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Abstract

Evolutionary mechanisms adopted by the photosynthetic apparatus to modifications in the Earth’s atmosphere on a
geological time-scale remain a focus of intense research. The photosynthetic machinery has had to cope with continuously
changing environmental conditions and particularly with the complex ionizing radiation emitted by solar flares. The
photosynthetic D1 protein, being the site of electron tunneling-mediated charge separation and solar energy transduction,
is a hot spot for the generation of radiation-induced radical injuries. We explored the possibility to produce D1 variants
tolerant to ionizing radiation in Chlamydomonas reinhardtii and clarified the effect of radiation-induced oxidative damage
on the photosynthetic proteins evolution. In vitro directed evolution strategies targeted at the D1 protein were adopted to
create libraries of chlamydomonas random mutants, subsequently selected by exposures to radical-generating proton or
neutron sources. The common trend observed in the D1 aminoacidic substitutions was the replacement of less polar by
more polar amino acids. The applied selection pressure forced replacement of residues more sensitive to oxidative damage
with less sensitive ones, suggesting that ionizing radiation may have been one of the driving forces in the evolution of the
eukaryotic photosynthetic apparatus. A set of the identified aminoacidic substitutions, close to the secondary
plastoquinone binding niche and oxygen evolving complex, were introduced by site-directed mutagenesis in un-
transformed strains, and their sensitivity to free radicals attack analyzed. Mutants displayed reduced electron transport
efficiency in physiological conditions, and increased photosynthetic performance stability and oxygen evolution capacity in
stressful high-light conditions. Finally, comparative in silico analyses of D1 aminoacidic sequences of organisms differently
located in the evolution chain, revealed a higher ratio of residues more sensitive to oxidative damage in the eukaryotic/
cyanobacterial proteins compared to their bacterial orthologs. These results led us to hypothesize an archaean atmosphere
less challenging in terms of ionizing radiation than the present one.
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Introduction

The space environment of the solar system is a highly dynamic

milieu distinguished by the presence of high energy particles and

ionizing radiation potentially hazardous for all living systems.

Natural radiation consists of electrons and protons trapped by

planetary magnetic fields, protons and heavy nuclei produced in

energetic solar events, and cosmic rays produced in supernova

explosions inside and outside our galaxy. The primary cosmic

beam, composed of very energetic protons and heavy atomic

nuclei, is partially converted into secondary neutrons by collisions

with matter; in turn these neutrons can produce additional

radiation types of various energies [1,2]. Near Earth radiation

composition and specification is central for the habitability of

environments within which life has developed during the early

phases of formation of solar and planetary systems [3].

Throughout the geologic eras photosynthesis was likely adjusted

to the presence of the ionizing radiation coming from space [4].

The earliest photosynthetic organism was a bacterium perhaps

activated by hydrogen sulfide, with metabolic capabilities similar

to those of modern Cyanobacteria [5]. The evolution of aerobic

photosynthesis set in motion the development of an oxygen-rich

atmosphere that dramatically transformed the chemistry of the

Earth, imposing new challenges to evolving organisms also in

terms of radiation-induced damage.

Among the three domains of life on Earth, only Eukarya and

Bacteria are capable of using solar energy to grow, with several

differences in the energy conversion. Eukarya perform oxygenic

photosynthesis using water as a source of electrons. For this

purpose, they are equipped with two photosystems (PSs) PSII and

PSI, acting in series and creating a light-driven flux of electrons

from the high redox potential couple H2O/O2, to the low redox
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potential couple NADPH/NADP+. The electron flux is coupled to

the generation of a proton gradient that drives the synthesis of

ATP, ultimately leading to CO2 fixation [6].

Bacteria are capable of undertaking oxygenic or anoxygenic

photosynthesis. Cyanobacteria are competent at extracting

electrons from water and performing oxygenic photosynthesis.

Like Eukarya, they possess two PSs, but lack the compartmental-

ization of the processes in specialized organelles. Phylogenetic

analyses indicate that Cyanobacteria are closely related to plant

and algal chloroplasts, which are the organelles that house the PSs

in eukaryotic cells [7,8]. All other bacteria use only one

photosystem and, for thermodynamic reasons, they cannot utilize

water, but use compounds such as H2S as electron donors; these

organisms are competent at autotrophic growth.

PSs are macromolecular protein-chlorophyll assemblies composed

of a reaction centre (RC), driving photochemical charge separation

and electron transport, and inner and outer antennae carrying out

light energy absorption, dissipation and transduction [9,10].

The organization of the Eukarya PSII RC is comparable to that

found in purple photosynthetic bacteria, but with the addition of the

oxygen-evolving complex. This RC type contains two membrane

polypeptides (L and M in purple bacteria, and D1 and D2 in

eukaryotic organisms), each containing five transmembrane helices,

hosting the electron transport carriers and cofactors [11,12]. The

PSII D1/D2 heterodimer has a crucial role in the overall

photosynthetic process and plant performance. A characteristic

feature of the PSII reaction centre heterodimer is the rapid, light-

dependent catabolism of the D1 protein, which is one of the main

sites of damage caused by a wide variety of environmental factors

[13–16]. The D1 protein is the product of the evolutionarily very

conserved psbA gene, which has been found in genomes of plastids,

cyanobacteria, and cyanophages [17]. It has been hypothesized that

the co-opting of this gene into the virus genome provides a

significant advantage for the fitness, reproduction and propagation

of certain cyanophage types [18]. In Cyanobacteria, the relevance

of this protein is also highlighted by the occurrence of a small gene

family, whose members encode D1 isoforms slightly differently in

their amino acid composition, activated in different stress

conditions. On the contrary, in higher plants and microalgae, a

single psbA gene has been identified, but despite these differences

plants and cyanobacteria have adopted very similar psbA gene

expression mechanisms [19]. At post-transduction level, the D1

reversible phosphorylation has been proposed as a more energy-

efficient mechanism selected during evolution to substitute the

function of multiple gene members [16]. The D1 rapid turn-over,

the expression of different D1 isoforms in different light conditions

[20] and the induction of a ‘‘silent’’ D1 isoform in microaerobiosis

[19] indicate not only the relevance of D1 in maintaining a

functional PSII, but also the significance of its aminoacidic

composition to rapidly respond to environmental changes, that

could result from a high level of evolutionary selection pressure.

