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Abstract

Background: Ideally, disease modifying therapies for Alzheimer disease (AD) will be applied during the ‘preclinical’ stage
(pathology present with cognition intact) before severe neuronal damage occurs, or upon recognizing very mild cognitive
impairment. Developing and judiciously administering such therapies will require biomarker panels to identify early AD
pathology, classify disease stage, monitor pathological progression, and predict cognitive decline. To discover such
biomarkers, we measured AD-associated changes in the cerebrospinal fluid (CSF) proteome.

Methods and Findings: CSF samples from individuals with mild AD (Clinical Dementia Rating [CDR] 1) (n = 24) and cognitively
normal controls (CDR 0) (n = 24) were subjected to two-dimensional difference-in-gel electrophoresis. Within 119 differentially-
abundant gel features, mass spectrometry (LC-MS/MS) identified 47 proteins. For validation, eleven proteins were re-evaluated
by enzyme-linked immunosorbent assays (ELISA). Six of these assays (NrCAM, YKL-40, chromogranin A, carnosinase I,
transthyretin, cystatin C) distinguished CDR 1 and CDR 0 groups and were subsequently applied (with tau, p-tau181 and Ab42
ELISAs) to a larger independent cohort (n = 292) that included individuals with very mild dementia (CDR 0.5). Receiver-
operating characteristic curve analyses using stepwise logistic regression yielded optimal biomarker combinations to
distinguish CDR 0 from CDR.0 (tau, YKL-40, NrCAM) and CDR 1 from CDR,1 (tau, chromogranin A, carnosinase I) with areas
under the curve of 0.90 (0.85–0.94 95% confidence interval [CI]) and 0.88 (0.81–0.94 CI), respectively.

Conclusions: Four novel CSF biomarkers for AD (NrCAM, YKL-40, chromogranin A, carnosinase I) can improve the diagnostic
accuracy of Ab42 and tau. Together, these six markers describe six clinicopathological stages from cognitive normalcy to
mild dementia, including stages defined by increased risk of cognitive decline. Such a panel might improve clinical trial
efficiency by guiding subject enrollment and monitoring disease progression. Further studies will be required to validate
this panel and evaluate its potential for distinguishing AD from other dementing conditions.
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Introduction

Clinicopathological studies suggest that Alzheimer’s disease

(AD) pathology (amyloid plaque formation, followed by gliosis and

neurofibrillary tangle formation) begins 10–15 years before the

onset of very mild dementia [1,2]. This period of ‘preclinical AD’

could provide an opportunity for disease modifying therapies to

prevent or forestall the synaptic and neuronal losses associated

with cognitive impairment [3–5]. However, before such interven-

tions can be developed and judiciously administered, accurate

tools must be in place to diagnose and monitor the pathophys-

iological condition of individuals with preclinical AD and very

early stage AD dementia. Clinical examination cannot detect

preclinical disease or measure cellular and molecular changes

within the brain, and, in general, has limited accuracy when

diagnosing the very earliest symptomatic stages of AD. Therefore,

there is an urgent need to identify biomarkers that can do so.

Because its composition is rapidly and directly influenced by the

brain, the cerebrospinal fluid (CSF) proteome represents an

appealing source for such biomarkers.

Indeed, a few CSF proteins have already shown promise as

diagnostic biomarkers for clinical AD (dementia of the Alzheimer

type [DAT]) and even preclinical AD. Lower mean levels of CSF

Ab42 and higher mean levels of tau and phosphorylated tau can

distinguish groups with DAT from cognitively normal controls

[6,7]. Unfortunately, value ranges for each biomarker show

substantial overlap between groups.

Recently, using positron-emission tomography PET imaging

with Pittsburgh Compound B (PIB) to measure brain amyloid in

vivo, we and others have demonstrated that low CSF Ab42 can

serve as an indicator of amyloid deposition [8–13], and that CSF

tau levels correlate positively with in vivo brain amyloid load

[11,14]. Importantly, both of these associations are independent of

clinical diagnosis [8–11], though CSF tau does correlate with more

sensitive measures of cognition [14]. These findings suggest that

the overlap of biomarker values between clinical groups may, in

part, reflect ‘‘contamination’’ of control groups by cognitively

normal individuals exhibiting amyloid plaques and early neuro-

degeneration (preclinical AD), low CSF Ab42 and elevated CSF

tau. Supporting this notion, elevated ratios of tau/Ab42 and p-

tau181/Ab42 (consistent with the presence of amyloid plaques and

neurodegeneration) have been associated with increased risk of

converting from cognitive normalcy to mild cognitive impairment

or dementia [9,15], and with increased rate of cognitive decline

among those with very mild dementia [16]. Together, these

findings suggest that CSF biomarkers can describe neuropatho-

logical state and trajectory. They also suggest that a pathological

staging system based on biomarkers might be a favorable

alternative or adjunct to clinical staging for guiding treatment

decisions or designing clinical trials.

Beyond amyloid plaque formation, other features of AD

pathophysiology might also be exploited as therapeutic targets,

sources of diagnostic biomarkers, or measures of disease

progression. In addition to Ab42 and tau, many other candidate

AD biomarkers have been identified by either targeted or

unbiased proteomics screens [17–27]. Only a few of these studies

have tested large, well-characterized cohorts, however. Even

fewer have evaluated biomarkers for their ability to distinguish

the very early stages of AD pathophysiology. Thus, there remains

a critical need for validated AD biomarkers that can properly

categorize individuals by early pathological stage; such markers

may have potential for monitoring neuropathological decline

and, thereby, for evaluating response to disease-modifying

therapies.

The goal of this study, therefore, is to identify such CSF protein

biomarkers for AD using the unbiased proteomic technique of

two-dimensional difference-in-gel electrophoresis (2D-DIGE) cou-

pled with liquid chromatography and tandem mass spectrometry

(LC-MS/MS), and to evaluate them further in a larger

independent cohort using quantitative enzyme-linked immuno-

sorbent assays (ELISA). Our findings suggest that a small ensemble

of novel biomarkers may be able to distinguish several stages of

cognitive decline in early AD, and improve the ability of current

leading biomarkers tau and Ab42 to discriminate early symptom-

atic AD from cognitive normalcy.

Methods

Ethics Statement
The study protocols were approved by the institutional review

boards of the University of Washington, the Oregon Health and

Science University, the University of Pennsylvania, the University

of California San Diego, and Washington University. Written

informed consent was obtained from all participants at enrollment.

All aspects of this study were conducted according to the principles

expressed in the Declaration of Helsinki.

Participant Selection for Discovery Cohort
Participants (n = 48), community-dwelling volunteers from

University of Washington [n = 18], Oregon Health and Science

University [n = 11], University of Pennsylvania [n = 11], and

University of California San Diego [n = 8], were 51–87 years of

age and in good general health, having no other neurological,

psychiatric, or major medical diagnoses that could contribute to

dementia, nor use of exclusionary medications (e.g. anticoagulants)

within 1–3 months of lumbar puncture (LP). Cognitive status was

evaluated based on criteria from the National Institute of

Neurological and Communicative Diseases and Stroke-Alzhei-

mer’s Disease and Related Disorders Association [28]. In the

morning after overnight fasting, CSF was obtained by LP,

collected and aliquoted in polypropylene tubes, and immediately

frozen at 280uC. Participants who were cognitively normal

(Clinical Dementia Rating [CDR] of 0 [n = 24]) [29], or had mild

‘‘probable AD’’ (CDR 1) (n = 24), were selected from a larger

group of 120 individuals on the basis of CSF Ab42 (relatively high

and low values, respectively), and, when possible, CSF tau

(relatively low and high values, respectively) to increase the

likelihood of CDR 1 participants having and CDR 0 participants

not having AD pathology. CSF Ab42 and tau levels for the

discovery cohort were all measured in a single laboratory using

well-established ELISA assays ([30] and Innotest, Innogenetics,

Ghent, Belgium). Although quantitative thresholds were not

defined prior to sample selection, the lowest CDR 0 value and

the highest CDR 1 value for CSF Ab42 in this ‘discovery cohort’

were 609 and 361 pg/mL, respectively; ranges for CSF tau were

141–461 pg/mL for CDR 0 and 215–1965 pg/mL for CDR 1.

