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Abstract

High-throughput sequencing technologies have strongly impacted microbiology, providing a rapid and cost-effective way of
generating draft genomes and exploring microbial diversity. However, sequences obtained from impure nucleic acid
preparations may contain DNA from sources other than the sample. Those sequence contaminations are a serious concern to
the quality of the data used for downstream analysis, causing misassembly of sequence contigs and erroneous conclusions.
Therefore, the removal of sequence contaminants is a necessary and required step for all sequencing projects. We developed
DeconSeq, a robust framework for the rapid, automated identification and removal of sequence contamination in longer-read
datasets (w150 bp mean read length). DeconSeq is publicly available as standalone and web-based versions. The results can
be exported for subsequent analysis, and the databases used for the web-based version are automatically updated on a
regular basis. DeconSeq categorizes possible contamination sequences, eliminates redundant hits with higher similarity to
non-contaminant genomes, and provides graphical visualizations of the alignment results and classifications. Using DeconSeq,
we conducted an analysis of possible human DNA contamination in 202 previously published microbial and viral
metagenomes and found possible contamination in 145 (72%) metagenomes with as high as 64% contaminating sequences.
This new framework allows scientists to automatically detect and efficiently remove unwanted sequence contamination from
their datasets while eliminating critical limitations of current methods. DeconSeq’s web interface is simple and user-friendly.
The standalone version allows offline analysis and integration into existing data processing pipelines. DeconSeq’s results reveal
whether the sequencing experiment has succeeded, whether the correct sample was sequenced, and whether the sample
contains any sequence contamination from DNA preparation or host. In addition, the analysis of 202 metagenomes
demonstrated significant contamination of the non-human associated metagenomes, suggesting that this method is
appropriate for screening all metagenomes. DeconSeq is available at http://deconseq.sourceforge.net/.

Citation: Schmieder R, Edwards R (2011) Fast Identification and Removal of Sequence Contamination from Genomic and Metagenomic Datasets. PLoS ONE 6(3):
e17288. doi:10.1371/journal.pone.0017288

Editor: Francisco Rodriguez-Valera, Universidad Miguel Hernandez, Spain

Received November 30, 2010; Accepted January 26, 2011; Published March 9, 2011

Copyright: � 2011 Schmieder, Edwards. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grant DBI 0850356 Advances in Bioinformatics from the National Science Foundation (http://www.nsf.gov/). The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: rschmied@sciences.sdsu.edu (RS); redwards@cs.sdsu.edu (RE)

Introduction

High-throughput sequencing technologies have made a huge

impact on microbiology, providing a rapid and cost-effective way

of generating draft genomes and allowing metagenomic explora-

tion of microbial diversity. Metagenomics, the survey of microbial

or viral communities (and their encoded metabolic activities) from

distinct environments, has been rapidly expanding over the past

several years from its origins in environmental microbiology [1–6].

Recently, the National Institute of Health (NIH) roadmap Human

Microbiome Project (HMP) initiative was jump-started to examine

microbes associated with health and disease in several areas of the

human body [7,8].

Metagenomics has been enabled by the advances in second-

generation sequencing, with current sequencing machines generating

reads that are shorter than those generated with gel-capillary

technology. However, the amount of data produced is orders of

magnitude greater than that generated by earlier techniques and can

reach gigabases per machine day [9,10]. The performance charac-

teristics of high-throughput sequencing machines such as Roche/454’s

GS FLX, Illumina/Solexa’s GA IIx, and Life Technologies SOLiD

system are changing rapidly with respect to machine capacity, run

time, read length, error profile, and cost per base.

The immense amount of genomic and metagenomic data

produced today requires an automated approach for data

processing and analysis. A typical sequence processing pipeline

includes several steps such as sequence cleaning, alignment to

known reference sequences, and/or de novo assembly [2,10]. The

sequence cleaning step is an essential first step of the sequence

processing pipeline before any further data processing in order to

allow accurate downstream analysis. For most datasets, the

sequence cleaning step usually includes filtering to remove read

duplicates, low quality reads, contaminating sequences, and

adaptor or barcode sequences.
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Sequences obtained from impure samples or nucleic acid

preparations may contain DNA from sources other than the

microbes in the sample. That sequence contamination is a serious

concern: for the HMP all contaminating human genomic

sequences must be removed from the sample prior to the data

being made public; for other projects the quality of the data used

for downstream analysis will be affected by contamination,

possibly causing misassembly of sequence contigs and erroneous

conclusions.

In this paper we focus on identifying and removing human

contamination from microbial metagenomes, such as those created

under the auspices of the HMP. However, the methodology can be

applied to any kind of sequence contamination. To detect human

contamination, metagenomes need to be compared to the human

genome. In addition to the public and private human genome

sequencing efforts [11,12], several individual human genomes

were published in the last three years [13–18]. Large-scale

resequencing projects such as The 1000 Genomes Project

(http://www.1000genomes.org/), the Cancer Genome Atlas [19]

and the Personal Genome Project (http://www.personalgenomes.

org/) will also generate high-coverage human genomes. These

projects provide the reference sequences that are used to detect

human genome contamination in genomic and metagenomic

datasets.

Earlier-generation sequence alignment programs such as

BLAST [20,21] were designed to align DNA and protein

sequences and to search through large databases to find

homologous sequences. MegaBLAST was developed to speed up

the alignment for query sequences that are highly similar to the

reference sequences and was used to align large-scale sequencing

data. Later, improvements on MegaBLAST were proposed such

as database indexing methods to allow even faster alignments [22].

