus

IX71) and the following measurements obtained using NeuronJ

software (ImageJ, NeuronJ plugin, NIH): the total numbers of

neurites per DA neuron, the number of neurite branches, total

length of all neurites per neuron and the length of the dominant

neurite (the longest, most dominant neurite arising from the soma,

and thereby presumably the axon [46]).

VM primary cultures were also performed from Wnt5a2/2 and

littermate Wnt5a+/+ and Wnt5a+/2 mice. Given that single VM

were required for each culture, and the low yield of neurons

generated, each dissected VM was dissociated as describe above

and plated into a 96-well plate (50,000 cells/well). Cells were

cultured for three divisions (3DIV) prior to staining and

measurements of TH+ neurons. Wnt5a2/2 cultures were com-

pared to Wnt5a+/+ and Wnt5a+/2 littermates.

Immunoblotting
SN4741 cells were cultured in DMEM, 10% FBS, L-glutamine

(2 mM), penicillin/streptomycin (50 U/ml) and glucose (0.6%).

For analysis of intracellular Wnt signaling, 100,000 cells were

seeded in 12-well plates, grown overnight in the absence of serum

and stimulated for 2 hours in the same media with Wnt5a (0, 30,

100, 300, 1000 ng/ml; R&D Systems), Wnt5a (300 ng/ml) +
RYK-Fc (3 mg/ml) or Wnt5a (300 ng/ml) + aFz3-CRD (3 mg/ml;

R&D Systems). Preparation of lysates and immunoblotting were

carried out as previously described [47]. The following primary

antibodies were used: rabbit anti-Dvl2 (1:500, Santa Cruz) and

mouse anti-b-actin (1:3000, Sigma).

Co-culture explant assays
Neuronal c17.2 cells over-expressing Wnt5a (or the parental cell

line containing the empty vector i.e. mock) were cultured as

previously described [48]. Aggregates of the c17.2 cells were

generated by plating 50,000 cells per 20 ml droplet onto the

inverted lid of a 60 mm culture plate containing 1 ml PBS (to

maintain humidity). Cell aggregates formed within 48 hours and

were floated in N2 media prior to co-culture with VM explants.

The ventral midbrain of E11.5 or E14.5 mice was isolated in L15

media. Each VM was cut into approximately four segments.

To prepare a stock of collagen gel matrix for culture experiments,

10 mg of rat tail collagen (Roche) was dissolved in 3 ml of 0.2%

acetic acid. To polymerize the collagen, the collagen solution was

mixed with 0.2 M HEPES at a ratio of 8:1:1 and finally pH adjusted

using 1 M NaOH. VM explants were plated onto the culture dishes

(24-well plate) and excess media removed. 50 ml of the collagen gel

was then applied to the explant. Aggregates of c17.2 cells over-

expressing Wnt5a (or mock-transfected cells) were inserted in the gel

matrices approximately 300–500 mm from the explants. The

collagen was allowed to polymerize at 37uC for 20 minutes. After

polymerization of the gel, 500 ml N2 media was added to each well

and left in culture for 72 hours. Explants were fixed in 4%

paraformaldehyde for 30 minutes prior to immunocytochemistry.

To quantify chemoattraction, the field was divided into four

orthogonal quadrants and the number of TH+ fibers in the distal (D)

and proximal (P) quadrants, with respect to the cell aggregate, were

counted. For each explant, the proximal:distal ratio was calculated

and used as a chemotaxic index. For antagonism of the chemotaxic

effects of Wnt5a, casein kinase 1 inhibitor (D4476; 50 mM), Rac1

inhibitor, (NSC23766; 500 nM) or anti-Fz3-CRD (3 ug/ml) were

added to the cultures at the same time as N2 media.

Analysis of Wnt5a2/2 mice
All Wnt5a2/2 embryos were compared to littermate controls,

wildtype Wnt5a+/+ and heterozygotes Wnt5a+/2, n = 4–7 embryos

per genotype. Given the postnatally lethal phenotype of the

Wnt5a2/2 mouse, the midbrain dopamine pathways were

examined developmentally and quantification performed at E18,

an age when the DA pathway is established, axons have reached

the striatum and numerous synaptic contacts made. Anatomical

changes were also observed within Wnt5a(2/2) and Wnt5a(+/+)

littermates at E12.

Changes within the midbrain dopamine pathways in Wnt5a

(+/+) and Wnt5a(2/2) mice were observed by chromogenic

staining for the TH+ neuron and quantified using Stereoinvesti-

gator software (MicrobrightField, USA) on a Leica DML

microscope. In adjacent series, z-stack images of TH+ immuno-

fluorescence were taken on a confocal microscope (Zeiss Pascal) to

represent the quantified changes.

At E18, the volume of the medial forebrain bundle (MFB) was

estimated by delineating the area of the TH+ fiber bundle in the first

section rostral to the midbrain TH+ neurons until the final section

prior to the arrival of TH+ fibers in the striatum. The MFB was

delineated in approximately 7 sections (16 mm thickness, 1:10 series,

i.e. approximately 1120 mm in length) from each brain, with the

area and total volume estimated using StereoInvestigator software.

The number of dopaminergic fibers (TH+) in the MFB and the

density of TH+ varicosities in the lateral striatum were estimated

using previously described fractionator methods [49–51]. The

density of TH+ fibers was assessed at two independent levels along

the MFB, (i) 320 mm and (ii) 800 mm rostral to the midbrain DA

neurons. TH+ fiber counts were made at regular pre-determined

intervals (x = 50 mm, y = 50 mm). These counts were derived by

means of a grid program, through which a systematic sample of

the area occupied by the fibers was made from a random

starting point. An unbiased counting frame of known area

(7 mm67 mm = 49 mm2) was superimposed on the image of the

tissue sections viewed under a 1006, N.A. 1.30 oil immersion

objective. The number of TH+ fibers at each level was counted in

16 mm thick, 1:10 serial sections.