Participant Selection for Validation Cohort
Participants (n = 292), community-dwelling volunteers enrolled

at the Knight Alzheimer Disease Research Center at Washington

University (WU-ADRC), were $60 years of age and met the same

exclusion criteria as the discovery cohort. The study protocol was

approved by the Human Studies Committee at Washington

University, and written and verbal informed consent was obtained

from participants at enrollment. Cognitive status was determined

as with the discovery cohort. Participants who were cognitively

normal (CDR 0, n = 198), very mildly demented (CDR 0.5, n = 65)

or mildly demented (CDR 1, n = 29) at the time of LP were

Novel CSF Biomarkers for Early Alzheimer’s Disease
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selected without regard to previously measured biomarkers. Some

CDR 0.5 participants met criteria for mild cognitive impairment

(MCI) and some showed even milder impairment, and could be

considered ‘‘pre-MCI’’ [31]. All CDR 1 individuals had received a

diagnosis of DAT (See Table 1 for demographic characteristics).

Apolipoprotein E (APOE) genotypes were determined by the WU-

ADRC Genetics Core. Fasted CSF (20–30 mL) was collected,

gently mixed, centrifuged, aliquoted and frozen at 280uC in

polypropylene tubes [9].

Multi-Affinity Immunodepletion of CSF
A pooled CSF sample, containing an equivalent volume from

every ‘discovery’ cohort sample, was prepared as an internal

standard for 2D-DIGE to facilitate the matching of gel features,

and to allow normalization of the intensity of each gel feature

among different gels. To enrich for proteins of low-abundance

prior to 2D-DIGE, each CSF sample was depleted of six highly-

abundant proteins (albumin, IgG, IgA, haptoglobin, transferrin,

and a-1-antitrypsin) by immunoaffinity chromatography (Agilent

Technologies, Palo Alto, CA) according to the manufacturer’s

instructions and as described previously [32]. Depleted samples

were then concentrated using 10 kDa exclusion filters to retain

larger molecules. As a ‘benchmark’ of immunodepletion column

performance, an aliquot of reference CSF was depleted after every

group of seven experimental chromatographic depletions. Non-

depleted reference CSF, depleted CSF and the proteins that were

retained by the column were analyzed by 2D-DIGE as previously

described [32,33]; gel images obtained from all reference CSF

depletion analyses were similar (data not shown), indicating

consistent column performance over time.

2D-DIGE
2D-DIGE was performed as described previously [32,33].

Briefly, CDR 0 and CDR 1 samples were randomly paired. 50

micrograms of protein from each paired sample and from an

aliquot of the pooled CSF sample were labeled with one of three

N-hydroxysuccinimide cyanine dyes. The labeled proteins and 100

micrograms of unlabeled protein from each sample were mixed

and equilibrated with an immobilized pH gradient strip for

isoelectric focusing (first dimension), after which the strip was

treated with reducing and alkylating solutions prior to SDS-PAGE

(second dimension). Cy2, Cy3 and Cy5-labeled images were

acquired on a Typhoon 9400 scanner (GE Healthcare, United

Kingdom) at excitation/emission wavelengths of 488/520, 532/

580, and 633/670 nm, respectively.

Gel Image and Statistical Analysis
The comparative two-dimensional gel analysis was performed

using an established experimental design [34] in which the high

variation between gels is minimized by including a common,

labeled pooled sample in all gels. Intra-gel feature detection,

quantification and inter-gel matching and quantification were

performed using the Differential In-Gel Analysis (DIA) and

Biological Variation Analysis (BVA) modules of DeCyder software

v 6.5 (GE Healthcare), respectively, as described previously [32].

This process (DIA analysis) resulted in approximately 5,000 gel

features per gel image. In five gels, one sample contained

significant amounts of hemoglobin indicating possible blood

contamination. Therefore, all images from gels with these

hemoglobin-containing samples were removed from further

analysis. Remaining gel images were separated into three sets:

standard (pool of all samples), CDR 0 and CDR 1. The pooled

sample image with the largest number of well-resolved gel features

was chosen as a master image. Gel features in each remaining

pooled sample image were hand matched to gel features in the

master image. For each gel feature that was matched across .50%

of the gels (n = 764), a Student’s t-test (a= 0.05) was performed to

determine the statistical significance of CDR 0/CDR 1 ratios,

using the DeCyder EDA (Extended Data Analysis) module. To

maximize discovery rate and minimize type II error, no multiple

test correction was applied. The image intensity data for the

statistically significant gel features (n = 119) were then subjected to

unsupervised hierarchical clustering (DeCyder EDA module).

Protein/Peptide Identification by LC-MS/MS
Gel features with significant intensity differences were targeted

by a robotic gel sampling system (ProPic; Genomics Solutions,

Ann Arbor, MI) and transferred into 96 well plates for in-gel

digestion with trypsin using a modification of a method [35]

described previously [33]. Aliquots of these digests were processed

for and analyzed by LC-MS/MS using a capillary LC (Eksigent,

Livermore CA) interfaced to a nano-LC-linear quadrupole ion

trap Fourier transform ion cyclotron resonance mass spectrometer

(nano-LC-FTMS) [36] QStar [37] or LTQ [36]. The tandem

spectra were searched against the National Center for Biotech-

nology Information non-redundant protein database NR (down-

loaded on 02-18-2007) using MASCOT, version 2.2.04 (Matrix

Sciences, London). The database searches were constrained by

allowing for trypsin cleavage (with up to two missed cleavage sites),

fixed modifications (carbamidomethylation of Cys residues) and

variable modifications (oxidation of Met residues and N-terminal

pyroglutamate formation). Protein identifications were considered

genuine if at least two peptides were matched with individual

MASCOT ion scores $40.

Using nano-LC-MS/MS, multiple proteins were identified in the

majority of individual gel features. The frequent observation of

multiple proteins in single gel features was attributed to the

sensitivity and greater peptide coverage that can be achieved with

nano-LC-MS methods as compared to, for example, MALDI-MS

analysis of peptides from gel features. Assignment of the major

protein(s) from each gel feature was achieved using quantitative

proteomics from spectra counting [38]. The detection of multiple

proteins within single gel features could also be attributed to artifacts

and technical issues associated with 2D gel electrophoresis: 1)

incomplete resolution of proteins by gel electrophoresis (due to

similar charge and size characteristics, excessive abundance of

Table 1. Demographic, clinical, genotype characteristics of
validation cohort.

Characteristic CDR 0 CDR 0.5 CDR 1

Number of Participants 198 65 29

Gender (% Female) 63% 54% 52%

APOE genotype, % e4 positive 35% 51% 59%

Mean MMSE score (SD) 28.9 (1.3) 26.3 (2.8) 22.3 (3.9)

Mean age at LP (SD), years 71.0 (7.3) 73.8 (6.8) 76.5 (6.2)

Mean CSF Ab42 (SD), pg/mL 605 (240) 446 (230) 351 (118)

Mean CSF tau (SD), pg/mL 304 (161) 539 (276) 552 (263)

Mean CSF p-tau181 (SD), pg/mL 55 (25) 85 (44) 77 (38)

Abbreviations: CDR, Clinical Dementia Rating; CDR 0, cognitively normal; CDR
0.5, very mild dementia; CDR 1 mild dementia; APOE, apolipoprotein E; MMSE,
Mini-Mental State Examination; LP, lumbar puncture; SD, standard deviation;
CSF, cerebrospinal fluid; Ab42, amyloid beta 42 peptide; p-tau181, tau
phosphorylated at threonine 181.
doi:10.1371/journal.pone.0016032.t001
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neighboring proteins, or artifactual streaking); 2) changes in

molecular weight associated with cyanine dye labeling, particularly

for lower molecular weight proteins; and 3) sample ‘carryover’

during robotic gel sampling or during nano-LC-MS/MS.

All relevant proteomics data are detailed in Table S1.

Enzyme Linked Immunosorbent Assays (ELISAs) and
Statistical Analyses

CSF samples were analyzed by ELISA in duplicate for Ab42,

total tau, and phospho-tau181 (Innotest, Innogenetics, Ghent,

Belgium) after one freeze-thaw cycle, and in triplicate for all other

ELISAs after two freeze-thaw cycles. Samples were evaluated

using commercially available ELISAs for NrCAM (R&D Systems

Inc., Minneapolis, MN), YKL-40 (Quidel Corporation, San

Diego, CA), apolipoprotein E (Medical and Biological Laborato-

ries Company, Ltd., Nagoya, Japan), clusterin/apolipoprotein J

(ALPCO Diagnostics, Salem, NH), pigment epithelium-derived

factor (PEDF)/serpin-F1 (Chemicon International Inc./ Millipore

Corporation, Billerica, MA), beta-2 microglobulin (ALPCO

Diagnostics), ceruloplasmin (Assaypro, St. Charles, MO), chromo-

granin A (ALPCO Diagnostics, low binding capacity manufactur-

ing protocol), transthyretin (Assaypro), and cystatin C (US

Biological, Swampscott, MA), according to manufacturer’s

instructions, with adjustments for the analysis of CSF. A sandwich

ELISA was developed for carnosinase I using goat anti-human

carnosinase I antibody (2 mg/mL, R&D Systems Inc.) for capture,

rabbit anti-human carnosinase I antibody (1 mg/mL, Sigma-

Aldrich Corporation, St. Louis, MO) for detection, goat anti-

rabbit:horseradish peroxidase (1:5000, Upstate Biologicals Inc./

Millipore Corporation) for reporting, and TMB (3,39,5,59-tetra-

methylbenzidine) Super Slow (Sigma-Aldrich Corporation) for

color development; recombinant carnosinase I (R&D Systems Inc.)

was used as standard.

