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Abstract

Purpose: Magnetic nanoparticles (MNPs) may be used for focal delivery of plasmids, drugs, cells, and other applications.
Here we ask whether such particles are toxic to ocular structures.

Methods: To evaluate the ocular toxicity of MNPs, we asked if either 50 nm or 4 mm magnetic particles affect intraocular
pressure, corneal endothelial cell count, retinal morphology including both cell counts and glial activation, or photoreceptor
function at different time points after injection. Sprague-Dawley rats (n = 44) were injected in the left eye with either 50 nm
(3 ml, 1.65 mg) or 4 mm (3 ml, 1.69 mg) magnetic particles, and an equal volume of PBS into the right eye. Electroretinograms
(ERG) were used to determine if MNPs induce functional changes to the photoreceptor layers. Enucleated eyes were
sectioned for histology and immunofluorescence.

Results: Compared to control-injected eyes, MNPs did not alter IOP measurements. ERG amplitudes for a-waves were in the
100–250 mV range and b-waves were in the 500–600 mV range, with no significant differences between injected and non-
injected eyes. Histological sectioning and immunofluorescence staining showed little difference in MNP-injected animals
compared to control eyes. In contrast, at 1 week, corneal endothelial cell numbers were significantly lower in the 4 mm
magnetic particle-injected eyes compared to either 50 nm MNP- or PBS-injected eyes. Furthermore, iron deposition was
detected after 4 mm magnetic particle but not 50 nm MNP injection.

Conclusions: Intravitreal or anterior chamber injections of MNPs showed little to no signs of toxicity on retinal structure,
photoreceptor function or aqueous drainage in the eye. Our results suggest that MNPs are safe for intraocular use.
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Introduction

Nanotechnology is an exciting new platform for translating

advances in the basic sciences to therapeutics for eye disease. The

nanoscale size of particles may confer advantageous properties for

applications in drug delivery, gene therapy and cell and tissue

engineering. Nanoparticles are well-suited to provide sustained

drug delivery or gene therapy by virtue of highly controllable

surface-area to volume ratios and improved tissue penetration [1].

Delivering drug, genetic, or cellular therapeutics efficaciously to

internal ocular structures is a persistent challenge in ophthalmology.

For example, drug delivery to the retina is limited by inadequate

scleral tissue penetration, and recently increasing use of intravitreal

injections leads to patient inconvenience and increased infection

risk. Cell replacement therapies are limited by inadequate methods

both to deliver cells to the targeted ocular tissue and then to retain

the transplanted cells until integration. Hence, accurate and

controllable delivery mechanisms are needed. Nanoparticle-based

therapeutics may provide one such approach.

A number of materials have been studied for use in nanoparticle

delivery systems, such as fibrin, gelatin, collagen, poly-lactic acid

(PLA) and poly-lactide-co-glycolide (PLGA). We have been studying

the use of magnetic nanoparticles (MNPs) which, in the presence of

externally applied magnetic fields, can be used to control particle

delivery and cellular localization and growth. MNP-bound cells, RNA

and DNA can be separated in both research and clinical applications,

including as a contrast agent in MRI [2], and as targeted delivery

systems [3,4,5] and to apply mechanical forces to tissues or cells [6,7].

It is unknown if MNPs cause toxicity to the eye, which could

potentially limit their utility, nor whether use of particles on the nano

scale confers any advantage or disadvantage compared to particles on

the micron scale. Here we examine nanoparticle toxicity after

injection into the eye either intravitreally or into the anterior

chamber. By a variety of measures over the course of 5 months,

nanoparticle-specific toxicity was undetectable, although there was a

mild toxicity of microparticles, including corneal endothelial cell loss;

iron deposition; and particle persistence out to 5 months.

Results

To determine if either nano- or micro-magnetic particles induce

ocular toxicity, we injected 50 nm and 4 mm magnetic particles
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either intravitreally (IVT) or into the anterior chamber (AC).