The molecular architecture of the RC at atomic level is known

for the purple photosynthetic bacteria Rhodobacter sphaeroides and

the thermophilic cyanobacterium Synechococcus elongatus [21–23].

In this work, we adopted an in vitro directed evolution strategy

targeted at the D1 protein to create ionizing radiation tolerant

chlamydomonas strains, exploiting as evolution selection pressure

proton or neutron sources capable of generating radicals. The

reduced radical sensitivity of the selected strains was proved on the

ex novo produced site-directed mutants by the stability of their

photosynthetic performance under high fluency rates. By this

approach we identified mutants tolerant to free radicals and the

corresponding D1 aminoacidic substitutions which render the

protein less prone to oxidative damage compared to the wild type.

An in silico analysis of the L/D1 amino acid sequences of Bacteria,

Cyanobacteria and Eukarya suggested that radiation-induced

oxidative damage could had been one of the driving forces in the

evolution of L/D1 proteins; this approach also gave evidence of a

molecular signature of different levels of ionizing radiation on

Earth during the evolution of the photosynthetic apparatus.

Results

Selection of Chlamydomonas reinhardtii strains tolerant
to ionizing radiation

A directed evolution strategy was exploited to produce

chlamydomonas mutant libraries with improved tolerance to

space ionizing radiation. Random mutagenesis was targeted at

psbA gene encoding D1 to produce proteins with novel properties.

This has been achieved by error-prone PCR mutagenesis through

an iterative process consisting of a recombinant generation to

create combinatorial libraries. The resulting pool of psbA

fragments was delivered into the deletion mutant, Del1, of C.

reinhardtii [24] by particle gun bombardments. This mutant has a

defined deletion in the chloroplast-encoded psbA gene and is

unable to grow photoautotrophically, as it cannot produce a

functional D1 protein. Acetate is needed as carbon source as

minimal media does not support its growth. The successful

integration of the modified psbA fragments into the Del1

chloroplast genome restores the expression of functional D1

protein and cell photoautotrophic growth. Thus, minimal media

are used to select the photosynthetically active colonies.

In order to isolate transformants, not only competent for

photoautotrophic growth, but also tolerant to ionizing radiation, a

pool of mutants was exposed to high energy neutrons, neutrons,

neutrons plus high light and protons. Neutron and proton energies

utilized for the selection were similar to those occurring in space [2].

About 2000 transformed cells were subjected to the ionizing

radiation treatments, and 32 colonies overcoming the radiation-

induced stress were analyzed by psbA sequencing. Among them,

twenty strains were identified as different mutants hosting both

single and double mutations (Table S1). The analysis of the psbA

nucleotide sequence of these strains revealed that mutations were

mainly located in two structural regions of the D1 protein. The first

region is the D1 QB binding pocket toward the C-terminus which

comprises part of the IV and V a helices and part of the large

extrinsic loop towards the stromal side of the thylakoid membrane.

Mutations in this region may affect the binding of the quinone

electron acceptor and the D1 protein turnover [19,25–28]. No

mutants hosting aminoacidic substitutions in the QB pocket residues

directly involved in plastoquinone binding, or binding stabilization

were identified. The second region comprises the D1 amino acids

close to the redox-active tyrosine 161 (TyrZ), on the lumenal side

expanding to the oxygen evolving complex (OEC) [21,29]. The

oxidized TyrZ residue is essential in electron transfer, since it

mediates the extraction of an electron from the cluster of four

manganese ions of the OEC that binds substrate water [6]. Strains

harboring mutations in both protein regions have been also

identified. Analysis of the amino acid changes characterizing the

selected mutants highlights a clear trend towards the replacement of

residues highly prone to oxidative damage, such as aromatic and

aliphatic residues, with residues less prone, such as shorter chain

aliphatic residues and polar residues (Table S1).

Production and characterization of chlamydomonas D1
site-directed mutants

The reported results revealed that single aminoacidic substitu-

tion in the D1 protein could contribute to ionizing radiation
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tolerance. To exclude the possibility that additional random

mutations induced by the radiation exposure could confer the

observed tolerance, a set of the identified amino acid substitutions

were introduced by site-directed mutagenesis in untransformed

strains (Table 1). The choice of the aminoacidic substitutions was

made to include mutations located in two different structural

regions of the D1 protein, near Tyr161 and the OEC (I163T,

P162S, M172L) and near the QB binding pocket (G207S, L200I,

I281T) (Fig. 1). Physiological characterization of the obtained

mutants was carried out by estimating the growth parameters and

the photosynthetic efficiency. The mixotrophic growth rate was

followed for a period of four days, revealing very similar trends

among the different mutants and compared to the control

reference strain IL (Fig. S1A). In contrast, the mutants and the

control strain showed differences in their chlorophyll content (Fig.

S1B) and photosynthetic performance. The mutants generally

showed a lower maximal quantum yield of PSII photochemistry

(Fv/Fm) and a reduced efficiency of the electron transport through

PSII primary and secondary electron acceptors (1-VJ) compared to

the control strain (Fig. 2). These findings clearly indicate a

reduction in the efficiency of the light energy utilization in the

mutant strains compared to control in physiological conditions.