Statistical analyses were performed using commercially avail-

able software: SAS 9.2 (SAS Institute Inc., Cary, NC) for Receiver

Operating Characteristic (ROC)/area under curve (AUC) calcu-

lations and logistic regression analyses, and SPSS 18 (SPSS Inc.,

Chicago, IL) for all other analyses.

Figure 1. Two-dimensional difference in gel electrophoresis (2D-DIGE) of cerebrospinal fluid immunodepleted of six high
abundance proteins. Representative 2D-DIGE (grayscale) image with labeled locations of 119 gel features that differed in intensity between CDR 0
and CDR 1 groups. Gel features are numbered 1 through 119, and relevant information about each is listed in Table 2 and in Table S1. Approximate
molecular weight (in kilodaltons [kDa]) is indicated along the right border; isoelectric point ranges from 3 (left) to 11(right) and is non-linear (not
shown). The large, intense, protein spots commonly attributed to transthyretin are boxed; a subset of the differentially abundant gel features in
which transthyretin was identified by mass spectrometry is circled.
doi:10.1371/journal.pone.0016032.g001
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Table 2. Proteins identified by 2D-DIGE LC-MS/MS with differential abundance in CDR 1 vs. CDR 0 CSF.

Spot BVA GI number(s) Protein Change p value Protein

1 4709 31543193 hypothetical protein LOC146556 21.36 7.02E-04 1

2 5659 4502807 chromogranin B 21.31 1.18E-03 2

3 4683 4502101 annexin I 21.31 9.54E-04 3

4 4608 62089004 chromogranin B 21.24 6.49E-03

181387 cystatin C 4

134464 secretogranin-2 5

5 4297 4502807 chromogranin B 21.26 0.0157

6 4545 21.34 3.86E-03

7 4695 4502807 chromogranin B 21.27 0.0115

8 4044 4502807 chromogranin B 21.32 2.15E-03

9 1314 1621283 neuronal cell adhesion molecule (NrCAM) 21.22 0.0119 6

10 1320 1621283 neuronal cell adhesion molecule (NrCAM) 21.33 6.31E-04

11 1382 6651381 neuronal cell adhesion molecule (NrCAM) 21.28 9.53E-04

12 1383 6651381 neuronal cell adhesion molecule (NrCAM) 21.25 6.64E-03

13 4033 4502807 chromogranin B 21.21 0.0419

14 4191 4502807 chromogranin B 21.23 0.0107

15 4293 4502807 chromogranin B 21.33 4.64E-03

825635 calmodulin 7

16 4266 62089004 chromogranin B 21.22 0.0315

17 4615 21.22 0.0188

18 4677 21.3 9.63E-03

19 4906 5454032 S100 calcium binding protein A1 21.3 1.36E-04 8

62898141 prosaposin 9

627391 brain-associated small cell lung cancer antigen/NCAM-140/CD56 10

17136078 VGF nerve growth factor inducible precursor 11

20 5014 443295 transthyretin 21.3 2.10E-03 12

21 4884 224917 apolipoprotein CIII 21.34 9.78E-04 13

337760 prosaposin/cerebroside sulfate activator protein

22 3423 39654998 chain A, Hr1b Domain From Prk1 21.27 0.0133 14

32171249 prostaglandin H2 D-isomerase/beta trace 15

23 3470 17402888 neuronal pentraxin receptor 21.25 7.23E-03 16

114593356 extracellular superoxide dismutase (SOD3) 17

24 4954 34616 beta-2 microglobulin 21.3 4.15E-03 18

25 3436 32171249 prostaglandin H2 D-isomerase 21.22 0.0266

178775 proapolipoprotein 19

39654998 chain A, Hr1b Domain From Prk1

26 3714 21.27 0.03

27 4922 39654998 chain A, Hr1b Domain From Prk1 21.27 0.0194

28 3786 2072129 chromogranin A 21.38 8.96E-03 20

29 4076 7341255 brain acetylcholinesterase putative membrane anchor 21.25 0.0375 21

30 4111 62089004 chromogranin B 21.28 0.0206

31 4167 4502807 chromogranin B 21.29 0.0207

32 2652 28373309 gelsolin 21.23 0.0346 22

33 1313 6651381 neuronal cell adhesion molecule (NrCAM) 21.19 8.08E-03

34 1372 1620909 ceruloplasmin 21.19 9.00E-03 23

1483187 inter-alpha-trypsin inhibitor family heavy chain-related protein 24

31874098 hypothetical protein (NrCAM)

6651381 neuronal cell adhesion molecule (NrCAM)

35 1387 68534652 neuronal cell adhesion molecule (NrCAM) 21.29 8.16E-05

1620909 ceruloplasmin

Novel CSF Biomarkers for Early Alzheimer’s Disease
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Spot BVA GI number(s) Protein Change p value Protein

36 4808 337760 prosaposin/cerebroside sulfate activator protein 21.22 0.0114

37 1319 68534652 neuronal cell adhesion molecule (NrCAM) 21.19 0.0198

1942284 ceruloplasmin

38 1386 6651381 neuronal cell adhesion molecule (NrCAM) 21.29 1.24E-03

39 1353 21706696 calsyntenin 1 21.22 0.0417 25

40 1329 1621283 neuronal cell adhesion molecule (NrCAM) 21.22 4.61E-03

41 2456 5802984 UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 1 21.13 0.0449 26

42 2550 20178323 pigment epithelium-derived factor precursor (PEDF)/Serpin-F1/EPC-1 21.15 0.022 27

43 2125 21071039 carnosinase 1 21.21 0.0245 28

44 2131 21071039 carnosinase 1 21.19 0.049

45 2152 21071039 carnosinase 1 21.15 0.0366

46 5614 21071039 carnosinase 1 21.18 0.0109

47 2166 21071039 carnosinase 1 21.21 0.0122

48 2328 416180 man9-mannosidase/a1,2-mannosidase IA 21.16 0.0464 29

49 3360 21.15 0.045

50 3447 32171249 prostaglandin H2 D-isomerase/beta trace 21.19 0.0334

51 3546 1621283 neuronal cell adhesion molecule (NrCAM) 21.17 0.0368

32171249 prostaglandin H2 D-isomerase/beta trace

52 4745 443295 transthyretin 21.26 0.0181

53 3032 11056046 nectin-like molecule-1/SynCAM3/TSLL1 21.13 0.0472 30

54 3718 39654998 chain A, Hr1b Domain From Prk1 21.14 0.0455

32171249 prostaglandin H2 D-isomerase/beta trace

55 4902 14277770 apolipoprotein C-Ii 21.19 0.0495 31

337760 prosaposin/cerebroside sulfate activator protein

2072129 chromogranin A

56 3290 409725 carbonic anhydrase IV 21.14 0.0141 32

57 4379 17942890 transthyretin 21.15 0.0219

39654998 chain A, Hr1b Domain From Prk1

34999 cadherin 2 precursor 33

58 4388 32171249 prostaglandin H2 D-isomerase/beta trace 21.14 0.0218

39654998 chain A, Hr1b Domain From Prk1

443295 transthyretin

59 2192 21071039 carnosinase 1 21.34 6.56E-03

532198 angiotensinogen 34

5531817 secretogranin III 35

9665262 EGF-containing fibulin-like extracellular matrix protein 1/Fibulin-3 36

177933 alpha-1-antichymotrypsin 37

4504893 kininogen 1 38

36573 vitronectin 39

60 5336 443295 transthyretin 21.17 0.0301

61 3009 178855 apolipoprotein J/clusterin 21.26 0.0288 40

4557325 apolipoprotein E 41

62 3042 4557325/178853 apolipoprotein E 21.21 0.047

338305 apolipoprotein J/clusterin

63 3016 338305 apolipoprotein J/clusterin 21.32 6.69E-05

64 3050 4557325/178853 apolipoprotein E 21.24 5.19E-04

178855 apolipoprotein J/clusterin

65 3075 4557325/178853 apolipoprotein E 21.42 5.59E-06

178855 apolipoprotein J/clusterin

66 3038 4557325/178853 apolipoprotein E 21.41 2.84E-05
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Spot BVA GI number(s) Protein Change p value Protein