Immediately after the injection, no immediate post-surgical ocular

damage (e.g. intraocular bleeding) was observed, nor were there

any behavioral abnormalities suggesting post-surgical stress in any

of the groups. Intraocular pressure was measured one hour post-

injection (see below) for all injected eyes. Injected animals were

allowed to survive for 1 hour, 1 week, 1 month and 5 months, at

which point they were euthanized and their eyes processed for

histology (Table 1, and see below).

Intraocular pressure
We first asked whether injection of magnetic particles led to an

increase in intraocular pressure (IOP). From either IVT or AC

injection, it is possible that magnetic particles could clog up the

trabecular meshwork, leading to decreased aqueous outflow and

increased IOP. We measured IOP using the rat tonolab

immediately before and 1 hour after the injection, one day after,

and every week until the animals were sacrificed. We found that

the IOP for all three groups (50 nm, 4 mm and PBS) varied across

the survival period, but at no time did any of the groups differ

significantly from the others (Figure 1). There was a slight

increase in IOP at week 5 for the PBS IVT injections (Figure 1a),

but this never went above 15 mmHg, and was not statistically

significant when compared to IOP in these same animals between

weeks 5–10, or when compared to IOP in the magnetic particle-

injected animals. The same was true with the AC PBS-injected

animals in the first few weeks (Figure 1b). Slight trends seen in the

data were thus more likely due to fluctuation in tonometer

calibration or diurnal variability, as the statistics did not support

any differences. We did not examine IOP immediately after

injection, when human IVT injection is often found to increase

IOP, although our slow injection rate may also differ from typical

human IVT injections. Thus, neither nano- nor micro-particles

induce significant changes in IOP compared to PBS control

injections.

Histochemistry and cell survival
Next we asked if the IVT or AC injections of magnetic

particles affected retinal or corneal endothelial cell numbers,

respectively. Sections were processed for H&E histochemistry

(Figure 2) and the number of cells in the ganglion cell layer

(GCL), inner nuclear layer (INL) and outer nuclear layer (ONL)

or in the corneal endothelial cell layer were counted. After AC

injection, 4 mm particles were detected along the iris and in the

angle (Figure 2 - blue arrows). After IVT injection, 4 mm particle

clusters were detected layering the retina (Figure 2 - green

arrows). In contrast to the 50 nm MNPs that were cleared from

the vitreous in these experiments, 4 mm particles were still

detectable at 5 months.

We could not detect 50 nm MNPs in histologic sections, but

they were visible acutely after IVT injection in the GCL of the

Table 1. Experimental groups.

Injection Left Eye Right Eye Survival

IVT 50 nm PBS 1 hour

IVT 4 mm PBS 1 hour

IVT 50 nm PBS 1 week

IVT 4 mm PBS 1 week

IVT* 50 nm PBS 1 month

IVT* 4 mm PBS 1 month

IVT 50 nm PBS 5 months

IVT 4 mm PBS 5 months

AC 50 nm PBS 1 hour

AC 4 mm PBS 1 hour

AC 50 nm PBS 1week

AC 4 mm PBS 1week

AC* 50 nm PBS 1 month

AC* 4 mm PBS 1 month

AC 50 nm PBS 5 months

AC 4 mm PBS 5 months

None**

3 animals were studied per group, but IOP and histology data for PBS-injected
right eyes were pooled into groups irrespective of left eye treatment.
*1 month survival groups were only subjected to histology and iron staining,
not IOP or immunofluorescence measurements.
**A set of uninjected animals was used exclusively for ERG measurements. IVT
intravitreal; AC anterior chamber; PBS phosphate buffered saline.
doi:10.1371/journal.pone.0017452.t001

Figure 1. Intraocular pressure measurements. Intraocular pressure was measured using the rat tonolab for the (a) intravitreal (IVT) and (b)
anterior chamber (AC) injections of 50 nm and 4 mm magnetic particles, and PBS. Measurements were made before injection, 1 hour after injection, 1
week after and every week thereafter until the animals were sacrificed. There were no significant differences between injected and control at any
time point measured.
doi:10.1371/journal.pone.0017452.g001
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retina. At 1 week, 50 nm MNPs were detected without significant