Thus, these statistically significant differences indicate the

relevance of a single amino acid substitution in D1 for the

function of PSII, in agreement with previous results (Rea G,

unpublished data). The extent of the reduction in the fluorescence

parameters was not strictly related to the position of the amino

acid substitution, as a general reduction of PSII performance was

observed in both groups of mutants (Fig. 2).

Analysis of the three-dimensional structure of PSII indicates that

the mutants are not expected to cause gross structural rearrange-

ments either. In fact, Ile163 and Ile281 face lipid molecules

without establishing a direct contact with them (approx. 4 Å

distance in both cases). Thus mutation to Thr is expected to be

easily compensated by a rearrangement of the lipids conformation.

Pro162 packs against Phe168 and modeling of mutation to Ser

does not evidence significant packing differences while an

additional hydrogen bond to Asp170 backbone carbonyl oxygen

is predicted to be established. G207 is located on the surface of the

solvent accessible QA entry channel and thus mutation to Ser

should be easily accommodated also in this case.

Despite the lower electron transfer efficiency, a higher oxygen

evolution capacity under high photon fluency conditions was

demonstrated in all the mutants compared to the reference strain,

IL (Fig. 3). The rate of O2 production of the mutants and the

control strain were very similar under 200 mmol.m22 s21 light

intensity, which was already saturating for the photosynthetic

reactions of IL strain. On the contrary, D1 mutants were able to

achieve and maintain more than two-fold higher O2 evolution rate

even under the very high light intensity of 900 mmol m22 s21.

Photosynthetic efficiency of site-directed mutants
Light intensity is a vital factor in photosynthetic organisms.

However excessive doses can severely damage the photosynthetic

apparatus due to production of high levels of free radicals. To

test the capability of the selected mutants to cope with the

challenge of the high irradiance conditions, we monitored

changes in their PSII efficiency in the presence of stressful high

light intensity by real-time measurements of the Fv/Fm ratio. In

the reference strain IL under control light conditions, the

changes of the Fv/Fm values as a result of two contiguous

exposures to light and darkness were negligible (Fig. 4). On the

contrary, under high irradiance, the PSII performance tended to

decrease with the onset of the light, showing the pattern of

accumulation of the photo-induced oxidative pressure. However,

the reduction was reversible, since during the following dark

phase a recovery of the maximum quantum yield of PSII

photochemical reaction occurred (Fig. 4). We have to point out

that the light intensity that the chlamydomonas strains could

support depends strongly on the growth illumination and the

physical phase of the nutrition medium. According to our

experiments and in confirmation of the data presented in Fig. 4,

when the algal cells are immobilized on a solid medium a light

intensity as low as 150 mmol.m22 s21 could induce photoinhi-

bitory PSII damage. The injury could be permanent, leading to

the cell death, or reversible, depending on the stress duration. All

the analyzed strains displayed a high capacity to tolerate the

applied stress. In fact, over the monitored period, decrease of

photosynthesis efficiency ranged from 1 to 13% (Fig. 5). The

maximum reduction level was observed in the reference strain IL

(13%), that showed the worst performance compared to the

mutants. In this strain, in fact, after only two days of treatment,

the maximum quantum yield dropped by 6%, and continuously

declined during the subsequent days. Concerning the mutants,

no correlation was observed between amino acid localization and

photosynthetic activity. However, different mutants behaved in a

different manner: I163T, L200I and I281T maintained very

stable photosynthetic efficiency, reporting maximum 3.4%

reduction of Fv/Fm values; G207S and P162S were less stable,

gradually loosing about 7% of the initial activity. M172L

Table 1. Description of amino acid substitutions in de novo produced site-directed chlamydomonas D1 mutants.

Mutants Amino acid substitutions
Amino acid propertiesa

hydropathy index/reactivity class/side chain polarity
Localization of the mutation in
the protein

wild type R mutated wild type R mutated

P162S proline serine 21.6 (III) nonpolar 20.8 (0) polar near to Tyr161

I163T isoleucine threonine 4.5 (IV) nonpolar 20.7 (0) polar near to Tyr161

M172L methionine leucine 1.9 (V) nonpolar 3.8 (IV) nonpolar near to OEC

G207S glycine serine 20.4 (I) nonpolar 20.8 (0) polar in the helix IV of D1

L200I leucine isoleucine 3.8 (IV) nonpolar 4.5 (IV) nonpolar in the helix IV of D1

I281T isoleucine threonine 4.5 (IV) nonpolar 20.7 (0) polar in the helix V of D1

The reported set of D1 mutations could account for the radiation tolerance previously found in D1 random mutants surviving neutron and proton exposure, and was
selected to produce the corresponding site-directed mutants.
aThe side chain polarity is presented according to [53], the hydropathy index is cited as in [54], the amino acids reactivity classes are reported in Table 2.
doi:10.1371/journal.pone.0016216.t001
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Figure 1. Schematic representation of chlamydomonas D1-D2 heterodimer showing the positions of the site-directed D1
aminoacidic substitutions. Positions of the modified amino acids in the D1 proteins produced by site-directed mutagenesis are viewed in the
context of 3D PSII structure. The overall structure of D1 and D2 proteins of PSII and cofactors involved in electron transfer QA, QB, non-heme iron,
P680 and OEC, is presented in a view perpendicular to the membrane plane according to [29,21]. The D1 protein is in light blue and D2 in yellow. The
quinone QA, bound to D2, and the quinone QB, bound to D1 protein, are represented in magenta; the non-heme iron in red; the chlorophyll dimer
P680 in green. The TyrZ is displayed in sticks and coloured in red and, below, the Mn cluster, the Ca2+ ion and the oxygen atoms of the OEC are
shown as orange spheres. The D1 amino acids which were substituted are displayed in space fill representation and coloured in green (for mutations
clustering on the IV and V a helices) and purple (for mutations close to the redox-active TyrZ and OEC).
doi:10.1371/journal.pone.0016216.g001