The advances in sequencing technology over the last decade

have brought new challenges in bioinformatics; consequently

many new alignment programs that are much faster than BLAST

have been published over the last few years. In general, the new

alignment programs were developed to align DNA sequences to

closely related reference genomes, especially long references such

as mammalian genomes, with only few low quality alignments

expected. For example, many short-read alignment programs were

designed for reads v100 bp [23–27]. However, most next

generation sequencing technologies already produce reads

w100 bp (Illumina/Solexa), w400 bp (Roche/454), and

w1,000 bp (Pacific Biosciences in early testing [10,28,29]). In a

few years, long reads will likely dominate and programs for short

reads will be less applicable.

In contrast to short-read alignment algorithms that tend to

maximize global alignments, longer-read alignment algorithms

aim to find local matches because longer reads are more prone to

structural variations and map over misassemblies in the reference

sequence. Longer-read alignment programs must also be able to

deal with alignment gaps since indels (insertions and deletions)

occur more frequently in long reads and may be the dominant

source of sequencing errors for some technologies such as Roche/

454 and Pacific Biosciences [30].

The three approaches used by the currently available longer-

read alignment programs are either hash table, suffix tree or

Burrows-Wheeler Transform (BWT) [9,31]. Hash table based

algorithms basically follow the seed-and-extend paradigm and the

idea of hash table indexing can be traced back to BLAST. The

BLAST program keeps the position of each k-mer subsequence of

the query and scans the database sequences for k-mer exact

matches (called seeds) by looking up the hash table. BLAST then

extends and joins the seeds and refines them by a Smith-

Waterman alignment [32]. The seeding step was accelerated by

the idea of requiring multiple seed matches for an extension. This

idea is implemented in SSAHA2 [33] and BLAT [34], which offer

significantly faster alignment than BLAST for reads that are nearly

identical to the reference database.

Recently developed hash table based programs for longer reads

such as Mosaik (http://bioinformatics.bc.edu/marthlab/Mosaik)

build the hash table on the reference sequences and use it to scan

for query subsequences. Hash tables are appropriate for DNA

sequences, since they very likely contain repeats or duplicates and

are unlikely to contain every possible combination of nucleotides.

Depending on the size of the reference sequences, the size of the

hash table may be very large (tens of GB) and take a lot of time or

memory to build.

Another group of algorithms rely on a representation of suffix/

prefix trie. The advantage of using a trie is that an alignment to

multiple identical copies of a substring in the reference is only done

once since they collapse on a single path in the trie. It takes linear

time to determine if a query has an exact match against a trie, but

a trie takes quadratic space with respect to the reference length. A

suffix tree achieves linear space while still allowing linear-time

searching. The alignment program MUMmer [35] is based on

suffix tree and anchors the alignment with maximal unique

matches (MUMs) and then joins these exact matches with gapped

alignments. Most trie implementations require more than 10 bytes

per nucleotide and make it impractical to hold the suffix tree of

large reference genomes in memory.

The FM-index proposed by Ferragina and Manzini [36] was

originally designed as a compressed data structure and is used by

alignment programs to improve the memory usage (typically 0.5–2

bytes per nucleotide [31]). The FM-index data structure is

basically a compressed suffix array, following the concept that a

suffix array is much more efficient if it is created from the BWT

sequence rather than from the original sequence. BWT imple-

mentations are widely used because of their small memory

footprint and they are much faster than their hash-based

alternatives at the same sensitivity level [9].

When comparing nucleotide sequences, even a unique query

sequence can match a few million positions with a positive

alignment score, with the majority being random matches or

matches in short low-complexity regions. BWA-SW [30], an

implementation of the Burrows-Wheeler aligner combined with a

Smith-Waterman search uses heuristics to accelerate the align-

ment process. BWA-SW traverses the query prefix directed acyclic

word graph (DAWG) in the outer loop and the reference prefix

trie in the inner loop. From this, all the nodes in the reference

prefix trie that match the query node with a positive score are

found. Since the true alignment tends to have a high alignment

score, it is possible to prune low-scoring matches at each node, and

consequently restrict dynamic programming around good matches

only. At each node in the DAWG, BWA-SW only keeps the top Z
best-scoring nodes in the reference trie that match the node, rather

than keeping all the matching nodes. This heuristic is referred to as

Z-best strategy.

Here, we selected longer-read alignment programs that are

actively maintained and widely used and evaluated them on

simulated datasets. These programs include BLAST, BLAST+
[37], Mosaik, NUCmer (from MUMmer package), and BWA-SW.

Based on the evaluation results, we adopted BWA-SW for the

removal of human sequence contamination from metagenomes

and developed DeconSeq, a robust framework for the rapid,

automated identification and removal of sequence contamination

from longer-read datasets. DeconSeq is implemented in Perl and is

freely available at http://deconseq.sourceforge.net/. Using De-

Sequence Contamination Removal
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conSeq, the amount of possible human DNA contamination in

202 metagenomes was investigated.

Results

Comparison of program performance
The programs Mosaik, NUCmer, BLAST, BLAST+ and BWA-

SW were compared for their ability to perform the alignments of

the simulated longer-read metagenomes against the human

sequence database (see Text S1 for details). Overall, BWA-SW

performed with the lowest running time of approximately

22 minutes for the human simulated datasets and four minutes

for the bacterial and viral simulated datasets (see Text S1,

Figure 1). We did not include BLAT and SSAHA2 in our

comparison as these programs were compared to BWA-SW

previously and showed similar or worse sensitivity with much

longer time spend for the computations [30].