178855 apolipoprotein J/clusterin

67 3301 178849 apolipoprotein E 21.4 1.29E-05

68 3182 4557325/178853 apolipoprotein E 21.41 3.43E-04

178855 apolipoprotein J/clusterin

69 2443 532198 angiotensinogen 21.2 6.85E-03

70 2493 4503009 carboxypeptidase E precursor 21.23 6.09E-03 42

71 5621 532198 angiotensinogen 21.17 0.0434

72 5624 532198 angiotensinogen 21.22 0.0147

73 5622 553181 angiotensinogen 21.17 0.04

74 5625 532198 angiotensinogen 21.16 0.0423

75 5627 21.22 0.0113

76 2849 4557325 apolipoprotein E 21.28 6.26E-03

77 5009 443295 transthyretin 21.24 0.0268

78 5033 443295 transthyretin 21.27 4.59E-03

79 5078 443295 transthyretin 21.2 0.0144

80 2958 4504067 aspartate aminotransferase 1 21.22 8.60E-03 43

81 3657 32171249 prostaglandin H2 D-isomerase/beta trace 21.22 3.07E-03

82 3867 21.28 0.0437

83 3176 4557325 apolipoprotein E 21.63 3.03E-04

84 3228 4557325 apolipoprotein E 21.4 1.39E-03

443295 transthyretin

85 3074 4557325/178853 apolipoprotein E 22.36 4.41E-09

86 5647 4557325 apolipoprotein E 22.35 2.92E-07

87 3224 4557325/178853 apolipoprotein E 22.13 6.36E-07

443295 transthyretin

88 3126 4557325/178853 apolipoprotein E 21.93 7.55E-06

89 5297 21.44 0.0473

90 3083 4557325 apolipoprotein E 21.7 2.82E-05

91 2218 112911 alpha-2-macroglobulin 1.22 0.0282 44

92 2226 6573461 apolipoprotein H 1.27 0.0305 45

93 2252 112911 alpha-2-macroglobulin 1.26 0.0267

4557327 apolipoprotein H

94 3255 1.24 0.0315

95 3630 178775 proapolipoprotein 1.24 0.0287

32171249 prostaglandin H2 D-isomerase/beta trace

39654998 chain A, Hr1b Domain From Prk1

96 2229 177933 alpha-1-antichymotrypsin 1.42 3.09E-03

97 2235 177933 alpha-1-antichymotrypsin 1.35 0.0388

98 2261 177933 alpha-1-antichymotrypsin 1.3 6.04E-03

99 2262 177933 alpha-1-antichymotrypsin 1.25 0.0294

100 2220 1.29 0.0158

101 3084 1.16 0.0211

102 3508 32171249 prostaglandin H2 D-isomerase/beta trace 1.22 9.21E-03

103 2825 23512215 chitinase 3-like 1/YKL-40/HC-gp39 1.41 0.0167 46

104 2863 4557018 chitinase 3-like 1/YKL-40/HC-gp39 1.5 0.0144

105 2846 29726259 chitinase 3-like 1/YKL-40/HC-gp39 1.46 7.88E-03

106 2843 23512215 chitinase 3-like 1/YKL-40/HC-gp39 1.32 0.0241

107 3030 4557325 apolipoprotein E 2.46 3.70E-05

108 3152 4557325/178853 apolipoprotein E 2.39 8.73E-07

109 3203 178853 apolipoprotein E 3.23 3.13E-07
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Comparisons between CDR 0 and CDR 1 groups of the ‘discovery’

cohort (one sample was unavailable for re-evaluation, n = 47) were

performed using unpaired t-test. For the ‘validation’ cohort (n = 292),

correlations with age and gender were evaluated using the Spearman

rho correlation coefficient (a= 0.05). Chi-square analyses were

performed to evaluate need for adjustment for observed correlations.

Comparisons between the three CDR groups were performed using

one-way analysis of variance (ANOVA), with Bonferroni and LSD

post-hoc tests for pair-wise group comparisons, with the following

exceptions: one-way ANOVA with Welch’s correction was applied

for markers (transthyretin) demonstrating unequal variances (Levene

,.05); markers correlating with age (tau, p-tau181, Ab42, YKL-40)

were evaluated by analysis of covariance (ANCOVA) adjusting for

age, followed by Bonferroni and LSD post-hoc tests. Multiple post-

hoc tests were applied in recognition of their different levels of

stringency (Bonferroni . LSD), and their non-uniform popularity

among statisticians. For CDR 0 vs .0 comparisons and CDR 1 vs ,1

comparisons, unpaired t-test was used; Welch’s correction for unequal

variances was applied for YKL-40, p-tau181, tau, and Ab42. For each

biomarker measured in the larger ‘validation’ cohort, the ROC curve

and the AUC were calculated for predicting CDR 0 versus CDR.0.

A stepwise logistic regression analysis was used to identify an optimal

combination of these biomarkers for this data set. These analyses were

repeated for CDR 1 vs CDR,1.

Results

Sample Processing and 2D-DIGE Analysis
To identify new candidate biomarkers for AD, we utilized an

unbiased proteomics approach, 2D-DIGE LC-MS/MS [32,33],

to compare the relative concentrations of CSF proteins in

individuals with mild ‘‘probable AD’’ (CDR 1, n = 24) to those in

individuals with normal cognition (CDR 0, n = 24). The two

clinical groups were selected on the basis of relative biomarker

values for CSF Ab42 and tau (see Methods), and differed

somewhat with respect to age at LP and gender (CDR 0:

64.868.8 yrs, 38% female; CDR 1: 72.8 yrs 67.9 yrs, 54%

female). Five samples showed evidence of blood contamination by

2D-DIGE; the five gels containing these samples were excluded

from subsequent image analyses. The remaining individual

sample images (n = 38, from 19 gels) were aligned using the

BVA module (described under Methods).

Among the 764 gel features that were present in .50% of the

gels, 119 were found to have significant intensity differences

between CDR 0 and CDR 1 groups (Student’s t-test [a= 0.05])

(Figure 1). The image intensity data for these 119 gel features were

subjected to unsupervised hierarchical clustering (EDA module,

DeCyder software) and the gel features themselves were analyzed

for protein composition.

Protein Identification by LC-MS/MS
LC-MS/MS identified single dominant proteins in 78 of the 119 gel

features (Table 2). In 29 gel features, our analyses identified two or

more co-dominant proteins. The 12 remaining gel features were not

annotated from the nano-LC-MS/MS data. Among the characterized

gel features, there was considerable redundancy in protein identifica-

tions, with some proteins appearing in multiple gel features. Such

‘redundant’ gel features, likely representing a modified form or variant

of the same ‘parent’ protein, generally migrated with some proximity

on 2D-gel electrophoresis (Figure 1). Forty-seven unique proteins were

identified (Table 2). Thirteen of these unique proteins had been

identified in our previous studies [32,33] (including chromogranin B,

cystatin C, prostaglandin H2 D-isomerase/beta trace, neuronal

pentraxin receptor, gelsolin, beta-2 microglobulin, carnosinase I,

angiotensinogen, apolipoprotein H, secretogranin III, alpha-1-antic-

hymotrypsin, chitinase 3-like 1/YKL-40, and kininogen I) and others

Spot BVA GI number(s) Protein Change p value Protein

110 3185 4557325/178853 apolipoprotein E 1.9 9.72E-04

443295 transthyretin

111 3069 338305 apolipoprotein J/clusterin 1.5 6.40E-04

112 3079 1.64 4.47E-04

113 3133 178853 apolipoprotein E 1.49 8.66E-04

338057 apolipoprotein J/clusterin

114 3151 178853 apolipoprotein E 1.28 9.25E-03

338057 apolipoprotein J/clusterin

115 3249 4557325 apolipoprotein E 1.37 2.46E-03

178855 apolipoprotein J/clusterin

443295 transthyretin

116 3118 4557325/178853 apolipoprotein E 1.64 9.96E-04

117 5698 178855 apolipoprotein J/clusterin 1.73 5.82E-04

118 2819 40737343 C4B3 2 0.038 47

119 3137 4557325 apolipoprotein E 22.5 8.52E-07

Column 1, coded protein spot ID (as in Figure 1).
Column 2, biological variation analysis (BVA) number for spot generated by Decyder software.
Column 3, GI accession number(s) assigned to proteins identified by MASCOT.
Column 4, name of protein identified by MASCOT.
Column 5, fold-change in protein abundance; negative values indicate decreases in CDR 1 vs. CDR 0.
Column 6, p value of the CDR 1 versus CDR 0 comparison (Student’s t test).
Column 7, consecutive numbering identifying proteins as unique.
doi:10.1371/journal.pone.0016032.t002
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have been reported by other groups [17,19,20,23,25,27]. These

previous reports provide supporting evidence that this list of proteins

may contain viable candidate biomarkers for AD that are worthy of

pursuit in validation experiments.