Figure 2. Maximum quantum yield and electron transport efficiency of the site-directed chlamydomonas D1 mutants. The mutants
show a generally lower maximum quantum yield of PSII photochemistry (Fv/Fm) and a reduced efficiency of the electron transport through PSII
primary and secondary electron acceptors (1-VJ) compared to the control strain, IL. Fluorescence parameters of the reference strain, IL, and the D1
site-directed mutants of C. reinhardtii were calculated from the fluorescence induction curve. The statistical distributions for the maximum quantum
yield of PSII photochemistry, Fv/Fm = (Fm-Fo)/Fm, and the efficiency of the electron transport between the primary (QA) and secondary (QB) PSII
electron acceptors, 1-VJ = 1 - (F2ms-Fo)/(Fm-Fo), are presented as box and whiskers plots. The measurements were performed on liquid cell cultures
containing equal amounts of chlorophyll (1461 mg ml21) after 10 min of dark adaptation. The statistical analysis was performed on average values,
obtained from at least four experiments, n = 9–20. The mutants resulted statistically different from the reference strain at P = 0.05.
doi:10.1371/journal.pone.0016216.g002

Photosynthesis Reaction Centre Proteins Evolution

PLoS ONE | www.plosone.org 4 January 2011 | Volume 6 | Issue 1 | e16216



provided results similar to IL, displaying a photosynthetic reduc-

tion of about 10%.

Compositional analysis of bacterial, cyanobacterial and
eukaryotic L/D1 proteins

The observation that the strains selected under ionizing

radiation displayed amino acid changes consistent with tolerance

to radiation-induced oxidative damage prompted a comparative

study of the D1 amino acid composition. Bacterial, cyanobacterial

and eukaryotic L/D1 proteins were analyzed to uncover the

molecular signatures of the PSII complex adaptation to the

radiation-induced damage occurring during the evolution of

photosynthesis. Using R. sphaeroides L and C. reinhardtii D1 proteins

as baits, homologues were retrieved from the NCBI sequence

database and their amino acid composition was determined and

compared (Fig. 6A). Although these proteins are highly conserved,

analysis of the data reveals that the content of aliphatic and

aromatic residues is significantly higher in Bacteria. In fact,

aliphatic and aromatic residues represent almost 70% of the total

residues in bacterial RC L proteins, while in eukarya D1 proteins

the same residues represent less than 60% of the total. In

particular, the percentage of Trp residues in bacterial L proteins is

almost twice than that in eukaryotic D1 proteins, while smaller but

still significant differences were observed in other residues (such as

Gly and Leu) highly prone to damage by reactive oxygen species.

Not surprisingly, the amino acid composition of cyanobacterial D1

proteins, in line with the evolutionary conservation of D1 proteins,

is practically identical to that of the eukaryotic ones (Fig. 6A).

To investigate if conservation of residues building up the QB

binding niche followed a different pattern, the same analysis was

carried out on the sequence regions encompassing the quinone

binding site, using as baits the 199–292 region of C. reinhardtii D1

protein and the ortholog 174–249 region of R. sphaeroides L protein.

In addition, superimposition of the tridimensional structures has

been carried out, revealing a QB binding niche backbone fold

highly compatible in the 190–291 regions in which the

aminoacidic sequences share approx 25% identity (Fig. S2). The

comparative compositional analyses highlight a complex pattern

showing a significantly higher content of the highly prone to

oxidative damage Ile, Leu, Trp and Cys residues in bacterial

proteins compared to eukaryotic ones, whereas only Phe and Tyr

follow an inverse trend (Fig. 6B).

Discussion

The evolution of photosynthetic organisms and the concomitant

release of oxygen into the atmosphere caused a tremendous

environmental change of our planet. Before oxygen release into

the atmosphere, there was no ozone layer to screen ionizing

radiation, thus it can be hypothesized that photosynthetic bacteria

were exposed to high energy radiation from space. Radiation

induced decomposition of water generates several reactive species

(e.g., H2O2, H2, OHN, HON
2, e2

aq, H+) which, in the presence of

oxygen react further, so that OHN and O2
2 are essentially the only

species present in oxygenated water solutions [30–32]. OHN is

known to be far more reactive than O2
2, therefore the major

fraction of OHN is removed by the most reactive sites. In proteins,

aromatic, sulfur-containing and aliphatic amino acid side chains

are known to be the main targets of OHN-mediated damage.

Aliphatic amino acids become more reactive with increasing

Figure 3. Light-dependent oxygen evolution capacity of the
site-directed chlamydomonas D1 mutants. A higher oxygen
evolution capacity under high photon fluency conditions was
demonstrated in all the mutants compared to the reference strain, IL.
The curves were recorded by gradual increase of the light intensity from
200 up to 900 mmol m22 s21. Measurements were performed on liquid
cell cultures containing equal amounts of chlorophyll (1562 mg ml21),
in the presence of 10 mM NaHCO3 as additional carbon source. Values
are the average of three independent experiments, 6SE, n = 9. The
mutants resulted statistically different from the reference strain at
P = 0.05, except the cases M172L and L200I at 200 mmol m22 s21

indicated by an asterisk.
doi:10.1371/journal.pone.0016216.g003

Figure 4. Daily trend of PSII photochemistry during two
consecutive light/dark cycles in the reference strain IL. Cell
cultures containing equal amounts of chlorophyll were immobilized on
TAP agar medium and the Fv/Fm ratio was measured hourly in both
growth (50 mmol m22 s21, CTR, black line) and high light conditions
(150 mmol m22 s21, HL, grey line). Photoinhibition is evident by the
reduction of the Fv/Fm recorded during the light phases under HL
compared to CTR photon fluency. The open circles indicate the first and
the last point of the light phase. The reported curves are representative
of three independent experiments, n = 6. SE ,3%.
doi:10.1371/journal.pone.0016216.g004
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number of methyl groups but the reaction with aromatic amino

acids is faster and easier for addition of OHN to double bonds, with

Trp residues being the most prone to oxidative damage by reactive

oxygen species [30–32].