GFAP immunoreactivity (Figure 3a), whereas microparticles

elicited significant GFAP upregulation (Figure 3b). No GFAP

staining was detected in either group at 5 months (not shown). We

found that there was no difference in the retinal nuclear cell

density as measured along the GCL, INL and ONL at any time

point from 1 week to 5 months (Figure 4a–b). Interestingly, we

found that corneal endothelial cell numbers were no different

Figure 2. Hematoxylin- and eosin-stained sections. Hematoxylin- and eosin-stained representative sections for the PBS- (control), 50 nm- and
4 mm- injected animals at 1 week and 5 months, as marked. Accumulation of 4 mm particles were noted layered against the retina (IVT injection,
green arrows) and along the iris and in the angle (AC injection, blue arrows) out to 5 months. Yellow arrows highlight example dotted cell nuclei in
the GCL (yellow dots), INL (green dots) and ONL (red dots) at higher magnification used for cytotoxicity counting. Black arrows point to corneal
endothelial cells along the endothelial cell layer, used for cytotoxicity counting. Scale bar, 50 mm in all pictures.
doi:10.1371/journal.pone.0017452.g002
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between the control and 50 nm MNP AC-injected eyes, but there

was a statistically significant decrease in corneal endothelial cell

number in the eyes injected with 4 mm magnetic microparticles at

1 week and 5 months compared to PBS- and MNP-injected eyes

(Figure 4b). Thus, 50 nm MNPs failed to detectably alter ocular

histology, but magnetic microparticles were slightly toxic to the

corneal endothelium.

Glial activation in response to magnetic particles
We next asked if magnetic particle injections induced astrocyte

or microglial activation as measured by GFAP and CD11b/c

immunofluorescence, respectively. We found GFAP immunoreac-

tivity was similar in both PBS- and magnetic particle-injected

animals at 1 hour, 1 week and 5 months, and that this minimal

activation was mostly at the site of injection along the nerve fiber

layer and GCL, without activation of Muller glia in the deeper

retinal layers (Figure 5). A basal level of GFAP staining was seen in

both AC- and IVT-injected animals at 5 months, suggesting that

this level of GFAP immunoreactivity is background or at a

minimum, not particle-specific. Similarly, there was no difference

in CD11b/c staining among PBS- and particle-injected groups at

1 hour, 1 week and 5 months (Figure 6). Thus injection of

magnetic nano- and microparticles do not appear to activate

retinal glia.

Iron deposition and electroretinograms
Next we asked if the injections of magnetic particles caused

detectable iron deposition.

We stained histologic sections with Perl’s Prussian Blue, and

observed typical staining in the positive control tissues, as

expected, but no staining was detected in any of the magnetic

particle-injected eyes at 1 week (Figure 7). At 5 months after

injection, iron staining was detected in the choroid for many of the

animals, including in controls, which likely represents a normal

feature of the aging choroid and thus was considered background

(Figure 8). Other than this background choroidal staining, no iron

staining was detected in any of the other ocular tissues after 50 nm

MNP injections in the AC or vitreous. In contrast, in 4 mm particle

injected eyes, iron staining was detected in the retina after IVT

injection, and in the cornea and ciliary body after AC injection

(Figure 8 and Table 2). Thus, by 5 months, iron deposition was

only detected above background in the 4 mm particle-injected

animals, but never in the 50 nm MNP-injected animals.

Histochemical detection of ocular iron deposition may not be

very sensitive, so we also examined the electroretinogram (ERG),

which can be suppressed by molecular iron inside the eye [8,9,10].

We compared the PBS-injected right eyes to the magnetic particle-

injected left eyes for all animals, and examined an additional set of

animals in which neither eye was injected. We found similar

amplitude ranges for all groups: a-waves in 100–250 mV range and

b waves in 500–600 mV range (Figure 9). There were no

significant difference in the a- and b-waves for the control

(uninjected) and nano- and microparticle injected animals with

either IVT or AC injections.