Unsupervised Clustering Analysis
The intensity data from the 119 gel features of interest were

subjected to an unsupervised clustering analysis to evaluate their

ability to segregate the CDR 0 and CDR 1 samples, and to assess

their collective potential as a diagnostic biomarker panel (Figure 2).

The ‘heatmap’ generated from this analysis appeared to segregate

CDR 0 and CDR 1 individuals (indicated by green and red ovals,

respectively) almost completely, with only four participants

‘misclassified.’ However, closer examination revealed an addition-

al layer of segregation on the basis of APOE genotype (indicated by

‘ApoE 4+ Cluster’ and ‘ApoE 4 – Cluster’) which showed perfect

Figure 2. Unsupervised clustering of CSF samples by 2D-DIGE data from the 119 statistically significant gel features. (Student’s t-test,
a= 0.05, present in .50% of images). Five gels containing hemoglobin (n = 10 samples) were excluded. Columns represent samples; rows, numbered
1 through 119 from top to bottom, represent gel features depicted in Figure 1. Gel feature intensity is encoded colorimetrically from red (low
intensity) to green (high intensity); white indicates absent data. CDR status of individuals at time of CSF collection is encoded below by small green
(CDR 0) and red (CDR 1) ovals; CDR 0 and CDR 1 clusters are indicated below by green and red bars, respectively. APOE-e4 allele status of individuals
and groups, alike, is indicated by black (possessing ApoE4 protein, or one or two APOE-e4 alleles) or blue (possessing no ApoE4 protein, or no APOE-e4
alleles) bars. Rows representing gel features containing ApoE protein are indicated along the lower right border.
doi:10.1371/journal.pone.0016032.g002
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Figure 3. Unsupervised clustering of CSF samples by 2D-DIGE data, excluding gel features containing apoE protein. All other
statistically significant gel features (Student’s t-test a= 0.05, present in .50% of images) are retained. As in Figure 2, five gels containing hemoglobin
(n = 10 samples) were excluded. Columns represent samples, numbered according to their original positions in Figure 2. Rows represent gel features,
numbered as in Figure 2; unlabeled rows are in consecutive order from upper number to lower number, with interruptions in sequence indicated by
labels. ApoE-containing features are removed. Gel feature intensity is encoded colorimetrically from red (low intensity) to green (high intensity); white
indicates absent data. CDR status of participants at time of CSF collection is encoded below, by small green (CDR 0) and red (CDR 1) ovals. APOE-e4
status (as described for Figure 2) is indicated by blue (ApoE4 negative) or black (ApoE4 positive) bars, below. Clustering pattern of samples
(numbered consecutively in order of appearance in Figure 2, from left to right) relative to Figure 2 is indicated by white numerals, below.
doi:10.1371/journal.pone.0016032.g003
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sample segregation. Given that the APOE-e4 allele is a dominant

genetic risk factor for AD, some clustering of individuals by APOE

genotype might be expected simply from successful segregation of

CDR 0 and CDR 1 individuals. However, we hypothesize that the

apoE protein exerts a dominant clustering influence through the

markedly different electrophoretic profiles of its different isoforms

derived from APOE-e2, APOE-e3 and APOE- e4 alleles (illustrated

in Figure S1). ApoE was present in 24 of the 119 gel features found

to differ in intensity between the CDR groups, and was found to

be the primary protein in 12 of these gel features. This

heterogeneous electrophoretic mobility of apoE results from the

inherent charge differences of the three major apoE isoforms (-E2,

-E3, -E4) and the appearance of each isoform as an array of

multiple distinct gel features caused by post-translational modifi-

cations. These isoform-specific differences are reflected in the

prominent red and green clusters, located within the lower third of

Figure 2 (corresponding to gel features 83–90, 107–117, and 119),

that correlate very closely with participant APOE genotypes.

Recognizing this correlation, we hypothesized that APOE

genotypes were in large part driving the clustering of participant

samples in Figure 2. To test this hypothesis, we performed a

second unsupervised clustering analysis, including only those gel

features from the initial analysis that did not contain apoE protein

(Figure 3). Although this ‘apoE-free’ analysis segregated CDR 1

and CDR 0 groups less completely, it appropriately re-clustered

(by CDR status) several samples (#12, 36, 37) that were aberrantly

segregated in Figure 2, potentially due to their APOE genotypes.

Moreover, clustering of participant samples into APOE genotype

subgroups in Figure 3 appears negligible. The underlying benefit

of this ‘apoE-free’ analysis is that it reveals the sample-clustering

potential of other gel features, which was previously obscured by

the inclusion of apoE-containing gel features. As can now be better

visualized in Figure 3, gel features appearing within the upper

three-fourths of the heatmap appear to show greater intensity in

CDR 1 samples; the converse is true of gel features within the

lower fourth. It is important to note that measurements of Ab42

and tau (two proteins measured by ELISA and not detected by

2D-DIGE) were not included in these clustering analyses; because

these ‘discovery’ samples were selected for this study on the basis of

CSF Ab42 and tau levels, such inclusion would presumably yield

perfect or near-perfect segregation by CDR status in this

‘discovery’ cohort. Therefore, this analysis reflects the potential

of these candidate biomarkers to segregate CDR 0 and CDR 1

individuals independent of any contribution from current leading

CSF biomarkers Ab42 and tau. It does not address whether these

biomarker candidates might improve upon the utility of Ab42 and

tau, however.

Validation of Candidate Biomarkers by ELISA
Before evaluating a subset of these candidate biomarkers in a

larger independent sample set, we first assessed the capacity of

protein-specific quantitative ELISAs to detect significant differ-

ences between the CDR 0 and CDR 1 groups of the original

‘discovery’ cohort. When possible, to facilitate future reproduction

of our findings by other groups and potential translation to clinical

use, we applied commercially available ELISA kits.

Of the eleven ELISAs applied to the ‘discovery’ cohort (n = 47,

one sample was unavailable for validation), six (NrCAM, YKL-40,

chromogranin A, carnosinase I, transthyretin, cystatin C) showed

statistically significant or near-significant differences between

CDR 0 and CDR 1 groups (Figure 4); five others (PEDF, beta-2

microglobulin, clusterin/apoJ, ceruloplasmin, apoE) did not.

The six ELISAs that measured differences between the CDR 0

and CDR 1 CSF samples of the ‘discovery’ cohort were

subsequently applied to a larger, independent set of CSF samples

(n = 292) collected from volunteer participants studied by the WU-

ADRC. This ‘validation’ cohort included a CDR 0.5 group in

addition to CDR 0 and CDR 1 groups, allowing for biomarker

assessment in the very early clinical stage of AD. Demographic,

clinical, and genetic characteristics of these individuals at time of

sample collection are presented in Table 1. Unlike the ‘discovery’

cohort, this ‘validation’ cohort was not preselected on the basis of

prior biomarker values (CSF Ab42 and tau), although assays for

CSF Ab42, tau and p-tau181 were performed.

Because the age and gender compositions differed among the

clinical groups of the ‘validation cohort,’ we evaluated each of

these 9 biomarkers (six novel candidates, Ab42, tau, and p-tau181)

for age and gender correlations in order to apply covariate

analyses appropriately. Correlating with age were tau (r = 0.318,

p,0.0001), p-tau181 (r = 0.2216, p,0.001), Ab42 (r = 20.2334,

p,0.0001) and YKL-40 (r = 0.4001, p,0.001); no biomarkers

correlated with gender (p.0.05).

As shown in Figure 5, statistically significant differences between

clinically defined groups were measured for Ab42, tau, p-tau181,

NrCAM, YKL-40, chromogranin A, and carnosinase I; for

transthyretin and cystatin C, non-significant trends were mea-

sured. These differences appeared in three patterns: Ab42 showed

a pronounced decrease from CDR 0 to CDR 0.5 and a lesser

reduction from CDR 0.5 to CDR 1; tau, p-tau181, and YKL-40

showed increases that were equivalent in CDR 0.5 and CDR 1

relative to CDR 0; NrCAM, chromogranin A, and carnosinase I

showed decreases relative to CDR 0 only in CDR 1, and not in

CDR 0.5.