In line with these considerations, we isolated chlamydomonas

strains tolerant to ionizing radiation by exposures of different D1

random mutant libraries to radical-generating proton or neutron

sources with energies similar to those occurring in space. Sequence

analyses of psbA gene in mutants overcoming the irradiation

identified the replacement of deduced aliphatic and aromatic

amino acids with more polar residues. Thus, the mutant’s

tolerance to radical-induced damage seems to be related to the

substitution of residues highly prone to oxidative damage with

residues less prone (Table 1; Table S1).

In order to prove this hypothesis, we evaluated the role of the

identified D1 amino acid substitutions in de novo synthesized site-

directed mutants, whose photosynthetic performance was charac-

terized in both physiological and radical-generating stress

conditions. The production of site-directed mutants allowed to

exclude the presence of casual gene modifications induced by the

radiation exposures, which could account for the observed

tolerance in the D1 random mutants. The mutations led to an

increased photosynthetic performance stability and oxygen

evolution capacity in stressful light conditions (Fig. 3; Fig. 5).

During photosynthesis, the excess light energy cannot be used for

water oxidation and may deactivate photosynthetic electron

transport and cause oxidative damage. Direct observation of

reactive oxygen species by spin trapping electron paramagnetic

resonance spectroscopy, demonstrated that excessive light can

induce oxidative stress [33–35]. In particular, the interaction

between free electrons with oxygen molecules, tyrosine residues

and chlorophylls leads to the formation of dangerous radical

species as singlet oxygen, hydrogen peroxide, hydroxyl radical,

Tyr radical and chlorophyll triplets that can compromise the PSII

functionality [16,36–39]. Thus, our experimental results demon-

strate that the D1 amino acid substitutions responsible for the

radiation tolerance in the random mutants, could also account for

the improved resistance under high light exposure of the site-

directed mutants.

In the context of the evolution of the photosynthetic apparatus,

as a kind of adaptation signature to the harsh and radiation-

permeated archaean atmosphere, a lower relative content of

highly prone to radiation-induced oxidative damage amino acids

would be expected in bacterial RC proteins compared to the

eukaryotic ones. Surprisingly, bacterial L proteins display a higher

percentage of aromatic and aliphatic residues (Fig. 6). In this

respect, it is particularly striking that bacterial L proteins have a

Trp content almost double that observed in cyanobacterial/

eukaryotic D1 proteins, the difference being even greater if only

the QB binding region is analyzed. In fact, Trp is known to be an

amino acid highly prone to radiation-induced damage [30,31].

However, additional evidence supports our hypothesis. It is well

known that many cyanobacterial viruses encode host-like photo-

synthesis proteins and most of them contain the psbA gene in their

genome [18]. Interestingly, most of the cyanophages-encoded D1

proteins display the deletion of the first 58 to 94 amino acids, a

region which, in the eukaryotic and cyanobacterial D1 proteins, is

extremely rich in oxidative damage prone residues. As an

example, the region 1–94 of C. reinhardtii D1 protein displays

approx. 50% of aliphatic residues, 12% of aromatic residues and

4% of sulfur containing residues, which makes up to two thirds of

the total residues possible targets of oxidative damage.

Furthermore, some studies point to a consistently less challenging

archaean atmosphere even in the absence of the ozone layer. In

particular, some authors speculate that archaean bacteria could be

protected from radiation damage by a series of chemical and

physical factors [40]. Among the chemical factors, CO2, sulfur

compounds deriving from SO2 and H2S decomposition and CH4-

generated hydrocarbon smog would have reduced UV flux to values

similar to exposed present-day Earth [41]. Physical factors may

have included lithic habitat protection against UV radiation and

bacteria matting habits. In the latter case, a layer of dead organisms

would have protected organisms underneath by compounds

functioning as UV shields [41]. Biochemical protection towards

UV radiation is in fact postulated to have evolved in the early Earth

with the production of compounds such as mycosporine-like amino

acids, scytonemin, and carotenoids which would have provided

biological protection against the complete UV range [41–43].

These considerations, together with the results of our directed

evolution experiments, lead to the hypothesis that probable

Figure 5. Time-course of PSII photochemistry at high photon
fluency in the site-directed chlamydomonas D1 mutants. Cell
cultures containing equal amounts of chlorophyll (80 mg) were
immobilized on TAP agar medium and the Fv/Fm ratio was measured
hourly in both growth (50 mmol m22 s21) and high light conditions
(150 mmol m22 s21). The reported values are measured at the onset of
each light phase and are reported as percentage of the Fv/Fm ratio
calculated with respect to the first day. All the analysed strains displayed
a good capacity to tolerate the applied photoinhibitory light intensities
(150 mmol m22 s21). The maximal photosynthetic efficiency reduction
was observed in the reference strain IL compared to the produced site-
directed mutants. The control line (CTR) corresponds to an average value
of all characterised strains and was obtained from samples exposed to
50 mmol m22 s21. The reported values are the average of three
independent experiments; for the sake of clarity bars of standard errors
are omitted, the maximum SE being ,3%. The mutants resulted
statistically different from the reference strain at P = 0.05.
doi:10.1371/journal.pone.0016216.g005
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radiation-induced oxidative damage has been one of the driving

forces in the evolution of cyanobacterial/eukaryotic L/D1

proteins.