TH+ varicosities in the lateral 400 mm of the striatum were

counted from 16 mm serial sections, 1:10 series, with four sections

sampled from each striatum. Counts of TH+ varicosities were made

at regular predetermined intervals (x = 150 mm, y = 150 mm) using

an unbiased counting frame of known area (6 mm66 mm = 36 mm2).

TH+ varicosities were identified as predominantly round swellings

in association with axonal processes. TH+ varicosity counts were

expressed as terminal density, with comparisons made between

Wnt5a+/+, Wnt5a+/2 and Wnt5a2/2 mice. For TH+ fiber counts and

TH+ varicosity numbers, the coefficients of error (CE) and

coefficients of variance (CV) were calculated as estimates of

precision, and values of less than 0.1 were accepted [50,52,53].

Statistical analysis
One-way ANOVAs with Tukey post-hoc tests or Student’s

t-tests were used to identify statistically significant changes.

Statistical significance was set at a level of p,0.05. Data represents

mean 6 s.e.m.

Results

Wnt5a is expressed along the developing nigrostriatal
pathway

The first ventral midbrain DA neurons are born in mice at

E10.5 and shortly thereafter, at E11.5, the first DA neurites

appear. Initially, these neurites project dorsally towards the dorsal

Wnt5a Regulates Dopaminergic Axon Morphogenesis
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midbrain (Fig. 1D) and are subsequently deflected rostrally

towards their forebrain targets [54]. The first DA neurites

approach the border of the ventrolateral ganglionic eminence at

E14.5 (Fig. 1K) and increase in number without further elongation

(axonal stalling). Subsequently these fibers enter the ventral areas

of the lateral ganglionic eminence (LGE; the future striatum),

followed by lateral, and finally medial and dorsal regions of the

LGE [1]. A smaller subset of DA axons arising from the VM

Figure 1. Wnt5a expression in the ontogeny of the midbrain DA axon. (A) In situ hybridization in a coronal section of the mouse midbrain
showed Wnt5a expression overlapping with (B) TH+ cells in the developing ventral midbrain at E11.5, during the period of initiation of neurite
outgrowth. (C) Merged image of TH and Wnt5 expression. (D) Sagittal section of mouse VM at E11.5 illustrating TH+ fibers polarized towards the DM,
as indicated by the arrows. (E) Sagittal section at E11.5 revealed a high rostral to low caudal gradient of Wnt5a in the VM, (F) surrounding the DA
neurons and neurites as well as higher expression at the ventricular zone compared to the mantle zone. (G) Merged image of TH and Wnt5
expression depicted in E and F. (H) At E14.5, during maturation of the midbrain dopamine pathways, a coronal section revealed Wnt5a expression
was maintained in the VM, overlapping with (I) the TH+ cells. (J) Merged image of TH and Wnt5 expression. (K) Photomicrograph illustrating DA fibers
in the MFB approaching the LGE at E14.5. (L–N) Sagittal section (medial to panel (K)) illustrating reversal of the Wnt5a gradient, with Wnt5a
expression greater in the caudal VM than rostral VM. (M’) Enlargement from (M) illustrating dorsal trajectory of TH+ fibers (N’) Enlargement from (N)
illustrating that Wnt5a is most likely secreted from TH2 cells. Filled arrow-head: Wnt5a-labeled cell (red). Unfilled arrow-head: TH+ neuron (green). (O)
Dissected VM from TH-GFP mice were analyzed by flow cytometry and sorted into GFP+ (TH+ neurons) and GFP2 (non-DA neurons). Q-PCR revealed
that the majority of Wnt5a expression was not in the DA neurons (TH-GFP- fraction). Scale bars: A–C,E–G,H–J,L–N = 100 mm; D,N’ = 25 mm. Data
represents mean 6 s.e.m., n = 5, * p,0.05. Black dashed line (panels E,L) represents the midbrain-hindbrain boundary.
doi:10.1371/journal.pone.0018373.g001
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project to the prefrontal cortex. Upon arrival, DA fibers make

synaptic contacts throughout the LGE and cortex, with axonal

branching, pruning and synaptogenesis continuing into the first

weeks of postnatal development.

In order to assess the possible role of Wnt5a in DA

neuritogenesis and axon formation, we first examined the

temporal and spatial expression of Wnt5a relative to the

developing DA pathway in the MFB; expanding on previous

studies by Andersson et al., 2008 who examined Wnt5a expression

in relation to the birth of DA neurons [23]. Using in situ

hybridization to detect Wnt5a expression and immunohistochem-

istry against TH (to identify DA neurons), strong Wnt5a

expression was apparent within the VM where DA neurons reside

at both E11.5 and E14.5 (Fig. 1A–C,E–G,H–J,L–N). At E11.5,

Wnt5a expression was greater in the ventricular zone (Fig. 1E),

whilst at E14.5 expression was greater in the mantle zone of the

VM (Fig. 1L). Closer examination of the E11.5 VM revealed a

rostro-caudal gradient of Wnt5a, with levels higher in the rostral

VM than caudal VM (Fig. 1E). By E14.5 this gradient was

reversed, with rostral VM expression decreased and Wnt5a

expression higher in the caudal midbrain (Fig. 1L compared to

1E). At this stage, neurites maintained their initial dorsal

projection (Fig. 1M, M’), but subsequently projected rostrally

(Fig. 1K), away from the strong ventral source of Wnt5a in the

VM.

Wnt5a mRNA expression was more closely examined in VM

cells isolated by FACS from the TH-GFP reporter mouse [42].

Quantitative real-time PCR (Q-PCR) performed on the GFP+

fraction (DA neurons) and GFP2 fraction (other VM cells)

revealed that Wnt5a mRNA expression was significantly higher

in the GFP2 fraction (four-fold increase, p = 0.042) compared to

the GFP+ fraction (Fig. 1O). These findings were in accordance

with Wnt5a in situ hybridization, with expression greatest in non-

TH+ cells (Fig. 1N’, filled arrow-head). These results are also in

agreement with previous studies showing greater expression of

Wnt5a in glial cells (radial glia first and later astrocytes) compared

to neurons in the developing VM [22,56].