Based on the comparisons, we tentatively adopted BWA-SW to

identify and remove human contamination from metagenomes.

BWA-SW was the fastest algorithm to complete the identification

of 100,000 human sequences using the available computational

resources. However, speed and computational requirements are

only one aspect of the identification of possible contaminating

sequences. The program must also be able to accurately identify

all of the contamination in the sample. We therefore assessed the

sensitivity of the BWA-SW algorithm at identifying human DNA

contamination. This test also identified which sequences the

aligner commonly missed.

Evaluation of alignment sensitivity
There are known limitations to the alignment approach such as

placing reads within repetitive regions in a reference genome. BWA-

SW was evaluated for its ability to align simulated data containing

sequences extracted from the human reference genome back to the

reference genome. The simulated data contained 200 bp, 500 bp,

or 1,000 bp long sequences. Errors were introduced at rates of 2%

and 5%. The typical error rate for real data is approximately 0.5%,

therefore this analysis provides a worst-case scenario [38]. The

human reference genome was used for this analysis, because it

presents the only finished-grade human genome sequence available

[10]. The human reference genome was constructed from multiple

individuals, contains 2.86 Gbp, covers 99% of the human genome

with 357 gaps and has an estimated error rate of 1 in

every 100,000 bp (http://www.ncbi.nlm.nih.gov/projects/genome/

assembly/grc/human/data/?build = 37).

Figure 1. Alignment sensitivity of BWA-SW for human sequences. Query coverage and alignment identity values ranged from 90% to 100%.
The sensitivity shows how many sequences could be aligned back to the reference. The simulated datasets contained 28,612,955 reads for 200 bp,
11,444,886 reads for 500 bp, and 5,722,210 reads for 1,000 bp.
doi:10.1371/journal.pone.0017288.g001

Sequence Contamination Removal
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After computing the alignments, we filtered the results based on

query coverage and alignment identity values (Figure 1). Using the

default settings, longer sequences could be aligned to the correct

region more often than shorter sequences independent of the error

rates introduced. Without using alignment thresholds, more than

99.9% of all sequences could be aligned back to the reference. Of

the simulated sequences that did not match the reference with the

given thresholds, on average more than 56% of the sequences

were derived from repeat regions of the human reference genome

(Figure 2). Simple repeats and low complexity regions that

represent the majority of the unaligned sequences with 0% error

rate cover 0.84% and 0.55% of the human reference genome,

respectively [39]. In contrast, the unaligned sequences were rarely

from regions of the human genome that contained exons (on

average less than 4%).

The sequences that could not be aligned under the given

thresholds were then aligned against the same human genome

using higher Z-best values (ranging from two to ten) or additional

human genome data. Increasing the Z-best value increased the

number of unaligned sequences that could be aligned (see Text S1,

Figure 2). However, using higher Z-best values almost linearly

increases the runtime (see Text S1, Figure 3). Using additional

human genome data as reference increased the number of

unaligned sequences that could be aligned (see Text S1, Figure 4)

using the default Z-best value.

Evaluation of DeconSeq accuracy
Alignments are scored based on their query coverage and

alignment identity percentages. Only hits above both thresholds

are considered as valid alignments in the following evaluation. The

accuracy of DeconSeq was benchmarked using simulated

metagenomic data because ‘‘real’’ metagenomes lack the correct

annotation for all sequences. Metagenomes consist of sequence

fragments derived from the available genomes in the sampled

environment [40]. To simulate metagenomes, we extracted

sequences from completely sequenced genomes and simulated

substitution and indel errors (see Methods). DeconSeq was

additionally benchmarked using artificial microbial metagenomes

obtained from the Joint Genome Institute [41]. The human

genomes were used as ‘‘remove’’ databases and the bacterial and

viral genomes as ‘‘retain’’ databases.

The accuracy values were calculated for threshold values of

95% query coverage and varying alignment identity. For identity

thresholds of 94% and 97%, more than 99.9% of each simulated

metagenome were classified correctly (Table 1). For an identity

threshold of 99%, the human metagenomes were classified

correctly with lower accuracy, caused by the lower number of

possible matching sequences due to the introduced error rate

above 1% using a 1% average error rate. Variation in read length

did affect the accuracy of DeconSeq in identifying contaminating

sequences, as mainly short sequences were misclassified.

Standalone and web application
DeconSeq is publicly available as standalone version or through

a user-friendly web interface (Figure 3). The interactive web

interface facilitates navigation through the results, definition of

threshold parameters, and allows the export of the results for

subsequent offline analysis. The input page of DeconSeq provides

a mechanism to import new datasets and to select the

contamination databases. Users can choose between submitting

and processing a new dataset or accessing already processed

datasets using a unique identifier. The web interface additionally

provides graphical visualizations of the alignment results and the

number of reads classified as contamination. The coverage vs.

identity plots (Figure 4) can guide the users in their threshold

selection. The connected dots in these plots help to identify

possible contaminant sequences from non-contaminant sequences

that match against both the ‘‘remove’’ and ‘‘retain’’ databases.

Identification of human contamination in 202
metagenomes

In an application example, DeconSeq was applied to 202

longer-read metagenomic datasets previously published and with a

mean read length greater than 150 bp (see Table S1). Metadata

was either retrieved with the data from NCBI or through manual

literature search. No prior knowledge of the amount of human

contamination was assumed. The FASTA files were provided as

input and the human databases were selected as ‘‘remove’’ and

bacterial and viral databases were selected as ‘‘retain’’ for

microbial and viral metagenomes, respectively. The results of

the human contamination identified are summarized in Figure 5.