Discussion

Here, we found that injecting magnetic nano- and micropar-

ticles into the vitreous or AC had essentially no particle-specific

toxicity when measuring IOP, ERG, histology, or glial activation.

We injected a single dose of magnetic particles 10-fold higher

than a dose found to enhance RGC survival in vitro when coated

with a TrkB agonist antibody (data not shown), which we

previously demonstrated enhances RGC survival in vitro and in

vivo [11], and consistent with other current uses of magnetic

particles in vitro and in vivo. For example, one study in rat liver

cells compared cellular toxic responses with respect to different

sizes of nanoparticles with different core compositions and

concluded that silver nanoparticles were highly toxic whereas

Figure 3. Localization of magnetic nanoparticles at 1 week. At 1 week after IVT injection, immunofluorescence was used to localize 50 nm
particles (green in a) and 4 mm particles (red in b) as shown by white arrows. In both cases, retinas were counterstained with GFAP and DAPI (nuclei,
blue). At 1 week, both sizes of magnetic particles were detectable in the ganglion cell layer (arrows). Scale bar, 50 mm.
doi:10.1371/journal.pone.0017452.g003
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molybdenum was moderately toxic and aluminium, iron oxide,

manganese ozide and tungsten displayed little or no toxicity [12].

Similarly, IVT nanogold injections in rabbits showed few signs of

retinal or optic nerve toxicity at 1 month, with only slight

vacuolization in the inner plexiform and ganglion cell layers [13].

MNPs coated with polyethylenoxide copolymers are biocompat-

ible as shown by a cell viability MTT assay and, up to a

concentration of 5 mg/mL, do not disturb the growth of

epithelial, endothelial or tumor cells [14]. The Food and Drug

Administration (FDA) has approved the use of superparamag-

netic iron oxide nanoparticles similar to those we used as contrast

agents in magnetic resonance imaging [15], supporting the

premise that nanoparticles prepared using iron oxide are not

significantly harmful towards humans. Similarly, we found no

toxicity of nanoparticles detected at the level of histology or glial

activation. There was toxicity of microparticles, however, with a

small but statistically significant decrease in corneal endothelial

cell counts, as well as iron deposition in the tissues above control

levels after AC injection (see below). Thus, magnetic nanopar-

ticles, but not magnetic microparticles, were safe for intraocular

injection, at least at the single injection dose tested. Note,

magnetic fields were not applied to the MNP-injected eyes; it

remains possible that MNPs may be more toxic if exposed to

magnetic fields.

Using uncoated MNPs (not studied here) in vivo could be

harmful, as it could lead to aggregation, increased oxidation, and

or other instability in physiologic conditions. Adapting the surface

of the particles can enhance biological compatibility and allow

Figure 4. Cell count by histology after particle injections. Retinal layer cell numbers were quantified at (a) 1 week and (b) 5 months for
ganglion cell layer (GCL), inner nuclear layer (INL) and outer nuclear layer (ONL) for the PBS control- and magnetic particle-injected eyes. (c) Corneal
endothelial cell counts were normalized to PBS control-injected eyes for each time point shown. * p,0.05 by ANOVA and post-hoc t-test.
doi:10.1371/journal.pone.0017452.g004
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functionalization of the surfaces to deliver drugs or to bind

receptors on target sites. For example, silica nanoparticle-

associated toxicity can be reduced by synthesizing the particles

with chitosan, a very well known biocompatible polymer [16]. The

50 nm MNPs used in our study were coated with dextran, a

commonly used natural polymer that has been shown to be non-

toxic and biocompatible [17,18]. A limitation to this study was the

difference in coatings between the two particle sizes, but both are

well-described to be inert, biocompatible surfaces.