Wnt5a increases dominant DA neurite length and
reduces DA neurite branching in VM cultures at E11.5,
but not at E14.5

As the temporal-spatial pattern of expression of Wnt5a was

appropriate for a role in DA neurite development, we tested the

effect of Wnt5a on DA neurite growth by applying recombinant

Wnt5a protein to VM primary neuron cultures isolated from

E11.5 and E14.5 mouse embryos and examining the neurites of

tyrosine hydroxylase (TH; rate-limiting enzyme in DA synthesis

and marker of DA neurons) immunoreactive neurons.

A dose-response curve revealed that Wnt5a promotes DA neurite

elongation in a dose-dependent manner in E11.5 VM cultures.

Maximal elongation, as measured by total neurite length, was

achieved with a dose of 300 ng/ml of Wnt5a (Fig. 2A). Immuno-

blots were performed in a dopaminergic cell line (SN4741) in order

to confirm that Wnt5a induced intracellular activation of Wnt

signaling. We found that 100, 300 and 1000 ng/ml of Wnt5a

induced dishevelled-2 (Dvl2) phosphorylation (visible by Western

blot as a mobility shift of the protein) in a dose-dependent manner

(Fig. 2A’). The effects were optimal at 300 ng/ml and this dose was

used for further assessment of the neurite arbors of TH+ cells. Wnt5a

treatment of E11.5 VM cultures increased total neurite length

compared to control treated cultures (295%612%, p,0.001;

Fig. 2B–D). Other morphological changes were also observed in

Wnt5a treated cultures. The dominant neurite was significantly

longer compared to controls (330%617%, p,0.001; Fig. 2E).

Furthermore, Wnt5a treatment resulted in fewer neurites

(88%62%, p,0.001; Fig. 2B,C,F) and branches (55%69%,

p = 0.012; Fig. 2B,C,G) compared to controls, suggesting that

Wnt5a promotes the extension of DA axons, rather than the

elaboration of shorter neurites or dendritic trees [46]. These findings

were also replicated in E13.5 rat cultures (comparable in age to

mouse E11.5), demonstrating conservation of the Wnt5a effect

across species (data not shown).

We next examined the specificity of the effects of Wnt5a by

examining the neurite length of bIII-tubulin immunoreactive

(TUJ1+) neurons within the culture, knowing that TH+ cells

represent approximately only 5% of the neurons in the VM

culture. The total length of TUJ1-labeled neurites in cultures

treated with Wnt5a were not significantly longer than neurites in

control cultures (117%614%, and 100%610%, respectively,

p = 0.309; Fig. 2H–J), confirming that Wnt5a selectively affected

DA neurites.

Surprisingly, when the activity of Wnt5a (300 ng/mL) was

examined on older (E14.5) VM primary cultures, the effects on

DA neurite length were reversed. Total neurite length was

significantly reduced (69%64.0%, Fig. 3A, E–F) and the length

of the dominant process (axon) was also decreased compared to

control-treated cultures (65%65%; Fig. 3B). Furthermore, Wnt5a

treatment affected neither the number of DA neurites nor their

branching (Fig. 3C,D). Collectively, these results indicate that

Wnt5a differentially regulates DA neurite growth and morphology

during development.

The effects of Wnt5a protein on DA neuritogenesis are
specific and mediated by Frizzled

To confirm the specificity of the effects of Wnt5a on DA neurite

development, we treated primary VM cultures with different Wnt

blocking tools and subsequently evaluated TH+ neurites. Given the

maintained effect of Wnt5a on DA neurites in both mice and rats,

we performed these antagonism experiments in rats due to the

increased yield of VM tissue, and the numerous antagonists to be

employed. Figure S1 provides a schematic representation of the site

of action of these various antagonists. Secreted Frizzled-related

proteins (sFRPs) modulate Wnt signaling by preventing Wnt from

interacting with membrane-bound receptors. In the absence of

exogenous Wnt5a, sFRP-1 reduced neurite length to 62%64%

compared to untreated cultures (Fig. 4A–C), presumably through

antagonism of endogenous Wnt signaling within the VM. This was

confirmed by using a Wnt5a blocking antibody (aWnt5a), which

also reduced neurite length to 67%68% (Fig. 4A–B,D). In the

presence of Wnt5a, increased neurite length of TH+ cells

(267%631%) was completely blocked by co-administration of

sFRP-1 (101%610%) or the aWnt5a (70%611%; Fig. 4A,E–G).

Interestingly, sFRP-2, but not sFRP-3 (data not shown), also

antagonized the effects of Wnt5a on neuritogenesis. These results

indicated that the effects of exogenously supplied Wnt5a on TH+

cells are specific and suggest a role for Wnt5a in DA neuritogenesis.

Previous studies have shown that Wnt5a modulates axon

growth and guidance in other systems through interactions with

Frizzled receptors and the atypical tyrosine kinase receptor, Ryk

[31,33,35]. Moreover, Fz3 has been found to be relevant to the

development of the DA nigrostriatal pathway as Fz3 expression

increases at the time of DA axon extension in the VM [43] and the

nigrostriatal pathway was absent in Fz32/2 mice [57,58]. We thus

first examined the expression of Fz3 and Ryk in the VM by

Q-PCR and found elevated expression of both receptors in the

VM compared to the dorsal midbrain (DM) and the rest of the

embryo (E) (Fig. 4H’,I’). Further, Q-PCR performed on the GFP+

and GFP2 fraction of VM tissue isolated from TH-GFP mice,
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revealed that these receptors were expressed on the DA neurons

(GFP+) and not surrounding cells (GFP2) within the VM (Fig. 4H’’

and 4I’’).

Subsequently, we examined whether E13.5 rat VM cultures

treated with antibodies against Fz3 (aFz3-CRD) or in the presence

of a Ryk construct containing the human RYK WIF domain

(RYK-Fc), blocked the effects of Wnt5a (Fig. 4K–Q). Interestingly,

the increase in neurite length produced by the addition of Wnt5a

(166%610%) was significantly attenuated in the presence of a

RYK-Fc, to levels not significantly different to control (97%64%),

yet they had no effect on neurite number (data not shown).