The human contamination was identified for up to 64% of the

Figure 2. Repeats causing alignment problems for BWA-SW. The query coverage was set to 95%, with identity set to 99%, 97% and 94% for
error rates of 0%, 2% and 5%, respectively. The numbers above the bars show the number of unaligned sequences of each category for the given
thresholds. The values shown in parenthesis represent the percentage of unaligned sequences. The simulated datasets contained 28,612,955 reads
for 200 bp, 11,444,886 reads for 500 bp, and 5,722,210 reads for 1,000 bp.
doi:10.1371/journal.pone.0017288.g002

Sequence Contamination Removal
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metagenomes using the thresholds of 95% query coverage and

94% alignment identity. The host-associated metagenomes

showed the highest fraction of likely human contamination. Of

all metagenomes, 145 (72%) contained at least one possible

contamination sequence. The two mouse-associated metagenomes

with 24% and 29% possible human contamination were further

compared to the mouse reference genome C57BL/6J build 37 to

investigate if the high amount of possible contamination is host-

related or of human origin. The two metagenomes contained 56%

and 57% mouse-like sequences, respectively.

Figure 3. DeconSeq web interface. Screenshots of the DeconSeq web interface at different steps of the data processing. The user can either input
a data ID to access already processed data (A) or input a new sequence file and select the database (B). After processing the data, the results are
shown including the input information (C), Coverage vs. Identity plots for ‘‘remove’’ databases (D) and ‘‘retain’’ databases (E), classification of input
data into ‘‘clean’’, ‘‘contamination’’, and ‘‘both’’ (F), and download options (G).
doi:10.1371/journal.pone.0017288.g003

Figure 4. Coverage vs. Identity plots generated by DeconSeq. The plots show the number of matching reads for different query coverage
and alignment identity values. The size of each dot in the plots is defined by the number of matching reads with exactly this coverage and identity
value. Red dots represent matching reads against the ‘‘remove’’ databases and blue dots against ‘‘retain’’ databases. The column and row sums at the
top and right of each plot allow an easier identification of the number of sequences that match for a particular threshold value. The plots for
matching reads against the ‘‘remove’’ databases do not show matching reads that additionally have a match against the ‘‘retain’’ databases (A).
Results for reads matching against both databases are shown in a second plot where dots for a single read are connected by lines. If the match
against the ‘‘remove’’ database is more similar, then the line is colored red, otherwise blue. In B, for example, the majority of sequences is more similar
to the ‘‘retain’’ databases and in C the majority is more similar to the ‘‘remove’’ databases.
doi:10.1371/journal.pone.0017288.g004
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Discussion

Sequence contamination is a serious concern to the quality of

genomic and metagenomic data used for downstream analysis.

Therefore, it is important to process sequence data before

analyzing it. We presented a program available as either

standalone or web-based application that implements features to

improve the quality of sequence datasets by identifying and

removing possible sequence contamination with high accuracy.

The program is targeted towards longer-read datasets and able to

process next-generation sequence datasets with gigabases of data.

There are different approaches on how to identify sequence

contamination in genomic and metagenomic datasets and the

current methods have critical limitations. The dinucleotide relative

abundance was used by Willner et al. [42] to predict if a

metagenome was contaminated. However, this approach only

allows the identification of contamination in the whole dataset, not

on the level of single sequences. Others used BLAST to compare

metagenomes to the human reference genome [43,44]. BLAST

has a speed disadvantage that makes it a bottleneck for analyzing

the huge amounts of data typical of current sequencing projects.

The identification of possible contamination based on sequence

alignments, however, seems to provide the only reliable option

currently available to classify single sequences as contamination.

A major limitation of the alignment approach is the lack of

corresponding regions that do not exist in the reference genome(s),

referred to as dark matter, which may result from gaps in the

reference or the presence of structural variants in the genome(s)

being analyzed [45,46]. Li et al. [47] have found the presence of

extensive novel sequences in recently sequenced human genomes

that were absent from the human reference genome. Therefore,

DeconSeq provides databases for the identification of human

DNA contamination from the seven currently available human

genomes. More genomes will be sequenced, for example, in large-

scale resequencing projects such as The 1000 Genomes Project to

enhance our understanding of how genetic differences affect health

and disease. This will provide a resource for a more complete

human decontamination reference database.

The choice of the alignment program depends on the biological

application and on the type of sequencing technology used to

generate the data. The scalability of an alignment program for

speed and memory usage is important as neither memory nor

CPU power is growing as fast as sequencing capacity. The ability

to align sequences of different lengths is an important factor as

well, considering the rapidly evolving field of next-generation

sequencing and the constantly increasing length of produced

reads.

As shown in this study, BLAST does not scale well for the

identification of human DNA contamination in next-generation

sequencing data. Using filters for low complexity or repeat regions

may significantly reduce the resources consumed, but also

decrease sensitivity. BWT-based alignment programs are more

Table 1. Accuracy of DeconSeq for identifying human DNA contamination in simulated metagenomic datasets.