A major difference between nano- and microparticles in our

study was the prolonged intraocular persistence of the micropar-

ticles. In the eye, the nanoparticles’ clearance mechanism is

unknown, but could involve uptake into the vascular system or

passage through the hyaloid into the anterior chamber and egress

out of the trabecular meshwork. After exiting the eye, the

nanoparticles might be transported in lymphatic or systemic

circulations and excreted in the liver and kidney [17,18]. In

contrast, the 4 mm particles persisted, presumably unable to exit

through either of those pathways. We would expect longer time

periods to lead to more iron leaching and iron-related toxicity

from the 4 mm particles with longer time periods, given the

persistence of those particles and their inability to leave the eye.

We would not expect further toxicity from the 50 nm MNPs after

5 months, given that we were unable to detect them in the eye by

this point. We argue that this supports a preference towards using

nano- versus micron-scale particles in the eye for non-biodegrad-

able and particularly iron-based particles.

Iron can damage photoreceptors and interfere with retinal

electrophysiology [9] and ERG is a more sensitive and consistent

modality with which to detect iron-related damage (siderosis)

[8,10] than Prussian blue staining. In a study in rabbits, ERG

changes were detectable by 15 weeks [9], a similar time point to

our study. We found that ERG waveforms did not show any

difference in the amplitude between the magnetic particle and

PBS injections. This could be attributable to the low total iron

load delivered, or to the dextran and polystyrene coatings on the

50 nm and 4 mm particles, which could prevent molecular iron

from leeching out. Coatings on MNPs may also confer toxicity,

as for example decreasing polyethylenoxide (PEO; also called

polyethylene glycol, PEG) tail lengths when coated on MNPs

increases their toxicity in a series of cell lines including a human

RPE cell line [14]. Thus coated nanoparticles are not toxic to

Figure 5. Measure of astrocyte activation using GFAP staining. Example GFAP immunofluorescence images for the PBS- (control), 50 nm-
and 4 mm-intravitreally injected animals at 1 hour, 1 week and 5 months as marked. AC-injected animals are also shown for the 5 month time point.
Astrocyte activation is seen along the ganglion cell layer (red) with nuclear counterstaining with DAPI (blue) highlighting the retinal layers. Astrocyte
activation was similar among PBS- and magnetic particle-injected animals at all three time points for both types of injections. For IVT-injected
animals, GFAP staining was seen primarily at the site of injection along the ganglion cell layer. Scale bar, 50 mm.
doi:10.1371/journal.pone.0017452.g005
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photoreceptors at either the histologic or electrophysiologic

levels.

Interestingly, we found that there was a consistent, albeit small,

toxic effect of microparticles to the corneal endothelium, not seen

with nanoparticles. This was detectable at 1 week and persistent

out to 5 months, and correlated with detectable iron deposition

found in the microparticle- but not nanoparticle-injected eyes. The

corneal endothelium is particularly sensitive to insult in human

eyes, for example after cataract surgery or in Fuch’s endothelial

dystrophy. We do not know why microparticles were more toxic

than nanoparticles, but it may be due to physical trauma due to

their larger size, or to the persistence of the microparticles inside

the AC compared to the nanoparticles. After AC injection we were

able to identify the 4 mm particles at 1 week and at 5 months

(Figure 2 - blue arrows) lining the iris and angle, but even looking

for the fluorescently-labeled nanoparticles, we could not find them

at the same time points. It has been shown previously that particles

ranging from 138 nm to 1.2 mm in diameter accumulated in the

trabecular meshwork and demonstrated no correlation between

the particle size and resistance to particle outflow [19], however

these experiments did not examine 50 nm nanoparticles as we

used here. We did not, however, find that magnetic microparticles

led to an increase in IOP, suggesting that although they do not exit

the eye efficiently, they did not clog the trabecular meshwork to a

significant degree, possibly because of a difference in total number

of particles injected. It has been shown that the injection of

microbeads into the anterior chamber of rodents can be used to

increase IOP and induce a rodent model of glaucoma [20]. Using

15 mm particles, they found that the increase in IOP was due to

microbead obstruction of the trabecular meshwork, not seen here

with 4 mm particles. It is possible the more subtle forms of

cytotoxicity before cell loss measured here could be detected with

other modalities like specular [21] or electron microscopy, and

such studies may be warranted in the future.