Similarly, but more modestly, aFz3-CRD also reduced the effect

of Wnt5a on total neurite length (from 166%610% to

129%66%), but not neurite number (data not shown). Since

RYK-Fc can bind Wnt, we interpret that the blocking by RYK-Fc

likely mediated by Wnt5a binding. However, as the RYK-Fc

construct is not capable of interacting directly at the receptor

membrane level, this data should be interpreted with caution. In

Figure 2. Wnt5a promotes DA axon elongation and alters neuron complexity during the period of initiation of neurite outgrowth.
(A) Wnt5a recombinant protein promoted TH+ neurite elongation in a dose-responsive manner in mouse E11.5 VM primary cultures. (A’) Wnt5a
activated Dvl2 in a dose-responsive manner in the SN4741 dopaminergic cell line. Note the mobility shift of the Dvl2 protein with increasing doses of
Wnt5a. (B) Photomicrographs illustrating the complexity of DA neurons under control conditions, and (C) following Wnt5a treatment. (D) Wnt5a
induced a three-fold increase in total neurite length compared to control. (E) The effect of Wnt5a was specific to the dominant neurite (presumably
the DA axon). Wnt5a protein reduced the number of (F) DA neurites and (G) DA neuritic branches per neuron. (H) Immunocytochemistry for TUJ1
revealed that the effects of Wnt5a within the VM were specific to DA neurons, with no change in neurite length observed for other neurons in culture.
(I) Compared to control cultures, (J) Wnt5a had no effect on neurite length of TUJ-labeled cells. Cells were analyzed after 3DIV. Scale bar = 25 mm.
Data represents mean 6 s.e.m., n = 4–5 cultures; * p,0.05, ** p,0.01, *** p,0.001.
doi:10.1371/journal.pone.0018373.g002
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fact, a recent study has shown no changes in the morphology or

trajectory of DA axons in Ryk(2/2) embryos [55]. We believe

that additional experiments, employing selective functional

blocking antibodies against the Ryk receptor, as well as Ryk-

Wnt5a double knock out mice will be required to ascertain

whether Ryk plays a role in Wnt5a mediated DA axon growth and

guidance.

In contrast, since the aFz3-CRD binds directly to the receptor

(with its specificity and function verified by the manufacturer and

others Endo 2008), our results indicate that the action of Wnt5a on

DA neurite morphology is mediated, at least in part, by the

Frizzled-3 receptor. Interestingly, we also found that these proteins

antagonized the Wnt5a-mediated Dvl-2 phosphorylation in a

dopaminergic cell line (SN4741 cells, Fig. 4J), reinforcing the idea

that the effects of Wnt5a require Wnt5a binding and are mediated

by Frizzled. It is also important to note that RYK-Fc and aFz3-

CRD had no effect on non-DA neurites within the culture,

illustrating the specificity of the effects of Wnt5a for DA neurites

and the lack of toxicity of the proteins used here (Figure S2).

Wnt5a regulates neurite morphogenesis in midbrain DA
neurons via Rac1

Depending on the cell type and context, Wnt5a activates either

Wnt/b-catenin or Wnt/PCP signaling. However, we previously

reported that in dopaminergic cell lines and expanded VM

cultures [19,20] Wnt5a does not activate Wnt/b-catenin signaling.

Moreover, Wnt5a mediates axon guidance through non-canonical

Wnt pathways in other neuronal systems [33,59]. To characterize

the pathway that mediates the effects of Wnt5a on DA

neuritogenesis, we employed an antagonist of the canonical

pathway, Dickkopf-1 (Dkk1), to prevent Wnt interaction with the

Fz/LRP receptor complex [60], and a casein kinase 1 antagonist,

D4476, which blocks both the canonical and non-canonical

pathways [61]. While Dkk1 had no effect on Wnt5a-mediated

neurite length of TH+ cells in E13.5 rat VM cultures (Fig. 5A,C,D),

D4476 significantly inhibited the effects of Wnt5a on neurite

length (Fig. 5A,C,E). Importantly, D4476 and Dkk1 had no effect

on neurite length of TUJ+ neurons (data not shown), verifying the

lack of toxicity of the antagonists. These results suggested that the

action of Wnt5a on DA neurite length was mediated by non-

canonical Wnt signaling.

We next examined whether blocking of the small GTPase,

Rac1, a downstream component of the Wnt/PCP pathway in DA

neurons [23] affected the total length of DA neurites in primary

VM cultures. Treatment of control cultures with the Rac1

inhibitor, NSC23376 reduced TH+ neurite length (39%+4%

reduction), presumably due to antagonism of endogenous Wnt

signaling as well as other potential axon guidance pathways for

which Rac1 is a downstream component. However, co-treatment

Figure 3. Wnt5a causes DA neurite retraction in older ventral midbrain cultures. (A) At a time when DA axons would normally be
approaching their striatal targets (mouse E14.5), treatment with Wnt5a protein caused retraction of TH+ neurites, and more specifically (B) DA axons
(dominant neurite length). Wnt5a had no effect on the complexity of DA neurons, as assessed by (C) neurite number and (D) neurite branching.
Photomicrographs illustrating examples of neurite retraction following Wnt5a application (F), compared to control (E). Cells were analyzed after 3DIV.
Scale bar = 25 mm. Data represents mean 6 s.e.m., n = 4–5 cultures, *** p,0.001.
doi:10.1371/journal.pone.0018373.g003
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Figure 4. The effects of Wnt5a protein on DA neuritogenesis are specific and mediated by Frizzled. (A) Whilst sFRP-1 and Wnt5a
blocking antibody (aWnt5a) were capable of reducing neurite length in E13.5 VM rat primary cultures under control conditions (presumably due to
antagonism of endogenous Wnt signaling), in the presence of Wnt5a they significantly reduced neurite length compared to Wnt5a alone. (B–G)
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with Wnt5a and NSC23766, significantly reduced total TH+

neurite length even further (60%64%; Fig. 5A,C,F) compared to

Wnt5a treatment alone. These findings suggest that at least in part

Rac1, downstream of Wnt5a and thereby the PCP pathway,

regulates DA neurite length. Finally, treatment with Wnt5a +
D4476, but not Wnt5a + NSC23766, increased the number of

TH+ neurites per cell (Fig. 5B), suggesting that while PCP signaling

increases neurite length, other non-canonical Wnt signaling such

as the Ca2+ pathway may cooperate to reduce the number of

neurites.