Metagenome group Accuracy (in %) for identity threshold of

94% 97% 99%

Virus 99.9997 (+0.0027) 99.9994 (+0.0054) 99.9990 (+0.0060)

Human 99.9834 (+0.0086) 99.9293 (+0.0177) 72.3199 (+0.2389)

Bacteria 100 (+0.0000) 100 (+0.0000) 100 (+0.0000)

Bacteria JGI 99.9999 (+0.0008) 99.9999 (+0.0008) 99.9999 (+0.0008)

The accuracy values are average values of ten viral, ten microbial and ten human datasets with 100,000 sequences each and three microbial simulated metagenomes
from JGI [41]. The accuracy values are shown for threshold values of 95% query coverage and varying alignment identity. The low accuracy value for the human datasets
and 99% identity threshold was caused by the lower number of matching sequences due to the introduced errors above 1%.
doi:10.1371/journal.pone.0017288.t001

Figure 5. Result of human DNA contamination identified in 202 metagenomes. All seven human genome sequences were used as
‘‘remove’’ databases and depending on the metagenome type (viral or microbial), the viral or bacterial genomes were selected as ‘‘retain’’ database.
145 (72%) of the metagenomes contained at least one possible contamination sequence using a threshold of 95% query coverage and 94%
alignment identity.
doi:10.1371/journal.pone.0017288.g005
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PLoS ONE | www.plosone.org 6 March 2011 | Volume 6 | Issue 3 | e17288



efficient on very long reference sequences such as mammalian

genomes because their complexity is better than being linear to the

reference length. On bacterial genomes however, these aligners

might be slower than hash table based alignment programs.

Furthermore, alignment programs such as BWA-SW can be used

for sequences generated by methods ranging from pyrosequencing

and Sanger sequencing to single molecule sequencing. Such

programs allow the alignment of sequence reads of more than

1 Mbp.

The ability to map sequence reads uniquely to the correct

location is dependent on a number of factors such as the

complexity of the reference data (highly polymorphic or repetitive

regions), length of the sequence reads, error rates of the reads, and

the diversity of the individual organism compared to the reference

[23,48]. Wrong alignments may be caused by overlooking

alignments with a similar score to the best reported alignment.

Different alignment programs handle the issue of reporting

unique hits or multiple hits differently. The implemented

algorithm either randomly chooses one, reports all above a cutoff,

or those with the best alignment score. When errors are

introduced, reads might match better at a different locus than

the original one, and therefore evaluations of programs with real

data containing errors are challenging. The number of suboptimal

hits may help to decide which alignments are reliable. In practice

however, only the best alignment is used in the analysis [49]. To

identify contamination, it is sufficient to find a single match above

given thresholds without calculating all possible matches.

Smith et al. [50] found that using base quality scores improves

alignment accuracy if the aligner uses lower penalties for an error-

prone mismatch. However, accurate quality scores are not always

available and the only program evaluated in this study that is able

to incorporate quality scores into the alignment algorithm did not

fulfill the system requirements. The algorithm implemented in

BWA-SW does not make use of quality data, but the quality

information could be exploited to estimate the confidence in an

alignment.

Not all sequences that should have been aligned might have

been aligned using a given program. In some instances, the

sequence read cannot be mapped to the reference. Most of these

errors arise from failing to find a seed during the mapping step of

the algorithm. Repeat regions are problematic for alignment

algorithms and users tend to mask sequences before performing

the alignments. However, not allowing seeding in matching

regions of the reference sequence that are masked for repeats

might result in unaligned query sequences. The human reference

genome build 37 has 50.2% of the genome masked as repeat,

reducing the number of possible seeding positions. It is more likely

to find sufficient seeds from which to extend the alignment for

longer reads. As read length increases, the mapping in repetitive

regions will improve. We showed that the BWA-SW program used

by DeconSeq has a high sensitivity (including repetitive regions)

for sequences with low error rates or longer reads when aligning

human DNA to the reference genome.

Heuristics present another source of alignment errors especially

for short queries, because only a few valid unique seeds may exist

between the aligned sequences. BWA-SW, for example, tends to

miss short alignments with high error rates, as it does not

guarantee to find all local hits due to the heuristic acceleration. In

contrast, BWA-SW might find seeds where other programs, such

as BLAST, do not. BLAST uses identical seeds that might not

work well for (short) query sequences that contain mismatches

because there might be no seed sequence from which to extend the

alignment. BWA-SW finds seeds by dynamic programming

between two FM-indices and allows mismatches and gaps in the

seeds. To achieve higher sensitivity, regions that do not align with

a given program can be identified and aligned using more sensitive

(and usually much slower) parameters or alternative programs.

The default value for Z in BWA-SW is one. Increasing Z
improved accuracy slightly for test datasets, but greatly reduced

the alignment speed.

The alignment of sequences against a reference is considered

‘‘embarrassingly’’ parallel, being easy to distribute the required

computational work over the nodes of a compute cluster.

However, parallelization alone does not always solve the problem

of analyzing the huge amounts of data generated by next-

generation sequencing machines and speed of the program stays

an important factor when choosing programs. We showed that the

identification of contaminating sequences done by BLAST+ in

hours could be achieved by BWA-SW in minutes. Speed is gained

in BWA-SW largely from the use of FM-indices and by reducing

unnecessary extension for highly repetitive sequences [30].

However, the speed of alignments is largely determined by the

error rate of the query sequences. The error rates will likely be

reduced greatly using third-generation sequencing techniques,

such as single-molecule techniques that are able to sequence the

same template molecule more than once and produce a consensus

read with reduced stochastic errors that may occur [10].