The results presented in this paper strengthen the role of the

photosynthetic reaction centre D1 protein in the tolerance/

resistance to extreme environmental conditions. We demonstrate

that even single amino acid substitutions in D1 enable the cells to

survive in the presence of free radicals produced by both high light

fluencies and ionizing radiation. Further, the in silico analysis of L/

D1 amino acid sequences indicates that apparently radiation-

induced oxidative damage has been one of the driving forces in the

evolution of these proteins and gives evidence of a molecular

signature of different levels of ionizing radiation on Earth during

the evolution of the photosynthetic apparatus. From a method-

ological point of view, the experimental approach presented in this

paper is suitable for identifying molecular adaptations to

Figure 6. Comparison of the aminoacidic composition of R. spheroides L and C. reinhardtii D1 protein homologues. A) Comparison of
the amino acid composition of R. spheroides L protein homologues (light gray columns), eukaryotic C. reinhardtii D1 protein homologues (white
columns) and cyanobacterial C. reinhardtii D1 protein homologues (dark gray columns). Black bars indicate standard deviation values. B) Comparison
of the amino acid composition of the QB binding region of R. spheroides L protein homologues (light gray columns) and C. reinhardtii D1 protein
homologues (white columns). Black bars indicate standard deviation values. The asterisks indicate statistically significant differences between the
Bacteria and Eukarya at p = 0.001.
doi:10.1371/journal.pone.0016216.g006
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challenging environmental conditions. This approach allows the

selection of mutants with improved stability, a parameter of great

interest in any biotechnological application of photosynthetic

proteins spanning from space research to biosensoric and

photovoltaic fields, including biofuel and nutraceuticals produc-

tion [44].

Materials and Methods

Strains, Growth Conditions and Media
Functional characterization of the reference strain and the D1

mutants was carried on cell cultures in the early exponential

growth phase (OD750 = 0.4) containing about (0.860.1)6106 cells

per ml. The cultures were grown on Tris-acetate-phosphate (TAP)

[45] medium under continuous illumination of 50 mmol photons

m22 s21, 25uC and agitation at 150 rpm.

The main chlamydomonas strains exploited were IL, a mutant

containing an intronless psbA gene [46] that represented the

control reference strain for characterization of the D1 mutants,

and Del1, a mutant used as a recipient strain for D1 mutants

generation. The latter is a derivative of the IL reference strain [24]

lacking an approx 0.4 kb fragment encoding amino acids Ala153

to Ala294 of the PSII D1 protein. As a result of the deletion the

strain synthesizes a truncated D1 protein and is able to grow only

mixotrophically on TAP medium, using acetate as a carbon

source. Because of this, the acetate-free high-salt (HS) medium was

used as a selection pressure for photoaoutotrophic growth. It has

been previously shown that the photoautotrophically incompetent

Del1 strain can be transformed with PCR-generated psbA

fragments, resulting in colonies able to grow photoautotrophically

on HS medium [47]. When necessary, chlamydomonas strains

were grown in HS and TAP media, solidified with 1.5% agar.

Random and site-directed PCR-based mutagenesis
Random and site-directed mutageneses were performed by

PCR using as a template the pSH5 plasmid, harboring the

intronless psbA gene. The resulting DNA fragments of the psbA

gene were used for chlamydomonas chloroplast transformation

without further purification steps and cloning procedures, as

previously reported [47].

Directed evolution experiment to isolate radiation

tolerant D1 mutant strains. Random mutagenesis was

carried out using a commercially available kit (BD Biosciences

Clontech, Palo Alto, CA, US) to generate pools of random

mutated psbA sequences by error-prone PCR. In particular, 50 ml

reaction mixture containing 1 ng plasmid DNA and 25 pmol of

each primer were utilized, under buffer conditions 4 and 6 of the

kit, corresponding to mutation frequencies of 3.5 and 4.8

mutations/kbp, respectively. The products of the mutagenic

reactions, of approx. 0.7 kbp length, were quantified and

analyzed by agarose gel electrophoresis and ethidium bromide

staining.

Chlamydomonas transformation was carried out on Del1

cultures grown in liquid TAP medium up to mid-log phase and

26107 cells. Algal cells were concentrated onto nitrocellulose filters

(0.45 mm, 47 mm in diameter, NL17, Whatman GmbH, Dassel,

Germany) and placed on TAP agar medium overnight in the dark.

The filters were bombarded with around 1 mg of the error-prone

PCR product precipitated onto tungsten particles [48]. A

homemade particle gun with helium pressure (13 bar pressure

for acceleration; 12 cm shooting distance; 1.8 bar vacuum) was

used similar to the device described in [49]. The bombarded filters

were kept on TAP agar medium in the dark overnight and then

transferred to the selective HS agar medium. The successfully

transformed cells grow photoautotrophically and form single

colonies usually after 10–14 days in continuous light (50 mmol m22

s21).

Irradiation exposures and neutron and proton

facilities. For the irradiation experiments, samples were

prepared as described in the following. Single colonies were

picked up from the filters, transferred into a liquid HS medium

and grown for 3 weeks. The resulting liquid culture contained D1

random mutants as well as cells of the reference strain IL that were

produced by recombination events of Del1 with non-mutated psbA

gene fragments occurring in the error-prone PCR reaction.

Around 1.56107 cells in the mid-log growth phase of the

mixture were spotted in the centre of plates with HS agar -

medium and exposed to the different irradiation sources.

The experiments with fast neutrons (800 MeV) were performed

on one of the secondary beam lines installed on the Super Proton

Synchrotron in CERN (Conseil Européen pour la Recherche

Nucléaire, Meyrin, Switzerland) as described in [50].