Diagnostic Utility of Validated Candidate Biomarkers
To evaluate and compare the potential of the validated

candidate biomarkers and Ab42, tau, and p-tau181 for identifying

either very mild to mild dementia (combined CDR 0.5 and CDR

1) or mild dementia (CDR 1), ROC curves and AUCs were

calculated for each biomarker using data from the ‘validation’

cohort (Figure 6A, B, Tables 3, 4). Stepwise logistic regression

analyses indicated that, among the nine biomarkers under

consideration, YKL-40, NrCAM and tau yielded the highest

AUC (0.896) in discriminating cognitive normalcy (CDR 0) from

very mild to mild dementia (CDR.0) (Figure 6C, Table 3); for

discriminating mild dementia (CDR 1) from CDR,1, carnosinase

I, chromogranin A and tau yielded the highest AUC (0.876)

(Figure 6D, Table 4).

Discussion

Using an unbiased proteomics approach (2D-DIGE LC-MS/

MS), this study identified 47 novel candidate CSF protein

biomarkers for early AD. Subsequently, by evaluating a subset

of these candidate biomarkers by ELISA, this study validated the

Figure 4. Quantitative ELISAs for 11 biomarker candidates applied to ‘discovery’ cohort CSF samples (n = 47). Each assay performed in
triplicate; mean value reported for each sample. The six assays represented in the upper two rows (A. YKL-40, B. Transthyretin, C. NrCAM, D.
Chromogranin A, E. Carnosinase I, and F. Cystatin C) measured differences between CDR 0 and CDR 1 groups (unpaired t-test); the five assays
represented in the lower two rows (G. ApoE, H. PEDF, I. Clusterin, J. Ceruloplasmin, K. b-2 microglobulin) did not.
doi:10.1371/journal.pone.0016032.g004
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Figure 5. Six biomarker candidates and established biomarkers tau, p-tau181 and Ab42 in ‘validation’ cohort CSF (n = 292). Each
candidate biomarker assay was performed in triplicate, with one mean value reported for each sample; assays for tau, p-tau181 and Ab42 were
performed in duplicate. In addition to A. tau, B. p-tau181 and C. Ab42 (top row), four assays (D. YKL-40, E. carnosinase I, F. chromogranin A, G.
NrCAM) measured statistical differences between clinically defined groups, as indicated; H. transthyretin and I. cystatin C did not reach criterion
(a= 0.05) for any comparisons. * p,0.05; * * p,0.01; * * * p, 0.001; * * * * p,0.0001; solid circle p,0.05 by LSD only; double solid circle
p,0.05 by unpaired t-test and Mann-Whitney, not by unpaired t-test with Welch’s correction.
doi:10.1371/journal.pone.0016032.g005
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utility of four candidate biomarkers for distinguishing groups with

mild, very mild, or no dementia (CDR 1, 0.5, 0, respectively).

Further statistical analyses demonstrated that these biomarkers

could improve the accuracy of ‘established’ biomarkers Ab42 and

tau for the diagnosis of early AD.

The results from the 2D-DIGE LC-MS/MS portion of this study

suggest that many of the recognized neuropathological changes of

AD are represented by changes in the CSF proteome. Most of the

47 candidate biomarker proteins identified in this study can be

placed into structural and/or functional categories (e.g. synaptic

adhesion, synaptic function, dense core synaptic vesicle proteins,

inflammation/complement, protease activity/inhibition, apolipo-

proteins, etc.) associated with accepted neuropathophysiological

changes in AD (Table 5). Unsupervised clustering analyses of these

2D-DIGE data, performed without the influence of CSF Ab42, tau,

p-tau181 and APOE genotype, additionally suggest that these

biomarker candidates collectively show utility for discriminating

groups with and without mild DAT (Figure 3).

In the second phase of this study, designed to measure a subset

of candidate biomarker proteins in two independent sample sets by

ELISA, four of the eleven candidate biomarkers that were tested

showed capacity to distinguish clinical groups. However, seven

candidate biomarkers did not show statistically significant

differences between clinical groups in either the smaller ‘discovery’

cohort or the larger ‘validation’ cohort. Superficially, this ‘failure

rate’ might cast doubt on the list of candidate biomarkers

identified through 2D-DIGE. However, it is important to note

that 2D-DIGE is sensitive to changes in concentrations of minor

protein isoforms and post-translational modifications that may not

significantly alter the global concentrations of a ‘parent’ protein,

which would be measured by ELISA. Therefore, it is not

surprising that some of the candidate biomarker ELISAs did not

replicate the findings from 2D-DIGE. Transthyretin provides a

prime example: all of the significant gel-features ascribed to

transthyretin (gel features # 20, 52, 57, 58, 60, 77, 78, 79, 84, 87,

110, 115; Table 2) showed unusual electrophoretic patterns and

Figure 6. Receiver Operating Characteristic (ROC) curves of ELISA data from ‘validation’ cohort. Simple ROC analyses were performed
for each biomarker to distinguish A. CDR.0 from CDR 0 (‘‘earlier diagnosis’’) and B. CDR 1 from CDR,1 (‘‘early diagnosis’’). Stepwise logistic
regression models were used to identify combinations of these biomarkers that would distinguish C. CDR.0 from CDR 0 (‘‘earlier diagnosis’’),
AUC = 0.90 and D. CDR 1 from CDR,1 (‘‘early diagnosis’’), AUC = 0.88.
doi:10.1371/journal.pone.0016032.g006
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were dwarfed by the canonical transthyretin gel features that did

not individually show statistical differences (Figure 1). In fact,

whereas most of the significant transthyretin 2D-DIGE gel features

were decreased in AD, the global transthyretin levels measured by

ELISA in the ‘discovery’ and ‘validation’ cohorts were actually

mildly increased in groups with cognitive impairment (CDR.0)

relative to those without (CDR 0) (Figures 4 and 5). To measure

the sub-species of transthyretin that were identified by 2D-DIGE

as decreasing in AD will require assays that specifically target

relevant post-translational modifications and exclude other forms

of transthyretin. Similarly, other 2D-DIGE biomarker candidates

may also require specifically tailored assays for accurate, high-

throughput measurement.

Nevertheless, four candidate biomarkers were successfully

validated in both cohorts, and two others showed non-significant

trends by ELISA in the larger ‘validation’ cohort (Figure 5). This

larger cohort represented three different cognitive stages: normal-

cy, very mild dementia, and mild dementia (CDR 0, CDR 0.5,

CDR 1, respectively), and revealed different patterns of CSF

biomarker levels, vis-a-vis cognitive status. The CSF concentration

of YKL-40, an astrocytic marker of plaque-associated neuroin-

flammation [137–148], is increased by the very earliest stage of

clinical disease (CDR 0.5). Transthyretin [24,87,173,175,179–

184] and cystatin C [22,173,185–188], two proteins with

neuroprotective qualities that are implicated in preventing

amyloidogenesis of Ab peptide, show a similar pattern. In contrast,

the concentrations of NrCAM, a synaptic adhesion molecule

[19,46–49], chromogranin A, a dense core synaptic vesicle protein

[19,20,22,59–62], and carnosinase I, a neuronal dipeptidase

responsible for degradation of the anti-oxidant and metal-

chelating dipeptide carnosine [33,107–111] do not decline until

mild dementia ensues (CDR 1).

Like the current leading CSF biomarkers for AD (Ab42, tau and

p-tau181), all of these biomarker candidates show ranges with

substantial overlap between clinically defined groups. This issue of

overlapping values, common among candidate AD CSF biomark-

ers reported to date, suggests that any one biomarker will be

insufficient to accurately identify early AD, and that an ensemble

of complementary biomarkers will be required to provide

adequate sensitivity and specificity. Therefore, to identify an

optimal combination of these biomarkers that can distinguish the

early clinical stages of AD from cognitive normalcy, we applied

Table 3. Receiver Operating Characteristic Curve Areas for CDR 0 vs ,0 Comparison.

Biomarker Area Under Curve Standard Error 95% Confidence Interval

Tau 0.8004 0.0279 0.7457–0.8551

Ab42 0.7429 0.0315 0.6812–0.8046

p-tau181 0.7339 0.0315 0.6721–0.7956

YKL-40 0.6717 0.0349 0.6033–0.7401

Transthyretin 0.6190 0.0331 0.5541–0.6838

Carnosinase I 0.5735 0.0365 0.5020–0.6450

NrCAM 0.5422 0.0355 0.4726–0.6118

Chromogranin A 0.5303 0.0373 0.4572–0.6034

Cystatin C 0.5297 0.0366 0.4579–0.6014

Logistic Regression 0.8955 0.0212 0.8539–0.9372

ROC analyses of ‘validation’ cohort ELISA data were performed for each biomarker to distinguish CDR.0 from CDR 0 (‘‘earlier diagnosis’’). A stepwise logistic regression
model, applied to identify a complementary combination of these biomarkers that would optimize accuracy (maximize area under the curve [AUC]) without including
additional non-contributory biomarkers, accepted tau, YKL-40 and NrCAM and yielded an AUC of 0.8955 (‘‘Logistic Regression,’’ lowest row).
doi:10.1371/journal.pone.0016032.t003

Table 4. Receiver Operating Characteristic Curve Areas for CDR 1 vs ,1 Comparison.