Figure 6. Microglial activation in response to magnetic particles. Example CD11b/c immunofluorescence images for the PBS- (control),
50 nm- and 4 mm-injected animals at 1 hour, 1 week and 5 months as marked. There was no difference in microglial activation among PBS- and
magnetic particle-injected animals at any time point surveyed. Scale bar, 50 mm.
doi:10.1371/journal.pone.0017452.g006
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In summary, polymer-coated MNPs and, to a slightly lesser

degree, micron-scale particles, were largely non-toxic to ocular

tissues whether injected IVT or into the AC. As such particles may

prove to be excellent delivery vehicles for gene, drug or cellular

delivery [1], understanding their interaction with ocular tissues will

continue to be an important part of moving them towards

potential therapeutic use.

Methods

Experiments conformed to the ARVO Statement for the Use of

Animals in Ophthalmic and Vision Research, and were approved

by the Institutional Animal Care and Use Committee and the

Institutional Biosafety Committee of the University of Miami

(approval ID 08-094). For all survival experiments, animals were

monitored including weekly weight measurements to confirm their

health status. No animals were excluded due to weight loss or

other health problems.

Magnetic nano- and microparticles
Magnetic 50 nm nanoparticles (55–59% iron oxide w/v) are

superparamagnetic, dextran-coated beads conjugated to goat

anti-mouse IgG (Miltenyi Biotec Inc., Germany). Particle size is

determined by passing the magnetic particles through a sieve/

filter. Average radius was confirmed by dynamic light scattering

using a DynaPro Titan Dynamic Light Scattering Instrument

(Wyatt Technology, CA) with a mean particle radius of 33.6 nm

and a polydisperisty of 0.372. To label these nanoparticles, 20 ml

of nanoparticles were added to 20 ml of Alexa-488-conjugated

donkey anti-goat IgG (Invitrogen) and incubated at room

temperature for 10 min, and then centrifuged at 15.7 rcf for

10 min. The supernatant solution was discarded, the beads at

the bottom of the tube were resuspended in 100 ml Dulbecco’s

phosphate buffered saline (DPBS), centrifuged at 15.7 rcf for

10 min, the supernatant discarded and nanoparticles resus-

pended in 20 ml DPBS, and then stored at 4uC for 1 day before

injection.

Magnetic 4 mm particles (Dynabeads M-450, tosyl-activated,

37% iron oxide w/v) are superparamagnetic, polystyrene-coated

particles (Invitrogen Dynal, Norway). Particle sizing is performed

using a Coulter Counter Multisizer 3. The method is based upon

pulses of current in an electrically conducting electrolyte. Briefly,

the particles are dispersed in an electrolyte solution which is

sucked into a tube through a small opening. When the particles

pass through, the resistance across the opening is measured using

a measuring cell coupled in a Wheatstone bridge. Each particle

passing through the opening generates an electrical pulse, and

the size of the pulse depends upon the particle size. The pulse

sizes are measured and the particles are sorted accordingly. To

label 4 mm particles, 20 ml of particles were added to 100 ml of

buffer 2 (prepared according to the Dynal protocol, containing

phosphate buffered saline (PBS), 0.1% bovine serum albumin

(BSA) (w/v) and 2 mM EDTA, pH 7.4). The tube was placed in

a magnet for 1 min and the supernatant was discarded. The

particles were resuspended in buffer 1 (0.1 M sodium phosphate

buffer) and 4 mg of Alexa-488-conjugated goat anti-rabbit IgG

(Invitrogen), and then incubated at room temperature for one

hour. The tube was placed in a magnet for 1 min and then the

supernatant was discarded. The particles were washed twice with

1 ml buffer 2 and once with 1 ml buffer 2. The particles were

resuspended in 20 ml buffer 2 and then stored at 4uC for 1 day

before injection.