The experiments with neutrons and neutron plus high light

fluency rate (500 mmol m22 s21) were performed at the Frascati

Neutron Generator (FNG) laboratory of the Italian National

Agency for New Technologies, Energy and Sustainable Economic

Development. The FNG uses a deuteron beam accelerated up to

300 keV impinging on a source to produce a 14 MeV neutron

output via the T(d,n) a fusion reaction. The exposure experiment

with protons was performed at the South National Laboratory of

the National Institute for Nuclear Physics in Catania, Italy using

one of the beam lines of the Tandem accelerator. The protons

used in the experiment had the highest energy (27 MeV) the

accelerator could provide. More details about irradiation exper-

iments are presented in Figure S3.

About 2000 chlamydomonas D1 random mutants were exposed

to both neutron and proton sources.

After the exposure, plates were kept under continuous light until

single colonies became visible (after around 2 weeks). The single

colonies of the survivors were selected, grown on HS liquid

medium and analysed by psbA gene sequencing.

As a whole, neutron exposures allowed the selection of 14

transformed colonies. Nucleotide sequence analyses indicated that

among them, 10 strains contained different single or double

mutations in the psbA gene, and 4 carried the naı̈ve gene. A large

number of cells survived the proton exposures and 18 of them

were analyzed by psbA gene sequencing, revealing single, double,

triple mutations and naı̈ve genes (8 colonies).

Site-directed mutagenesis. Site-directed mutagenesis was

performed using psbA fragments produced in two-steps PCR. In

the first step, two DNA fragments, upstream and downstream

from the position of the target point mutation were synthesized (for

example in the case of I163T mutants the one corresponding to

position 163 in the D1 protein). Using the I163T mutant as an

example for the synthesis of the upstream fragment, an outer

forward primer and 163-reverse primer, which starts at the codon

in the psbA gene that corresponds to position 162 in the D1

protein, were used. Similarly, for the downstream fragment a 163-

forward primer, which starts at the codon in the psbA gene that

corresponds to position 164 in the D1 protein and an outer reverse

primer were utilized. The sequences of the primers exploited for

the site-directed mutants generation are reported in Table S2.

PCR amplicons were analyzed by agarose gel electrophoresis,

extracted and purified using the commercial kit SV Gel and PCR

Clean-Up System (Promega, USA). The purified DNA fragments

were used in the second PCR in the presence of the two mutagenic

primers, hosting the target mutation, together with the outer

primers from the first PCR (Table S2). The fragments obtained
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from the second PCR were analyzed and the amplicon of interest

was purified as described above and amplified in subsequent

standard PCR. This mutated amplicon was directly used for the

algal biolistic transformation as described above. A single colony

was picked from a bombarded filter and was transferred to HS

liquid medium. The point mutation was verified by psbA gene

sequencing (Seqlab, Göttingen, Germany). The homoplasmicity of

the psbA mutant was verified by standard PCR and agarose gel

electrophoresis. Only homoplasmic colonies were used in all the

described experiments.

Functional characterization of the site-directed mutant
strains

The mixotrophic growth rate was estimated by measuring the

absorption of the culture at 750 nm, which is proportional to the

total cell number, and the total chlorophyll content spectropho-

tometrically (Perkin-Elmer Lambda 40 UV/VIS, Norwalk CT,

USA) for a period of 88 h under growth conditions.

The oxygen evolution capacity of the selected strains was

measured on TAP liquid cell cultures, containing 1562 mg l21

chlorophyll, at 24uC using a Clark-type oxygen electrode

(Chlorolab 2, Hansatech, Instr. Ltd, Norfolk, UK) in the presence

of 10 mM NaHCO3 [51] as an additional carbon source. Samples

were illuminated with increasing light intensities provided by red

LEDs (660 nm) under continuous stirring. The rate of oxygen

evolution under each of the light conditions was recorded

continuously for a period of 2 min.

The chlorophyll fluorescence induction curves were registered

on 10 min dark-adapted liquid cell cultures grown in TAP

medium, containing 1461 mg l21 chlorophyll, by Plant Efficiency

Analyzer (PEA, Hansatech Instr. Ltd, Kings Lynn, Norfolk, UK).

The excitation light, a 3 sec saturated pulse (intensity of 600 W/

m2), was provided by an array of six red light-emitting diodes (peak

at 650 nm), focused on the surface of the sample. The maximum

quantum yield of PSII photochemistry is calculated as Fv/

Fm = (Fm -F50ms)/Fm and the efficiency of the electron transport

between the primary (QA) and the secondary (QB) PSII electron

acceptors as 1-VJ where 1-VJ = 1-(F2ms-F50ms)/(Fm -F50ms), and

F50ms, Fm and F2m are the initial fluorescence, the maximum

fluorescence and the fluorescence level 2 ms after the beginning of

the illumination, respectively [52].

Analyses of photosynthesis-damaging light conditions
The photosynthetic performance of the site-directed mutants

was determined by chlorophyll fluorescence analyses, using the

Photo II device (Biosensor Srl, Palombara Sabina, RM, Italy,

http://www.biosensor.it/). The fluorescence induction curves

were recorded every hour, using a 6 s pulse provided by four

red LEDs. In addition, the instrument is designed to provide the

white light necessary to maintain the photosynthetic reaction of

the samples. Cell cultures in early exponential growth phase,

containing about 80 mg total chlorophyll, were harvested by weak

centrifugation and layered on TAP agar medium in the instrument

containers. The intensity of the photosynthetic actinic light was set

at 50 and 150 mmol m22 s21 and the maximum quantum yield of

PSII photochemistry was followed for a period of 7 days. Previous

experiments and results in this paper indicated that 150 mmol m22

s21 were stressful for chlamydomonas cells in immobilized

conditions (Rea G, unpublished data; Fig. 4).