Wnt5a repels DA neurites in E11.5 and E14.5 explant
cultures

After characterizing the effects of Wnt5a on neuritogenesis, we

examined the chemoattractant or chemorepellant effect of Wnt5a

on developing DA neurites in VM explants. In other CNS regions,

Wnt5a repels neurites during development [31,33,35], but its

effect on DA neurons has not yet been examined. Mouse VM

explants (E11.5) were co-cultured with either mock-transfected or

Wnt5a over-expressing cell aggregates for 72 hours and the

number of TH+ fibers in the distal (D) and proximal (P) quadrants

of the explant, with respect to the cell aggregate, were counted, as

depicted in Fig. 6A. TH+ neurites from explants co-cultured with

mock-transfected cell aggregates radiated out in all directions from

the explant (Fig. 6D), showing a proximal to distal ratio of neurites

close to 1 (1.1960.06, n = 30; Fig. 6B). However, most TH+

neurites in VM explants cultured with Wnt5a-overexpressing cell

aggregates emanated from the distal aspect of the explant, with a

proximal to distal ratio of 0.7060.09 (n = 29, p,0.001; Fig. 6B,E),

indicating a repulsive effect. We confirmed that the effects of

Wnt5a were specific to TH+ neurites by staining all neurites in

culture (TUJ1+). Whilst TH+ fibers were repelled by Wnt5a

(Fig. 6F), TUJ1+ neurites were observed emanating from all

aspects of the same explants (Fig. 6F’). This effect of Wnt5a on DA

neurites was ablated by bath application of the casein kinase 1

inhibitor D4476, the Rac1 inhibitor NSC23766, and anti-Fz3-

CRD, indicating that the repulsive effects of Wnt5a on TH+

neurites are mediated by PCP/Wnt signaling via the Fz3 receptor

(Fig. 6B,G–I). These findings have recently been supported by

Fenstermaker et al (2010), who illustrated that DA neurons in

Fz3(2/2) and Celsr3 (2/2) mice (Celsr3 being an additional

component of the PCP pathway) were non-responsive to Wnt5a

[55]. Given the contrasting effect of Wnt5a on neurite extension at

differing developmental ages (E11.5 and E14.5, Fig. 2 and Fig. 3,

respectively), we asked whether the chemorepulsion effect of

Wnt5a on DA neurites was maintained in older VM explants

(E14.5) and found that this was the case (Fig. 6C). We next

investigated whether Wnt5a also regulates the development of

midbrain DA axons in vivo and therefore examined the Wnt5a2/2

mouse.

Deletion of Wnt5a increases the number of TH+ fibers in
the medial forebrain bundle and the innervation of the
striatum in vivo

The contribution of Wnt5a to DA axon growth and guidance

was further examined by inspecting the trajectory of TH+ axons in

the Wnt5a2/2 mouse at E18. Gross examination of the pathway

highlighted a broadening of the MFB and elaborated innervation

in the dorsal striatum of Wnt5a2/2 mice, not seen in Wnt5a+/+

mice (Fig. 7A,B). Stereological quantification of the fiber bundle

Figure 5. The effects of Wnt5a on elongation are mediated through Rac1 of the non-canonical Wnt/PCP pathway. Select antagonists
were used to identify the downstream signaling pathway responsible for mediating the effects of Wnt5a on DA neurites. Antagonism of the canonical
Wnt pathway (using Dkk1 recombinant protein), the canonical and non-canonical Wnt pathways (using casein kinase 1 inhibitor, D4476) and even
more selectively the non-canonical PCP pathway (using Rac1 inhibitor, NSC23766) revealed that the effect of Wnt5a on (A) neurite length and (B)
neurite number were mediated by the non-canonical PCP pathway (D4476 and NSC23766 both significantly antagonizing the effects of Wnt5a). (C–F)
Examples of changes in DA neuron morphology following treatment with Wnt5a 6 selective antagonists. Scale bar = 50 mm. Data represents mean 6
s.e.m., n = 4–5 cultures; ** p,0.01, *** p,0.001.
doi:10.1371/journal.pone.0018373.g005

Examples of Wnt antagonism in VM cultures 6 Wnt5a treatment. Q-PCR analysis revealed that the Wnt-related receptors Fz3 (H’) and Ryk (I’) were
highly expressed in the VM compared to the dorsal midbrain (DM) and whole embryo (E). Furthermore, Fz3 (H’’) and Ryk (I’’) showed significantly
higher expression within DA neurons (GFP+) compared to other cells (GFP2) isolated from the VM of TH-GFP mice. (J) Wnt5a (300 ng/ml) activated
Dvl2 in SN4741 cells, an effect that could be blocked by aFz3-CRD (3 mg/ml) or RYK-Fc (3 mg/ml). (K) E13.5 rat primary VM cultures showed that the
effects of Wnt5a on DA neurite length were specific, illustrated by antagonism with RYK-Fc, and mediated through the Fz3 receptors, illustrated by
blocking of Fz3 with aFz3-CRD. (L-Q) Photomicrographs illustrating the effects of Wnt5a 6 aFz3-CRD or RYK-Fc on DA neurite length. Cells were
cultured for 3DIV. Scale bar = 100 mm. Data represents mean 6 s.e.m., n = 4–5 cultures. Significantly different from control: #p,0.05, ### p,0.001.
Significantly different from Wnt5a: * p,0.05, ** p,0.005.
doi:10.1371/journal.pone.0018373.g004
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volume revealed that the Wnt5a2/2 mice possessed a significantly

enlarged MFB (9.7086107 mm360.3626107 mm3) compared to

heterozygotes (7.0816107 mm360.2496107 mm3) and wildtype

(5.7706107 mm360.2726107 mm3) littermates (Fig. 7C). Further-

more, there were more fibers within the caudal MFB (320 mm

rostral to the TH+ neurons in the VM) of Wnt5a2/2 mice than in

Wnt5a+/+ mice (11,4876632 and 82966549 TH+ fibers, respec-

tively; Fig. 7D,G,G’,J,J’). The increase in TH+ fiber number was

maintained within the MFB, with more rostral aspects of the

bundle (800 mm rostral to the TH+ cells in the VM) also showing

significant increases in fibers (data not shown).