Figure 7. Iron deposits in the ocular tissues after particle injections. Representative images from Prussian blue histochemical staining for
iron from control and magnetic particle-injected eyes at 1 week. Iron staining was observed only in the positive control, and not in any of the injected
eyes, as marked. The 4 mm particles were visible in the iris and retinal tissues (arrows).
doi:10.1371/journal.pone.0017452.g007

Evaluation of Magnetic Particle Toxicity in Eyes

PLoS ONE | www.plosone.org 8 May 2011 | Volume 6 | Issue 5 | e17452



Intraocular injections
36 Sprague Dawley rats (Harlan Laboratories) were anesthe-

tized with ketamine (60 mgs/kg; 6 ml = 600 mg) and xylazine

(8 mg/kg; 0.8 ml = 80 mg; dosage: 0.1 ml/100 grams of body wt.)

and monitored throughout the procedure. The rats were injected

intravitreally or in the anterior chamber with an equal volume of

3 ml of 4 mm (1.69 mg total) or 50 nm (1.65 mg total) magnetic

particles in the left eye and an equal volume of 3 ml of PBS into the

right eye as controls. This dose of particles was chosen because,

based on an adult rodent vitreous volume of 52 ml [22], it was 10-

fold higher than the dose found to enhance retinal ganglion cell

(RGC) survival in vitro when coated with a TrkB agonist antibody

(data not shown and [11]). This injection volume is also

proportional to volumes currently injected into human eyes for

clinical treatment today. Intravitreal injection was performed just

posterior to the pars plana with a pulled glass micropipette

attached to a 50 ml Hamilton syringe. Care was taken not to

damage the lens. For anterior chamber injection, the cornea was

punctured by inserting a 30-gauge needle directly above the pupil

and parallel to the iris. Aqueous humor was allowed to flow out

and was removed by sponge. 3 ml of MNPs was then injected with

a pulled glass micropipette. At the end of the injection, an air

bubble was introduced into the anterior chamber, to seal the

corneal puncture and prevent leakage. There were none to very

little adhesion of MNPs to the glass micropipette.

The animals were sacrificed 1 hour, 1 week, 1 month and 5

months after injection (Table 1). After the animals were sacrificed,

the eyes were fixed with 4% paraformaldehyde and left overnight

on sucrose. The eyes were frozen in liquid nitrogen and then

sectioned at 16 mm thickness on a standard cryostat.

Figure 8. Iron deposits in the ocular tissues due to injected magnetic particles at 5 months. Prussian blue histochemical iron staining
images for control and magnetic particle-injected eyes at 5 months. Black arrow shows an example of background choroidal staining in an IVT PBS-
(control) injected eye, frequently observed as a background choroidal staining in many of the sections. Neither IVT nor AC 50 nm-injected eyes
showed iron staining, but positive iron stains were noted around 4 mm particles after IVT injection (white arrow), in the cornea (blue arrow), and in
the ciliary body (green arrows) seen after AC injection. Scale bar, 50 mm.
doi:10.1371/journal.pone.0017452.g008
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Intraocular pressure measurements
Intraocular pressure (IOP) was measured using a TonoLab

tonometer before the injection, one hour after the injection, one

day after and every week after until the animals were sacrificed.

Each eye was measured 3 times per session; reported results reflect

the average of these 3 measurements.

Immunofluorescence and histochemistry
Cryosections were blocked and permeabilized in 20% goat

serum/0.2% triton X100 in antibody buffer (150 mM NaCl,

50 mM Tris base, 1% BSA, 100 mM L-Lysine, 0.04% Na azide,

pH 7.4), for 30 min at room temperature. Primary antibodies

against glial fibrillary acidic protein (GFAP) or CD11b/c (Abcam)

for astrocytes and microglia/macrophages, respectively, were

diluted in antibody buffer at 1:500 and 1:200 respectively.

Sections were incubated in primary antibody solution overnight

at 4uC, rinsed in PBS three times, incubated in Alexa-594-

conjugated goat anti-mouse (Invitrogen) secondary antibody

diluted in antibody buffer at 1:400 overnight at 4uC ,rinsed in

PBS three times, mounted in mounting medium with DAPI

(Vector Laboratories Inc., CA) and imaged with an Axiophot

microscope (Zeiss).