Statistical analyses
The presented data are means of 6–9 values obtained in three

independent experiments. A nonparametric equivalent to analysis

of variance was used (Kruskal-Wallis ANOVA) to define the

differences between the reference strain and the mutants. In the

comparative analysis of the amino acid composition of eukaryotic,

cyanobacterial and bacterial D1/L proteins 50 aminoacidic

sequences were aligned. For the overall mean comparison, analysis

of variance (one way ANOVA) was applied. The statistical

significance of the differences was evaluated by p-level.

Analysis of the amino acid composition of bacterial L and
eukaryotic and cyanobacterial D1 proteins

In this paper, general properties of the D1 amino acid

substitutions were described (Table S1) in terms of side chain

polarity [53], hydropathy index [54] and reactivity classes, as

reported in Table 2. The clustering was done according to the

reactivity scale deduced from the studies reviewed in [30], which

demonstrated that polar residues are less prone to damage by

reactive oxygen species while reactivity of the aliphatic amino

acids increases with the number of methyl groups. Sulphur

containing and aromatic amino acids are, in the reported order,

the most prone to oxidative damage (Table 2).

R. sphaeroides L and C. reinhardtii D1 whole-length amino acid

sequences were used as baits in a BLAST [55] search of the NCBI

non-redundant protein sequences database. Significant hits were

retrieved and sequences with an identity percentage .90% were

removed. Average amino acid composition and standard deviation

were then calculated for a dataset of 50 sequences using the Perl

program freqaa.pl [56] and the GraphPad Prism statistical analysis

tools.

For the composition analysis of the QB binding niche, the R.

sphaeroides L protein 174–249 region was selected, encompassing

three a helices and two loops which build up the niche. The

corresponding region of C. reinhardtii D1 protein (residues 199–292)

was selected by structure-based sequence alignment obtained by

superimposing the three dimensional structures of R. sphaeroides L

(PDB code 2BOZ) [57] and Termosynechococcus elongatus D1 (PDB

code 2AXT) [21].

Compositional analysis of cyanobacterial proteins was carried

out using the Chlamydomonas reinhardtii D1 whole-length amino acid

sequence as bait in a BLAST search of the cyanobacterial subset of

the NCBI non redundant protein sequences database. As for

bacterial and eukaryotic proteins, significant hits were retrieved

and sequences with an identity percentage .90% were removed

before average amino acid composition calculation.

Supporting Information

Figure S1 Characterization of the mixotrophic growth
rate of site-directed chlamydomonas D1 mutants. The

time courses of cell culture growth (A) and chlorophyll

accumulation (B) expressed as a ratio between the chlorophyll

Table 2. Amino acid classification according to increasing
reactivity towards reactive oxygen species.

Class of
reactivitya 0 I II III IV V VI

Amino acid Polar residuesb Gly Ala Pro Ile Met Trp

Val Leu Cys Phe

Tyr

aThe clustering was done according to [30].
bExcluding sulfur-containing and aromatic polar amino acid residues.
doi:10.1371/journal.pone.0016216.t002
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content and the optical density at 750 nm were carried out for a

period of 88 h under growth conditions. The difference between

the mutants and the reference strain gradually increased with time.

Values are the average of four independent experiments, 6SE,

n = 4. The chlorophyll content of the mutants was statistically

different from the reference strain at P = 0.05.

(TIF)

Figure S2 Structural superimposition of Termosynecho-
coccus elongatus D1 and Rodobacter spheroides L
reaction centre proteins. Structure of T. elongatus D1 protein

(PDB code 2AXT) [21] and R. spheroides L protein (PDB code

2BOZ) [57] were retrieved and homology modelled. Superimpo-

sition reveals a backbone fold highly compatible in the 190–291

region (approx 25% identity). D1 backbone is coloured in dark

blue, L backbone is coloured according to root mean square

deviation values: warm colours indicate higher deviations (the

deviation in loop regions is depicted in red); blue arrows indicate

the D1 region hosting the QB binding pocket (aa 199–292).

(TIF)

Figure S3 Directed evolution strategy to isolate radia-
tion tolerant chlamydomonas D1 mutants. The FNG

deuteron beam produces a nearly isotropic neutron flux; it

assumes the same value over a spherical surface area of radius r

centred on the source and its intensity decreases as r22.

Considering the geometry of the neutron beam, an optimised

holder was built to expose several samples at the same time to two

different doses (35 and 75 mGy) in the presence or absence of high

light intensity. For each of the several experiments performed, the

absorbed neutron doses were evaluated using the Monte Carlo N-

Particle transport code with an uncertainty of 5%. The tandem

proton accelerator in Catania provides a collimated cylindrical

shaped beam, which results in a homogeneous inner circular

surface area with a diameter of about 2 cm. For this reason, for the

exposure, algal cells were distributed on a surface area ,2 cm

diameter. Such a preparation allowed the biological component to

absorb a uniform dose. Each sample was directly exposed in air,

perpendicularly to the beam. During the experiment two different

doses were provided, about 0.5 and 5 Gy, measured using an

ionization chamber interposed between the exit point of the beam

and the sample. The doses were delivered to each sample during

an exposition time of about 6 seconds.

(TIF)

Table S1 Description of amino acid substitutions in C. reinhardtii

D1 random mutants surviving after irradiation exposures.

(DOC)

Table S2 Sequences of primers used in the two-step PCR for the

site-directed mutagenesis.

(DOC)
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cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature

438: 1040–1044.

22. Koepke J, Krammer EM, Klingen AR, Sebban P, Ullmann GM, et al. (2007)

pH modulates the quinone position in the photosynthetic reaction center from

Rhodobacter sphaeroides in the neutral and charge separated states. J Mol Biol 371:

396–409.

23. Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, et al. (2009)

Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones,
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