Biomarker Area Under Curve Standard Error 95% Confidence Interval

Ab42 0.7690 0.0376 0.6953–0.8427

Tau 0.7502 0.0420 0.6679–0.8325

Carnosinase I 0.7277 0.0512 0.6273–0.8281

Chromogranin A 0.6879 0.0566 0.5771–0.7988

Transthyretin 0.6605 0.0380 0.5860–0.7350

p-tau181 0.6512 0.0483 0.5566–0.7458

NrCAM 0.6411 0.0553 0.5326–0.7495

YKL-40 0.6271 0.0532 0.5228–0.7313

Cystatin C 0.5752 0.0565 0.4645–0.6858

Logistic Regression 0.8762 0.0314 0.8147–0.9377

ROC analyses of ‘validation’ cohort ELISA data were performed for each biomarker to distinguish CDR 1 from CDR,1 (‘‘early diagnosis’’). A stepwise logistic regression
model, applied to identify a complementary combination of these biomarkers that would optimize accuracy (maximize area under the curve [AUC]) without including
additional non-contributory biomarkers, accepted tau, carnosinase I and chromogranin A, yielding an AUC of 0.8762 (‘‘Logistic Regression,’’ lowest row).
doi:10.1371/journal.pone.0016032.t004
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Table 5. Candidate CSF biomarkers reflect AD-related pathophysiologic changes.

Functional/Structural Category Protein References

Adhesion molecules N-Cadherin [39-45]

NrCAM [19,46-49]

Calsyntenin [47,50-53]

Neuronal Pentraxin Receptor [47,54]

Brain Associated Small Cell Lung Cancer Antigen (NCAM-140/CD56) [55]

Nectin-like molecule-1/TSLL1/SynCam3 [56-58]

Dense core vesicles Chromogranin A [19,20,22,59-62]

Chromogranin B [60,62]

Secretogranin II [60-63]

Secretogranin III [59,64,65]

VGF NGF Inducible precursor [20,22,23,66-69]

Carboxypeptidase E [70-75]

Synaptic/Neuronal metabolism Aspartate aminotransferase I [76-82]

Synaptic Function S100A1 [83]

Neuronal Pentraxin Receptor [27,47,54]

Brain Acetylcholinesterase Putative Membrane Anchor (CutA1) [84,85]

Calsyntenin [47,50-53]

Neuroprotection PEDF (Serpin-F1) [86-96]

Annexin I [97-99]

Prosaposin [20,100-103]

Secretogranin II [104-106]

Carnosinase I [33,107-111]

Extracellular superoxide dismutase (SOD3) [112-114]

Apoptosis/Actin remodeling Gelsolin [115-121]

Prk-1 (PKN) [122-126]

Synaptic plasticity/Learning and memory VGF NGF inducible precursor [20,22,23,66-69]

NrCAM [19,46-49]

b3GnT1 [49,127,128]

Carnosinase I [33,107-111]

Carbonic Anhydrase IV [129-131]

S100A1 [132]

Carboxypeptidase E [70-75]

Calmodulin [133-136]

Extracellular superoxide dismutase (SOD3) [114]

Inflammation/Complement *YKL-40/Chitinase 3-Like 1 [137-148]

PEDF (Serpin-F1) [86-96]

Annexin I [97-99]

IHRP/ITIH4 [149,150]

Vitronectin [151-155]

*Complement C4B3 [156-161]

Kininogen I [162,163]

Chromogranin A [19,20,22,59-62]

Secretogranin III [59,64,65]

Apolipoprotein J [27,152,156,157,164-167]

Beta 2-microglobulin [168-171]

Extracellular superoxide dismutase (SOD3) [172]

Prostaglandin metabolism *Prostaglandin H2 D Isomerase/Beta-trace [162,173-175]

Amyloid beta peptide binding/Amyloidogenesis *Apolipoprotein A1 (proapolipoprotein) [176,177]

Apolipoprotein E [178]

Apolipoprotein J [27,152,156,157,164-167]
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stepwise logistic regression analyses to the ELISA data from our

‘validation’ cohort (Figure 6, Tables 3 and 4). These analyses

suggest that four candidate AD biomarkers (YKL-40, NrCAM,

chromogranin A, carnosinase I) can improve the ability of tau to

classify individuals into CDR 0, CDR 0.5 and CDR 1 groups with

appreciable accuracy.

It may appear counter-intuitive that Ab42 and p-tau181, which

individually discriminate very mild AD and mild AD from

cognitively normal groups quite well, were not incorporated into

either ‘optimal’ biomarker panel by the stepwise logistic regression

analyses. Likewise, NrCAM was included in the optimal CDR 0 vs

CDR.0 biomarker panel (AUC 0.896) even though its mean

levels did not independently show a statistical difference between

CDR 0 and CDR.0 groups. In considering this outcome, it may

be worth noting that if NrCAM, transthyretin, chromogranin and

cystatin C are removed from consideration, the stepwise logistic

Functional/Structural Category Protein References

Transthyretin [87,173,175,179-184]

Gelsolin [115-121]

Vitronectin [151-155]

Cystatin C [22,173,185-188]

*Prostaglandin H2 D Isomerase/Beta-trace [162,173-175]

*a-2-macroglobulin [19,189-194]

*a-1-antichymotrypsin [33,195-199]

Protease activity *a-1-antichymotrypsin [33,195-199]

*a-2-macroglobulin [19,189-194]

Cystatin C [22,173,185-188]

Carboxypeptidase E [70-75]

Matrix proteins Fibulin 3 (EFEMP1) [200-202]

Vitronectin [151-155]

Phospholipase activity Annexin I (Lipocortin) [97-99]

Prosaposin [20,100-103]

Apolipoproteins *Apolipoprotein A1 (proapolipoprotein) [24,165,166,176,177,203,204]

Apolipoprotein CII [25,166,205]

Apolipoprotein CIII [25,206,207]

Apolipoprotein E [24,27,165,204]

Apolipoprotein J [27,152,156,157,164-167]

*Apolipoprotein H [19,25,165,208,209]

Calcium binding/homeostasis Calmodulin [134-136]

S100A1 [83,210]

Annexin I (Lipocortin) [97-99]

Calsyntenin [47,50-53]

Gelsolin [115-121]

Metal (Copper and Iron) Binding Carnosinase I [33,107-111]

Ceruloplasmin [211-217]

Brain Acetylcholinesterase Putative Membrane Anchor (CutA1) [84,85]

Chaperone complex/activity S100A1 [218]

Transthyretin (prealbumin) [24,87,173,175,179-184]

Endoplasmic Reticulum - Associated Degradation Man9-mannosidase [219-221]

Extracellular and Intraneuronal pH Carbonic Anhydrase IV [129-131]

Carnosinase I [33,107-111]

Glycobiology (lactosamine synthesis) b3GnT1 [49,127,128]

Hemodynamics Angiotensinogen [172,222]

Extracellular superoxide dismutase (SOD3) [172]

Thyroid hormone transport Transthyretin (prealbumin) [24,87,173,175,179-184]

Unknown Hypothetical protein

CSF biomarkers are grouped according to reported function(s) and, when appropriate, cellular locations. Asterisks (*) indicate those biomarkers found to be increased in
AD CSF; the vast majority were decreased.
doi:10.1371/journal.pone.0016032.t005
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regression model for the CDR 0 vs CDR.0 comparison yields an

‘optimal’ biomarker panel that includes only tau, Ab42 and

carnosinase I, with an AUC of 0.849 (not shown). In this restricted

analysis, the paired contribution of Ab42 and carnosinase I to tau

is apparently greater than that of YKL-40. These analyses

illustrate how ‘unpredictable’ and context-dependent optimal

biomarker combinations can be, and suggest that biomarker

complementarity may be more important to consider than each

biomarker’s independent performance, when choosing a biomark-

er panel. Of course, it will be necessary to replicate these findings

in additional independent cohorts. It will also be essential to

evaluate a greater number of candidate biomarkers in similar

fashion, in order to construct a biomarker panel with even greater

accuracy.