It is important that the limitations of the programs used for

analysis be understood. Next-generation alignment programs were

mainly designed for DNA alignments implementing a 2-bit

representation of sequences. The 2-bit representation restricts

the use of ambiguous bases such as N. SSAHA2 replaces

ambiguous bases by base A and BWA-SW randomly chooses A,

C, G or T as replacement. This can lead to false positive hits

especially in long stretches of Ns in genomic sequences. To reduce

the number of false positive, we removed long stretches of Ns in

the genomes and modified BWA-SW to mismatch Ns in the query

sequences during the Smith-Waterman alignment. There are also

limitations in speed and accuracy of the BWA-SW program.

BWA-SW can be used to align 100 bp reads, but it is slower than

using BWA. BWA-SW is less accurate than SSAHA2 on 100–

200 bp reads for error rates above 2% [30]. Most 454 libraries,

however, have an average read length of 300–500 bp. Addition-

ally, this and other studies [30,31] show that BWA-SW is up to

tens of times faster than existing programs. Next-generation

alignment programs are under active development and the

performance and feature set of each of these programs is likely

to improve. If the loss of sequence data can be afforded, reads with

high error rates (for example containing low base quality scores or

ambiguous bases) and short reads should be filtered prior to

using DeconSeq to ensure high accuracy of the contaminant

classifications.

The BWA-SW program was modified to fit the needs of

DeconSeq. Those modifications do not change the default

behavior of the algorithm and are only forced using additional

parameters. The default SAM output contains data that is not

needed for DeconSeq and usually generates huge output files for

reference datasets with a large number of sequences. Furthermore,

the Cigar string (a human readable alignment string) presented the

only resource in the SAM output from BWA-SW that could be

used to calculate coverage and identity values of the alignments.

However, the Cigar string uses ‘‘M’’ for matching positions and

replacement (mismatch) positions. This would require realigning

the sequences in the regions specified by ‘‘M’’ to retrieve the

number of replacements used for alignment identity calculations.

The mapping quality in the SAM file did not present a sufficient

value for the use as threshold. In any case where there are two or

more equally likely alignments (multiple locations a query can map
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to), the mapping quality is zero. This may occur for the repeat-rich

human genome and equally likely alignments can still represent

contaminating sequences.

DeconSeq uses coverage and identity thresholds to determine if

a match is a possible contamination or not. This approach is based

on the idea that looking for similar regions consists of grouping

sequences that share some minimum sequence similarity over a

specified minimum length. It is important that the limitations of

this approach be understood. The approach invariably leaves out

related regions that have degraded over time, so their similarity is

below the threshold. Moreover, the thresholds chosen to group

elements together often have no connection to evolutionary history

and the underlying mechanisms of formation. For example, the

operational definition of segmental duplications excludes ancient

duplications that were formed by the same mechanisms long ago

but that have since degraded below 90% sequence identity [39].

There is no ‘‘one-size-fits-all’’ solution and each user must make

informed decisions as to the appropriate thresholds used for

decontamination. Thresholds should not be set to 100% if errors

are expected in the sequence reads.

To our knowledge, DeconSeq is the first program optimized to

automatically identify and remove sequence contamination from

large sequence datasets. In order to avoid the classification of non-

contaminating sequences as contamination, all possible contam-

ination can be compared to a second set of databases and marked

accordingly. This is especially useful for the identification of

human contamination in viral metagenomes because there are a

large number of viral or viral-like sequences hidden in the human

genome. It is important to note that viral or bacterial sequences of

unknown origin but highly similar to the human genome will be

classified as contaminants due to the missing reference sequences

in the second set of databases.

We evaluated the classification of contamination using simulat-

ed datasets and showed that DeconSeq performed with very high

accuracy. The highest levels of possible contamination in 202

previously published microbial and viral metagenomes were found

in host-associated metagenomes suggesting DNA extraction issues

rather than contamination introduced during sample processing.

Next-generation sequencing data is available to most small

laboratories. However, they do not always have access to the

required computing resources. The web-based version of Decon-

Seq allows users to conduct decontamination using our in-house

computing resources and provides additional visualizations such as

coverage vs. identity plots to help users choose the best thresholds

for their datasets. Furthermore, the web-based version provides

the latest versions of a variety of datasets such as human genome

sequence assemblies. Users can contact the authors and request

additional databases for specific decontamination purposes.

Design and Implementation

Reference data
The human reference genome build 37, the Celera Genomics

human genome assembly, the J. Craig Venter genome (HuRef),

and The Center for Applied Genomics (TCAG) human

chromosome 7 version 2 assembly were downloaded from

National Center for Biotechnology Information (NCBI). The

Korean male (Seong-Jin Kim; SJK) genome data was retrieved

from KOBIC. The Asian male (Han Chinese individual; YH)

genome data was retrieved from the YanHuang database. The

unique James D. Watson sequences were downlaoded from NCBI

and the unique Asian (YH) and unique Yoruban male (NA18507)

sequences were downloaded from the supplemental material of Li

et al. [47]. All unique sequences were filtered to remove sequence

copies and only keep sequences with at least 300 bp. The bacterial

genomes (1,116 genomes in 2,103 fasta files as of 06/06/2010) and

viral genomes (3,642 genomic sequences as of 06/06/2010) data

was retrieved from NCBI. The gene and repeat annotations for

the human reference genome build 37 were downloaded from the

UCSC Genome Browser [51]. The amount of the genome that

was repeat-masked was calculated based on all non-ambiguous

bases. A more detailed description including links can be found in

Text S1.