Alternating cryosections were stained with hematoxylin and

eosin (H&E) using typical protocols to examine cellular morphol-

ogy. Using the H&E-stained sections, cell density was measured in

three retinal nuclear layers – ganglion cell layer, inner nuclear

layer and outer nuclear layer – and in the corneal endothelial cell

layer at all three time points (1 hour, 1 week and 5 months) and

reported as cells per mm2 for retinal cells, and cells per linear mm

for corneal endothelial cells. About 8 sections per eye were

examined, with 3 eyes per group (Table 1). Cell counts were done

by eye under microscopy; an example retinal section was marked

in Figure 2(yellow arrow) using ImageJ (NIH) for demonstration

purposes. About 10–12 sections per treatment were evaluated and

averaged. Averages, standard deviations, and statistical analysis

using ANOVA with post-hoc t-tests were calculated in Excel

(Microsoft).

Alternating cryosections were stained with Perl’s Prussian Blue

using standard protocols to look for iron deposition in the ocular

tissues at all 3 time points. These were examined qualitatively.

Electroretinogram (ERG) recording
Animals at 9–14 weeks post-injection were dark adapted for

24 h and then anesthetized under dim light with ketamine and

xylazine. Pupils were dilated with 0.1% atropine. During

measurements, the animals were placed on a heated pad (37uC)

to maintain body temperature. Custom contact lenses made with

platinum wire and placed on the corneas of both eyes served as

active electrodes, a subcutaneous needle electrode between the

eyes was used as a reference electrode, and a subcutaneous needle

Table 2. Iron staining after particle injection – fraction of eyes
staining with Perl’s Prussian Blue.

Choroidal Other

Control 0/3 0/3

50 nm IVT 0/3 0/3

Control (PBS) 0/3 0/3

AC 1/3 0/3

Control (PBS) 2/3 0/3

4 mm IVT 3/3 2/3*

Control (PBS) 1/3 0/3

AC 0/2 2/2**

Control (PBS) 1/2 0/2

*Staining seen around clumps of beads.
**Staining seen in cornea and ciliary body (Figure 8).
doi:10.1371/journal.pone.0017452.t002

Figure 9. Measure of electroretinograms changes in response to magnetic particles. Electroretinograms taken at 9–14 weeks for 50 nm-
and 4 mm-, AC- and IVT-injected animals, as well as control, uninjected animals, as marked. The solid line represents the average of the particle-
injected left eyes for each group, and the dashed line represents the average of the PBS-injected right eyes for each group, except in the control
animals (1st column) in which neither eye was injected. There was no significant difference in the a- and b-waves for the control (uninjected) and
nano- and microparticle injected animals with either IVT or AC injections.
doi:10.1371/journal.pone.0017452.g009
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electrode in the tail served as the ground electrode. All of the

operations including anesthetizing animals, animal positioning and

electrode placement were performed under dim red light, to

preserve dark adaptation. ERG measurements were made using

the UTAS Visual Diagnostic System (LKC Technologies). The

Single Flash test type for the Sunburst Flash was used, with an

amplifier gain of 61250 v and bandpass filtered between 0.3 and

500 Hz. The time of measurement was 200 ms. Standard

waveforms were recorded at seven different light intensities

230 dB, 220 dB, 210 dB, 0 dB, 2 dB, 5 dB, 10 dB (22.6 to

1.3 log cd-s/m2) where 1 dB = 10log (cd-s/m2/2.5). The built-in

smoothing algorithm was used for removing excess high frequency

noise from a waveform. Using the EMWIN 8.1.1 software,

amplitudes of a-wave were measured from the baseline to the

bottom of the a-wave trough and b-wave amplitudes were

measured from the bottom of the a-wave trough to the top of

the b-wave. In the absence of a-wave, b-wave amplitude was

calculated from the baseline to the peak of the b-wave. All animals

were measured at 9–14 weeks. ERG results were averaged among

each treatment group; means, standard errors and statistical

significance (ANOVA and t-test) were calculated in Excel

(Microsoft).
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