Another worthwhile feature to consider when evaluating and

selecting CSF biomarkers is relative concentration in the blood

(plasma, serum), because biomarker measurements in CSF can be

artifactually influenced by subtle blood contamination at the time

of lumbar puncture; from this perspective, ideal CSF biomarkers

show CSF concentrations that are equal to or greater than those in

blood. An additional reason to assess plasma/serum concentra-

tions of candidate CSF biomarkers is to determine if venipuncture,

which is more easily performed than lumbar puncture, might yield

equivalent information. Among the six CSF biomarkers identified

by stepwise logistic regression analysis in the current study, Ab42

and tau [8–11], YKL-40 [137], and chromogranin A [223] show

higher levels in CSF than in plasma; carnosinase I levels appear

similar in CSF and serum [110]; NrCAM levels appear higher in

serum than in CSF, although the forms of NrCAM present in

these fluids may differ [224]. Concerning independent utility as

biomarkers for AD, only plasma YKL-40 and serum NrCAM

have shown promise [137,225], albeit inferior to that of CSF

YKL-40 and NrCAM demonstrated here. Plasma tau concentra-

tions in AD and controls are below the level of detection of the

most commonly used tau assays, and plasma Ab42 [8–11] and

plasma chromogranin A (R.Perrin et al., unpublished data)

concentrations show no significant differences among CDR

groups. Serum carnosinase activity likewise has not shown

significant differences between AD and controls in one small

study [111], though a difference between AD and mixed dementia

(including vascular dementia) has been reported [111]. To our

knowledge, an evaluation of plasma or serum carnosinase I

concentrations in the context of AD has not yet been performed or

reported. Further assessment of the potential of these and other

proteins as candidate AD biomarkers in plasma or serum,

complete with evaluation of their performance as ensembles,

remains an important task for future studies. Currently, however,

this panel of six biomarkers appears likely to show much greater

promise in its application to CSF.

Indeed, by providing proof of concept, this study outlines a

scheme to categorize the early stages of AD using CSF protein

biomarkers that reflect established features of the pathophysiolog-

ical evolution of the disease (Figure 7). Building upon previous

findings that low CSF Ab42 can identify cognitively normal

individuals with plaques (preclinical AD) [8,11], and that tau/

Ab42 and YKL-40/Ab42 ratios can predict risk of developing

Figure 7. Hypothetical model defines early stages of AD by temporal pattern of CSF protein biomarker levels. The horizontal bar
(below) describes the early clinicopathological progression from cognitive normalcy without AD pathology (‘Non-AD’) to mild dementia in six
stages. As depicted by the curves above, Non-AD CSF has high Ab42 (red line), high chromogranin A (Chr A), carnosinase I (Carno I) and NrCAM
(green line), and low YKL-40 and tau (blue line). Reduced CSF Ab42 correlates with amyloid plaque deposits, the first sign of neuropathologically
identifiable AD (‘preclinical AD’) [8]. CSF Ab42 appears to decrease further as cognition declines from normal (Clinical Dementia Rating [CDR] 0) to
very mild cognitive impairment (MCI, CDR 0.5) to mild dementia (CDR 1). When considered as ratios with Ab42, CSF markers of neuroinflammation
(e.g. YKL-40) and neurofibrillary tangle pathology (e.g. tau) appear to increase before and predict the onset of very mild cognitive impairment (MCI,
CDR 0.5), defining a CDR 0 group ‘At Risk’ for cognitive decline [9,15,137]; YKL-40 and tau also appear to be higher among those who progress
rapidly from very mild to mild dementia, defining a CDR 0.5 group ‘At Risk’ for impending cognitive decline [137,230]. Reductions in synapse-
associated (NrCAM, chromogranin A) and neuronal (carnosinase I) proteins, and increases in YKL-40 and tau mirror the progression and anatomical
spread of synaptic and neuronal losses, gliosis and tau pathology associated with cognitive decline, and can be used to define CDR 0.5 and CDR 1.
doi:10.1371/journal.pone.0016032.g007
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cognitive impairment [9,15,137], this minimal panel of six CSF

biomarkers (YKL-40, NrCAM, chromogranin A, carnosinase I,

tau and Ab42) begins to segregate individuals into six clinico-

pathological categories: normal cognition without amyloid

plaques, normal cognition with amyloid plaques (preclinical AD),

normal cognition at increased risk to develop dementia (convert-

ers), very mild dementia (CDR 0.5), very mild dementia at

increased risk for progression, and mild dementia (CDR 1)

(Figure 7).

We acknowledge that this minimal panel of biomarkers

currently has insufficient sensitivity and specificity for clinical

application, particularly because it has not been fully evaluated for

its ability to discriminate AD from non-AD causes of dementia

(although Ab42, p-tau181, tau, and specific fragments of

chromogranin A and cystatin C have shown some ability to

distinguish AD from frontotemporal lobar degeneration [FTLD])

[22,226,227]. The incorporation of additional biomarkers that are

likely to discriminate early AD from cognitive normalcy, such as

those identified in the first phase of this study, or other biomarkers

that have already shown promise for distinguishing AD from other

leading causes of dementia (e.g. agouti related peptide, eotaxin-3,

and hepatocyte growth factor [19], complement C3a des-arg and

integral membrane protein 2B CT [22], for FTLDs; and alpha-

synuclein [228], apoH and vitamin D binding protein [25] for

Lewy body disorders), would likely improve the panel’s diagnostic

utility. However, even in its current form, this initial panel might

show value if applied in the context of clinical trial design, wherein

simple enrichment of study populations for characteristics of

interest would increase efficiency and power and reduce duration

and cost. A biomarker panel like this one might also allow clinical

trials to evaluate stage-specific responses to treatment, which may

differ. Finally, because most of these biomarkers reflect underlying

pathological changes in real time, it is appealing to speculate that

these biomarkers may have additional utility for evaluating

clinically imperceptible treatment responses (as in [229]) and for

monitoring neuropathological – rather than cognitive – decline.

Supporting Information

Figure S1 ApoE protein isoforms appear in different gel
features on 2D-DIGE. Overlays of fluorescent 2D-DIGE

images from gels representing CSF from two individuals with

homozygosity for APOE-e2 (green) or APOE-e3 (red) (panel A) and

for APOE-e3 (green) or APOE-e4 (red) (panel B) illustrate the

heterogeneity of signal distribution by isoelectric point and

molecular weight among apoE protein isoforms derived from

different alleles. In panels C, D, E, F, G, H, signal intensities of

individual CSF samples, grouped by genotype (2/2, 3/3 and 4/4

represent homozygotes; 2/3, 3/4 represent heterozygotes) are

indicated for six apoE gel features (labeled C, D, E, F, G, H in

panels A and B), illustrating that gel features C and D represent

apoE2; gel feature E represents multiple forms; gel feature F

represents apoE3; and gel features G and H, apoE4.

(TIF)

Table S1 Mass spectrometry and protein identification
data for 2D-DIGE gel features that differ in AD CSF.
Results are ordered sequentially by ‘‘heat map #’’ [column A],

corresponding to the ‘heat map’ row numbers in Figure 2. ‘‘Spot’’

[column B] refers to BVA number (see Methods). ‘‘(Accession)

primary protein name’’ [column C] provides the gi number and

protein name from the NCBI database. ‘‘Protein molecular

weight’’ [column D] is the gene product molecular weight in

Daltons. ‘‘Protein score’’ [column E] is the MASCOT-generated

protein score. ‘‘Protein ID probability’’ [column F] indicates

Scaffold’s percent probability that the protein identification is

correct. ‘‘Spectral count’’ [column G] is the number of spectra

assigned to the protein by Scaffold. ‘‘Unique proteins’’ [column H]

refers to the number of recognized tryptic peptides attributed to

the protein by MASCOT. ‘‘Peptide sequence’’ [column I]

indicates the amino acid sequence of the tryptic peptide predicted

by MASCOT. ‘‘MASCOT ion score’’ [column J] is the

MASCOT quality assessment of the peptide sequence assignment.

‘‘M/Z (observed)’’ [column K] is mass/charge ratio. ‘‘Mass

(observed)’’ [column L] of peptide is indicated in Daltons. ‘‘Mass

(theoretical)’’ [column M] is idealized tryptic peptide mass as

predicted by NCBI. ‘‘Mass error (ppm)’’ [column N] is the error in

parts per million determined through comparison of theoretical

peptide mass to data generated by mass spectrometry. ‘‘MS

source’’ [column O] reflects the mass spectrometer that produced

the observed data (Q-STAR or LTQ-FT). ‘‘Modifications’’

[column P] lists variable post-translational modifications identified

by mass spectrometry peptide sequence analysis.

(XLS)
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