Simulated metagenomes
The program Grinder version 0.1.8 (http://sourceforge.net/

projects/biogrinder/) was used to create simulated human,

bacterial and viral metagenomic sequences. Sequences were

generated using an average error rate of 0.85% substitutions and

0.15% indels (-m 0.85 0.15), and normal distributed read lengths

with a mean of 380 bp and standard deviation of 100 bp (2l 380

normal 100). Simulated sequences were then filtered using

PRINSEQ [52] to generate ten human, ten bacterial and ten

viral datasets with 100,000 unique sequences containing no Ns

and a read length of at least 100 bp.

Additionally, three artificial microbial metagenomes with

different complexity obtained from the Joint Genome Institute

(JGI; http://fames.jgi-psf.org/) were used [41]. The JGI meta-

genomes were pre-processed using PRINSEQ to trim poly A/T

tails longer than 10 bp and to remove reads shorter than 100 bp

and exact sequence duplicates. The resulting three datasets

contained 116,739, 97,479 and 114,430 sequences with a mean

read length of 948.5 bp, 950.9 bp and 966.8 bp, respectively.

Human reference datasets
The Human reference genome build 37 was used to analyze the

type and amount of unaligned sequences using BWA-SW.

Datasets with sequences of 200 bp, 500 bp and 1,000 bp length

were generated from the reference genome sequence using 50%

overlap. All sequences that contained the ambiguous base N were

discarded as N aligned to N is considered a mismatch and would

alter the alignment identity for identical sequences. The resulting

datasets contained 28,612,955 reads for 200 bp, 11,444,886 reads

for 500 bp, and 5,722,210 reads for 1,000 bp. Error rates of

exactly 2% and 5% (with 15% indels and 85% substitutions) were

then simulated for each of the three datasets resulting in 6

additional datasets.

Reference databases for web-based version
The web-based version offers pre-processed reference databases

for a variety of complete genomes such as human, bacterial and

viral genomes. The genome data was preprocessed before

indexing using BWA. To reduce the number of false positive

matches that might be introduced due to the long stretches of Ns

that will be randomly replaced by A, C, G or T during database

indexing, the genome sequences were split at stretches of 200 or

more Ns. The separated sequences were then filtered for read

duplicates to reduce redundancy in the sequence data and for

short sequences that contained more than 5% of ambiguous bases

(N). In its current version, BWA-SW fails to index the complete

dataset from multiple human genomes (BWTIncConstructFrom-

Packed error). However, the error was not a concern for the web-

based version because to decrease the memory usage on the

computing cluster, the genome data was split into smaller files that

require a maximum of 1.5 GB of memory per chunk. The results

for the split databases are automatically joined before generating

the output for the web-based version of DeconSeq.
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Implementation and computational platform
DeconSeq was implemented as standalone and web-based

version in Perl. The workflow of DeconSeq is shown in Figure 6.

The DeconSeq web application is currently running on a web

server with Ubuntu Linux using an Apache HTTP server to

support the web services. The web interface provides a high level

of compatibility with heterogeneous computing environments.

The alignments are computed on a connected computing cluster

with ten working nodes (each with 8 CPUs and 16 GB RAM)

running the Oracle Grid Engine version 6.2. The input data is

automatically split into chunks for optimized distribution of work

over the working nodes.

Modifications of BWA-SW
The BWA-SW source code was modified to fit the requirements

for DeconSeq. The file bwtsw2_aux.c was modified to generate an

alternative output, which presents a lightweight tab-separated

output format containing only the necessary data required by

DeconSeq (query identifier, reference identifier, query coverage

and alignment identity). The file bwtsw2_aux.c was additionally

modified to force a mismatch when aligning the ambiguous base N

in query sequences instead of randomly replacing it by A, C, G or

T and possibly resulting in a match (BWA-SW default). The files

stdaln.c, stdaln.h and bwtsw2_aux.c were modified to include ‘‘R’’

for replacements in an extended version of the Cigar string,

instead of using ‘‘M’’ for both match and replacement (mismatch).

The files bwtsw2_main.c and bwtsw2.h were modified to fix the

double defined parameter -s (changed to -s and -S), and to add the

new parameters -A (generate alternative output), -R (output

extended version of Cigar string with replacements) and -M (force

to mismatch Ns in query sequence). The modified version of

BWA-SW is made available as part of the DeconSeq source.

Input and output
The input for DeconSeq is FASTA formatted data containing

the genomic or metagenomic reads. In addition to FASTA files,

the user can submit FASTQ files (containing sequence and quality

data) [53] using the web interface. The BWA-SW algorithm does

not make use of quality data during the alignment of sequences

and does therefore not require quality data as input. The input

data is checked to be a valid file with DNA data. If the input data

fails the validation step, further processing is restricted.

Sequence files can be of large size (several 100 MB), and

therefore the web interface additionally allows the submission of

compressed FASTA or FASTQ files to reduce the time of data

upload (by approximately 70%) from the user machine to the web

server. Currently, ZIP and GZIP compression algorithms are

supported. If the compressed files contain more than one FASTA

Figure 6. Flowchart of DeconSeq for the identification of possible contaminant sequences.
doi:10.1371/journal.pone.0017288.g006
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or FASTQ file, the single files will be joined into one dataset. The

file formats and compression types are automatically detected and

processed accordingly. There is no limit on the number of

sequences or the size of the input file accepted by DeconSeq.