We next used the density of TH+ synaptic varicosities in the

striatum as a measure of the capacity of DA fibers to innervate

their target structures. The lateral striatum of mutant and wildtype

E18 embryos, which is innervated by both substantia nigra pars

compacta (SNpc) and ventral tegmental area (VTA) DA neurons

[62,63] was examined. The terminal density in the lateral striatum

of Wnt5a2/2 mice (8.106102360.3561023 terminals/mm3) was

significantly greater than in Wnt5a+/+ mice (6.11610236

0.1361023 terminals/mm3, Fig. 7E,H,K) and innervation of the

dorsal striatum in Wnt5a2/2 mice (Fig. 7B,B’) was notably denser

than in wildtype littermates (Fig. 7A,A’). These results suggest that

Wnt5a is required for the correct distribution of TH+ fibers in the

dorso-lateral striatum, the target area of substantia nigra DA

neurons.

Finally, in light of observed DA axon defects in E18 Wnt5a2/2

embryos, and our expression gradients identified in Figure 1, we

examined an earlier time point (E12) to determine the effect of

Wnt5a ablation on the establishment of the DA pathways. We

observed that axons were notably shorter in Wnt5a2/2embryos

(Figure S3A’ and 3B’, arrow heads), confirming the importance of

Wnt5a in initial neurite elongation. Furthermore, broadening of

Figure 6. Wnt5a acts as a chemorepellant for DA neurites in VM explants. (A) Schematic representation of the explant cultures. VM explants
were plated in collagen adjacent to mock- or Wnt5a-transfected cell aggregates. After three days in culture, the number of DA neurites (TH+)
radiating from the proximal and distal sides of the VM explant (relative to the aggregate) were counted and expressed as a ratio. (B) In co-cultures of
E11.5 mouse VM explants with Wnt5a-transfected cells, the majority of TH+ neurites emanated from the distal side of the explant, an effect that could
be ablated by bath application of casein kinase 1 inhibitor D4476, Rac1 inhibitor NSC23766 and anti-Fz3-CRD. (C) The ability of Wnt5a to induce
repulsion of DA neurites was maintained in older cultures (E14.5 mouse explants). Photomicrographs of E11.5 VM explants co-cultured with (D)
mock-transfected cell aggregates and (E) Wnt5a-transfected cell aggregates. (F) VM explant co-cultured with Wnt5a cell aggregate, illustrating the
specificity of Wnt5a to repel TH+ fibers (F) but not total neurite fibers (F’, TUJ1-labeled fibers). (G–I) Images illustrating the effects of Wnt5a on neurite
chemotaxis could be ablated by (G) D4476, (H) NSC23766 and (I) anti-Fz3-CRD. Dashed line demarcates the border of the cell aggregate. Arrow
indicates direction of ligand signal (i.e. cell aggregate) relative to explant. Scale bar = 200 mm.
doi:10.1371/journal.pone.0018373.g006
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Figure 7. Wnt5a2/2 mice display abnormal fasciculation of the DA axons in the median forebrain bundle (MFB) and changes in DA
fiber and terminal density. (A) Sagittal image of the Wnt5a+/+ and (B) Wnt5a2/2 brain demonstrating morphological changes within the
dopaminergic pathway. Note the broadening of the MFB in Wnt5a2/2 compared to Wnt5a+/+ mice, indicated by arrows, as well as increased terminal
innervation in the dorsal striatum (A’ and B’). (C) Wnt5a2/2 mice showed defasciculation of the MFB as revealed by the increased volume occupied
by TH+ fibers. (D) Within the MFB, Wnt5a2/2 mice had significantly more TH+ fibers at proximal (320 mm) levels of the MFB. (E) Wnt5a2/2 mice also
had significantly more TH+ terminals within the lateral striatum than Wnt5a+/+ mice. (F) Image illustrating the level of the MFB at which neurite counts
were performed (HP, hippocampus; Ctx, cortex). (I) Image illustrating the area of the lateral striatum delineated for stereological estimates of TH+
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the axon bundle was observed with fibers present in the

intermediate zone and encroaching on the ventricular zone of

the VM (Figure S3A’’ and 3B’’), similar to E18 and validating

Wnt5a’s role in axon fasciculation.

Discussion

Understanding the intricate and precise pattern of connectivity

achieved during brain development has been, and remains, an

outstanding challenge. This is particularly true for the dopami-

nergic pathways that arise from the ventral midbrain and

innervate distant targets such as the striatum and cortex. Changes

in the connectivity of these pathways and in the availability of their

neurotransmitter, dopamine, underpin a number of neurological

disorders including Parkinson’s disease, schizophrenia and addic-

tion. In this context, our study demonstrates a novel function for

Wnt5a in the establishment of the dopaminergic pathways

originating in the VM. First, we found that the temporal and

spatial expression pattern of Wnt5a correlates with the develop-

ment of the nigrostriatal/mesolimbic DA pathways. Second, we

report that Wnt5a selectively regulates the axon length of TH+

cells in primary VM cultures in a time-dependent manner,

promoting axon extension at E11.5 (and rat E13.5) and axon

retraction at E14.5. Third, we identify Wnt5a as a chemorepellant

of DA neurites in mouse E11.5 and E14.5 explant cultures. We

confirm that these growth and chemotaxic effects of Wnt5a are

mediated by Frizzled and involve the activation of Rac1, a

component of the Wnt/PCP pathway. Fourth, analysis of the

Wnt5a2/2 mice revealed that Wnt5a is required for fasciculation

of DA axons in the MFB, and for the innervation of the

dorsolateral striatum, the target area of substantia nigra DA

neurons.

Wnt5a expression within the VM and caudal region of the MFB

was maintained during development of the DA pathways. More

precise temporal and spatial gradients reflect the functions of this

protein in DA axon morphogenesis. We speculate that at E11.5,

the high expression of Wnt5a within the ventricular zone and in

the rostral part of the ventral midbrain, (Fig. 1A,E) may prevent

axons from entering the ventricular zone and from taking a

premature anterior direction. In support, our in vitro results at

E11.5 indicate that Wnt5a increases neurite length during initial

DA axon development (Fig. 2D,E), and repels them away from the

source of Wnt5a (Fig. 6B,D,E). Additionally, E12 Wnt5a2/2

embryos show reduced neurite length and disorganization of DA

neurites, with fibers seen within intermediate layers of the VM

(Figure S3). We therefore suggest that the initial effect of Wnt5a is

to contribute to DA axonal elongation and to maintain axons

within the VM, but out of the ventricular zone (Fig. 8A, D). Later

in development, by E14.5, the high rostral expression of Wnt5a is

down-regulated and expression is higher in the caudal VM

(Fig. 1L). This gradient shift may facilitate DA axons taking a

forebrain trajectory by being repelled away from the caudal VM,

and preventing their entry into the hindbrain (Fig. 8B). Interest-

ingly, whilst not observed by us, Fenstermaker et al (2010) reported

the appearance of DA axons in the hindbrain of Wnt5a2/2mice at

E12.5, a phenotype that was lost later in development [55], yet

supports our theory of Wnt5a ensuring DA axons maintain their

rostral trajectory.

Previous studies have shown that Fz3 is involved in PCP

signaling in the context of axon guidance [64] and that Fz3-

deficient mice, whilst possessing normal numbers of DA neurons,

have no nigrostriatal pathway [57,58]. Moreover, Stuebner et al.

has recently reported that Fz3 and Fz6 cooperate to regulate

midbrain morphogenesis [65]. Similarly, we have previously

reported that Wnt5a mutant mice have a near normal number

of DA neurons, but show a clear defect in midbrain morphogen-

esis [23]. We hereby report that, similar to Fz3, Wnt5a promotes

DA neuritogenesis in vitro and that Wnt5a2/2 mice exhibit defects

in DA axonogenesis. Moreover, we found that aFz3-CRD blocked

the neuritogenic and repulsive effects of Wnt5a, suggesting that

these Wnt5a effects are mediated by Fz3 or Fz3-like receptors.

Fenstermaker et al., (2010) has since illustrated notable defects

within the trajectory of DA fibers in Fz32/2mice, observing

several fibers projecting caudally and failing to make striatal

contacts [55]. Surprisingly, we observed increased fiber innerva-

tion in Wnt5a2/2 mice suggesting that Fz3 is only partially

responsible for our observations. In the future, analysis of double

mutant mice for Fz3 and Wnt5a may more clearly identify these

roles and highlight the need to investigate other Wnt related

receptors.

Signaling mediated through Frizzled receptors is commonly

associated with axon elongation and attraction while, in contrast,

signaling through Ryk induces axon repulsion [25–30,66].

However, Ryk receptors activated by Wnt5a gradients promoted

elongation of cortical axons in the callosal and corticospinal tract

[31,33,35], and chemorepelled these same axons via Wnt5a

signaling through both Ryk and Frizzled receptors. These differing

actions were mediated by Ca2+ changes involving IP3 receptors

and/or TRP channels [33]. Whilst we can not directly attribute

the effects of Wnt5a to Ryk binding, the high expression of Ryk

within DA neurons of the VM, combined with RYK-Fc

antagonism in a DA cell line and existing literature in other

pathways, suggests that Ryk may also play a role in regulating DA

morphogenesis. Analysis of Ryk-deficient mice as well as double

mutants (Wnt5a and Ryk) or siRNA experiments may shed more

light on this receptor’s involvement in these processes.

Whilst a number of guidance molecules have been recognized

for their role in DA neurite development, few studies have verified

these functions in vivo. In our study, we examined the nigrostriatal

DA pathway in Wnt5a2/2 mice, validating a number of our in

vitro findings and the importance of Wnt5a in DA connectivity. In

wildtype mice, TH+ axons remain tightly fasciculated within the

MFB as they project towards their forebrain targets. In contrast,

DA axons in the Wnt5a2/2 mice were clearly defasciculated

throughout the MFB, with broadening of the bundle observed

from caudal to rostral levels of the pathway. Interestingly,

defasciculation and broadening of the MFB has also been observed

in Sema3F2/2 mice [9] and Ryk2/2 mice showed defasciculation of

the callosal axon bundle crossing the midline [35]. These findings

indicate that Wnt5a is required to fasciculate DA axons in vivo.

Surprisingly, despite the role of Wnt5a in promoting axonal

growth, repelling DA axons and regulating fasciculation of the DA

fiber bundle, DA axons in Wnt5a2/2 mice maintained their

appropriate caudo-rostral trajectory, indicating that Wnt5a alone

is not necessary to initiate neurite growth or provide directionality

terminal density. (G–K) Confocal photomicrographs illustrating differences in the midbrain dopaminergic pathway of Wnt5a+/+ and Wnt5a2/2 mice,
respectively, including (G,J) broadening of the MFB, (G’,J’) increased neurites within the MFB (320 mm from the DA neurons in the VM) and (H,K)
increased terminal density in the lateral striatum. Insert in (H) illustrates individual TH+ terminals). Data represents mean 6 s.e.m., n = 4–7 embryos/
geneotype; * p,0.05, ** p,0.01, *** p,0.001.
doi:10.1371/journal.pone.0018373.g007
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in vivo. Collectively these findings suggest that other guidance

molecules or Wnts might be capable of compensating for the lack

of Wnt5a during the establishment of this pathway. However,

more axons were detected within the MFB of Wnt5a2/2 mice.