The web-based version of DeconSeq offers several pre-

processed databases to select from for the two categories of

‘‘remove’’ and ‘‘retain’’. Databases are available, for example, for

the seven publicly available complete human genomes, as well as

for groups of bacterial and viral genomes. The databases used for

the web-based version are automatically updated on a regular

basis. The user can download the results in the web interface in

FASTA or FASTQ (if provided as input) format or its compressed

version. The results can either be separated or joined files. This

allows the user to further investigate the results separately. Results

will be stored for the time selected by the user (either one day or

one week), if not otherwise requested, on the web server using a

unique identifier displayed during data processing and on the

result page. This identifier allows the user to share the result with

other researchers without having to re-submit and re-process the

dataset.

Filter and threshold parameters
The user can filter the data based on different parameters.

Unlike the standalone version, the web-based program allows the

user to define filter parameters based on the input data after the

data is processed. This does not require an a priori knowledge of the

best parameters for a given dataset and the parameter choice can

be guided by the graphical visualization of the results.

Sequences are classified as contamination if they have a match

above the threshold values against any database selected for

‘‘remove’’. The thresholds are based on query coverage and

alignment identity to allow an unbiased filtering for diverse

datasets and databases, in contrast to using unnormalized E-values

or alignment scores. Threshold values are rounded toward the

lower integer (e.g. 99.95% is rounded to 99%). In order to avoid

the classification of non-contaminating sequences as contamina-

tion, all possible contaminating sequences can be compared to

alternative databases (‘‘retain’’ databases) and matches above the

thresholds are marked accordingly with ‘‘Hit to both’’.

Analysis of 202 metagenomes
The amount of possible human DNA contamination in 202

longer-read metagenomes (w150 bp mean read length) was

estimated using DeconSeq. These metagenomes were previously

published and are publicly available from NCBI (http://www.

ncbi.nlm.nih.gov/). The metagenomes used here represent viral

and bacterial communities sampled from a diverse array of biomes

and were categorized as one of the following: ‘‘aquatic’’,

‘‘terrestrial’’, and ‘‘host-associated’’. The metagenomes were

further subdivided into their sampled environment, such as

‘‘human’’, ‘‘mouse’’, and ‘‘soil’’. Sampling, filtering, processing

and sequencing methods differed among the compiled metagen-

omes. Table 2 provides a summary of the number of metagenomes

from each type and biome (a more detailed list of the complete

dataset can be found in Table S1).

The metagenomes used in this study were pre-processed prior to

any processing with DeconSeq. UniVec build 5.2 (http://www.

ncbi.nlm.nih.gov/VecScreen/UniVec.html) and cross_match

(http://www.phrap.org/) were used to screen for vector contam-

ination in the metagenomes. TagCleaner [54] was used to trim

adapter and tag sequences. PRINSEQ [52] was then used to filter

exact sequence duplicates, sequences shorter than 50 bp or longer

than 10,000 bp, sequences containing more than 5% of ambig-

uous base N after trimming Ns from the sequence ends, and

sequences containing non IUPAC conform characters for DNA

sequences. The resulting datasets were excluded from the study if

the mean sequence length was below 150 bp or the dataset

contained less than 1,000 metagenomic sequences. Metagenomes

targeted to single loci such as 16S rRNA studies were excluded as

well.

For all metagenomes, DeconSeq was run using all human

databases for ‘‘remove’’ and depending on the type (microbial or

viral) the bacterial or viral genomes database was selected for

‘‘retain’’. The threshold values were set to 95% coverage and 94%

identity.

Calculation of sensitivity and accuracy
Sensitivity (or true positive rate) was used to evaluate alignment

performance for BWA-SW and was calculated for query coverage

and identity thresholds ranging from 90% to 100%. Accuracy was

used as measurement for the proportion of true classifications by

DeconSeq and calculated for thresholds of 95% query coverage

and varying alignment identity.

Sensitivity (%)~TP=(TPzFN) � 100

Here, the reads that could be aligned back to the reference

sequence were considered true positives (TP). Reads that could not

be aligned were considered false negatives (FN ).

Accuracy (%)~(TPzTN)=n � 100

Here, reads that were human and that were classified as human

were considered TP. Reads that were non-human and were not

classified as human were considered true negatives (TN ). Reads

that were classified as ‘‘Hit to both’’ were considered TP for

human reads and TN for non-human reads. The number of reads

n equals to the sum of true positives, false positives, true negatives

and false negatives.

Availability and Future Directions

The DeconSeq standalone version, test datasets, the documen-

tation and the link to the web-based version are available at

http://deconseq.sourceforge.net/. All further developments will

be made available through this website. Future work will include

interface improvements of the web-based version (additional

visualizations and filter options) and non-redundant databases to

account for the increasing amount of reference genomes

containing only a small fraction of new sequence data.

Table 2. Summary of metagenomes by type and biome used
in this study.

Biome
Number of viral
metagenomes

Number of microbial
metagenomes

Aquatic 1 58

Terrestrial 9 6

Host-associated (total) 65 63

Host-associated (human) 62 50

Total 75 127

The metagenomes were previously published and available through NCBI. The
metagenomes were not targeted to a single loci and the mean read length was
above 150 bp after trimming and filtering.
doi:10.1371/journal.pone.0017288.t002
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Supporting Information

Text S1 Additional methods and results. This text includes

a detailed guide to the retrieval of the reference data and

benchmarked programs, the generation of benchmark data, the

comparison of program performance for Mosaik, NUCmer, BLAST,

BLAST+ and BWA-SW, as well as additional Figures 1, 2, 3, 4.

(PDF)

Table S1 Details of the 202 metagenomes used for the
identification of possible human contamination by
DeconSeq.
(PDF)
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