Since we previously reported that the number of neurons in

Wnt5a2/2 and Wnt5a+/+ mice is not different [23], the increased

fiber density in the MFB of Wnt5a2/2 mice suggests a possible

increase in DA neurites per DA neuron, or alternatively, increased

branching of the DA axons. Interestingly, our in vitro data

supports both possibilities, but the greater effect on branching

suggests a predominant role of Wnt5a on DA neurite branching,

rather than on the number of neurites (Fig. 2F,G).

Finally, it is important to note that despite DA axons arriving at

the border of the ganglionic eminence at approximately E15 in

rats, they do not enter the striatum, but rather increase in numbers

until approximately E17 (comparable to mouse E15) [1]. In

support of a possible role for Wnt5a in axon stalling, we found that

Wnt5a had a negative effect on DA neurite length in vitro, at

E14.5 (approximately equivalent to rat E16.5) (Fig. 3), and that

axonal innervation of the dorsolateral striatum was accelerated in

the Wnt5a2/2 mice. These results indicate that Wnt5a may be the

repulsive signal that prevents premature entry of DA axons into

the striatum. Indeed, both the increased fiber number in the MFB

and the dense striatal innervation of the Wnt5a2/2 mice may

reflect a premature maturation of the pathway (i.e. loss of axonal

stalling). Thus our results suggest that one of the functions of

Wnt5a in the nigrostriatal system would be to prevent the

premature maturation of this pathway.

In summary, our findings identify a number of key roles for

Wnt5a in the development of DA axons in vitro and in the

maturation of the MFB in vivo. Wnt5a promotes DA axon

elongation, retraction and repulsion in a time-dependent manner,

as well as maturation and fasciculation of the MFB. These effects,

at least in part, are mediated through the Frizzled receptors and

downstream activation of the Wnt/PCP pathway. Whilst broad-

ening our knowledge of dopamine development, an understanding

of the regulation and promotion of DA axonal growth and

guidance may have significant implications for a number of

neurological disorders in which the development of nigrostriatal

DA axons are affected, as well as enhancing integration of grafted

dopamine neurons into the Parkinsonian brain.

Supporting Information

Figure S1 Schematic representation of the site of action
of the antagonists employed to identify the pathways
mediating the effects of Wnt5a. sFRP, aWnt5a and RYK-Fc

act to sequester Wnt5a out of circulation, thereby preventing its

interaction with Wnt-related receptors. aFz3-CRD binds directly

to the frizzled-3 receptor, thus preventing Wnt-receptor interac-

tion. Dkk1 does not bind Wnt but affects the interaction of Wnt

with the LRP co-receptor, thereby affecting canonical Wnt

signaling. D4476, a casein kinase 1 antagonist, blocks the Wnt

activity-dependent phosphorylation of Dishevelled and thereby

prevents downstream canonical and non-canonical Wnt signaling.

NSC23766 is a Rac1 antagonist and thereby an inhibitor of the

Figure 8. Model of Wnt5a’s role in the development of the DA mesostriatal/mesolimbic pathways in mice. (A) In wildtype mice, at
E11.5-12, a high ventricular to low mantle zone expression of Wnt5a (red shading) in the ventral midbrain, combined with our in vitro findings of
Wnt5a’s ability to elongate and repel DA axons (green), suggests that Wnt5a may be capable of polarizing and driving DA axons out of the VM.
Higher Wnt5a levels in the rostral VM (red), in combination with its chemorepulsive function, further suggests that Wnt5a may prevent premature
rostral trajectory of these DA axons. (B) At E14.5, a higher caudal to lower rostral Wnt5a gradient (red), combined with the maintained repulsive
action of Wnt5a at this age, may ensure TH+ axons maintain their forebrain trajectory. The ability of Wnt5a to induce axon retraction in vitro (as
shown in Fig. 3) suggests a plausible role in axon stalling, a key developmental event that prevents axons prematurely entering their forebrain striatal
targets. The dotted red line indicates the border of the ganglionic eminence where axon stalling occurs. (C) At E18, low expression of Wnt5a is
maintained within the VM. At this stage in development TH+ axons are present within the GE and are making increasing synaptic contacts. (D) In the
absence of Wnt5a, at E11.5-12, TH+ axons maintain a rostral projection but are shorter and show a lack of organization. (E) By E18, the disorganization
of TH+ fibers is evident by the defasiculation of the MFB in Wnt5a2/2 mice. Additionally, axons prematurely enter the target, presumably due to loss
of axonal stalling, resulting in increased striatal innervation in Wnt5a2/2 mice. Lv, lateral ventricle; Aq, aquaduct; GE, ganglionic eminence; MFB,
medial forebrain bundle.
doi:10.1371/journal.pone.0018373.g008
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non-canonical Wnt/PCP pathway. CK1, casein kinase 1; Dkk1,

Dickkopf-1; Fz, Frizzled; LRP5/6, low density lipoprotein

receptor-related protein 5/6; aFz3-CRD, Fz3 antibody; aWnt5a,

Wnt5a antibody.

(TIF)

Figure S2 Effects of Wnt receptor antagonism on
neurites of all VM neurons. Immunocytochemistry for all

neurons (TUJ1+) revealed that (A) aFz3-CRD and (B) RYK-Fc

had no effect on neurite length of non-TH+ neurons within the

VM, indicating that the effects seen in Fig. 5 were specific to DA

neurites. Furthermore, the absence of an effect of aFz3-CRD and

RYK-Fc on the general neuronal population verifies the lack of

toxicity of these proteins at the doses selected.

(TIF)

Figure S3 Young Wnt5a2/2 embryos display abnormal
DA axon length and fasciculation. Sagittal images illustrating

TH+ axons in the VM of (A) wildtype and (B) Wnt5a knockout

littermates. (A’, A’’ and B’, B’’) represent higher magnification of

the VM depicted in (A) and (B). Images show that compared to

Wnt5a +/+ mice, TH+ axons in Wnt5a 2/2 mice are shorter (A’ and

B’, arrow heads) and less organized/tightly fasciculated (A’’, B’’,

arrows).

(TIF)
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