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Abstract

Background: Figures are ubiquitous in biomedical full-text articles, and they represent important biomedical knowledge.
However, the sheer volume of biomedical publications has made it necessary to develop computational approaches for
accessing figures. Therefore, we are developing the Biomedical Figure Search engine (http://figuresearch.askHERMES.org) to
allow bioscientists to access figures efficiently. Since text frequently appears in figures, automatically extracting such text
may assist the task of mining information from figures. Little research, however, has been conducted exploring text
extraction from biomedical figures.

Methodology: We first evaluated an off-the-shelf Optical Character Recognition (OCR) tool on its ability to extract text from
figures appearing in biomedical full-text articles. We then developed a Figure Text Extraction Tool (FigTExT) to improve the
performance of the OCR tool for figure text extraction through the use of three innovative components: image
preprocessing, character recognition, and text correction. We first developed image preprocessing to enhance image quality
and to improve text localization. Then we adapted the off-the-shelf OCR tool on the improved text localization for character
recognition. Finally, we developed and evaluated a novel text correction framework by taking advantage of figure-specific
lexicons.

Results/Conclusions: The evaluation on 382 figures (9,643 figure texts in total) randomly selected from PubMed Central full-
text articles shows that FigTExT performed with 84% precision, 98% recall, and 90% F1-score for text localization and with
62.5% precision, 51.0% recall and 56.2% F1-score for figure text extraction. When limiting figure texts to those judged by
domain experts to be important content, FigTExT performed with 87.3% precision, 68.8% recall, and 77% F1-score. FigTExT
significantly improved the performance of the off-the-shelf OCR tool we used, which on its own performed with 36.6%
precision, 19.3% recall, and 25.3% F1-score for text extraction. In addition, our results show that FigTExT can extract texts
that do not appear in figure captions or other associated text, further suggesting the potential utility of FigTExT for
improving figure search.
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Introduction

Biomedical full-text articles incorporate a significant number of

figures with such figures typically reporting experimental results,

presenting research models, and providing examples of biomedical

objects (e.g., cells, tissue, and organs). Figures represent important

biomedical knowledge, and consequently figure mining has drawn

much attention in the biomedical research community [1–8].

Most approaches to figure mining focus on extracting localization

features from figures (e.g., [9]), figure classification ([1,2]) and text-

figure association [3,10–13]. For example, the Subcellular Location

Image Finder (SLIF) system [9] extracts information from

fluorescence microscopy images and aligns image panels to their

corresponding sub-legend. Shatkay et al. [14] integrated image

features with text to enhance document classification. BioText [4]

and Yale Image Finder [7] index figure legends and return

figure+legend in response to a text query. We have also developed

approaches for figure classification [2,15], as well as natural

language processing approaches for associating figure with text

[3], figure summarization [11,16] and figure ranking [13].

Biomedical figure text, that is, text appearing in biomedical figures

is important for understanding the meaning of figures. However, few

approaches have been developed for extracting text from figures.

Figure 1 shows representative examples of biomedical figure text,

including biomedical named entities (e.g., tissue, species, chemical,

and gene or protein names) and function descriptions (e.g., ‘‘DNA

binding domain’’). Such examples show the potential value that

figure text has for biomedical figure mining but also suggest some of

the challenges of such work, which will be discussed below.

Existing work on text extraction from images has mainly

focused on the open-domain of natural scene images [17,18,19]

and videos [20–23] rather than biomedical figure text extraction.

Previous research has applied off-the-shelf Optical Character

Recognition (OCR) tools to figure retrieval [7] and figure panel

detection [24]. Our own research has found that off-the-shelf

OCR tools generally produce many recognition errors on

biomedical figures; however, there is no published work on

evaluating existing OCR tools for biomedical figures or improving

the performance of such tools for biomedical work. Thus, this

study is the first attempt for both tasks.
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Figures are images. In the open domain, image text extraction is

a relatively mature field and typically incorporates the following

three steps: text localization, character recognition, and text correction.

Open-domain off-the-shelf OCR tools can perform well [17,18]

under two conditions – that images are of high quality and that

text is typically presented with a simple background. Unfortu-

nately, both of these conditions are seldom met by biomedical

figures; rather, we have observed that biomedical figures are

frequently of low image quality and that the background of images

tends to be complex. Furthermore, biomedical figures have

domain-specific characteristics that include unexpected word

boundaries (e.g., hyphens and other punctuation), domain-specific

terms (e.g., gene and protein names), and symbols that do not

appear in open-domain images. Therefore, we speculate that

off-the-shelf OCR tools may not perform well on biomedical

figures.

In this study, we first evaluated the performance of an off-the-

shelf OCR tool. We then developed and evaluated a novel and

domain-specific biomedical Figure Text Extraction Tool (Fig-

TExT) for extracting text from biomedical figures. Thus, our study

is an important step towards biomedical full-text mining.

Methods

As shown in Figure 2, FigTExT has three components: image

preprocessing, character recognition, and text correction. Image preprocessing

enhances not only text region detection by improving image

contrast and determining the gray level of figure texts, but also

image quality by up-sampling. FigTExT adapts an off-the-shelf

OCR tool on the improved text localization for character recognition.

For text correction, FigTExT first corrects misrecognized characters

using a figure-specific lexicon and then refines the corrected result

to filter out some spurious corrections.

Image Preprocessing
A. Text Localization. Text localization detects text regions

in images. In this study, we adapted Gatos et al.’s approach [19] to

separate text regions from non-text regions because this approach

has shown to perform well on high contrast text regions. However,

the approach has to be repeated twice for both the given image

and its inverted image because of the unknown gray-level of the

figure texts. Therefore, for optimal text localization performance,

we preprocessed figure images (i.e., using contrast enhancement

and gray-level decision of figure texts) prior to separating text

regions from the images.

We developed the contrast stretching transformation [25] as

shown in Figure 3(a) to enhance the contrast of figure texts.

However, the transformation can enhance the contrast of both

non-text regions and text regions, and as a result, may lead to false

localizations. For this work, our strategy was to enhance only the

contrast of text regions and ignore non-text regions. Since we

found that the gray-level of black text in our figure data (256 gray-

level images) was usually lower than 10, and that of the white text

was higher than 230, we modified the contrast-stretching

transformation by setting a1 = 10 and a2 = 230 to lower and

raise the gray-level of black text and white text, respectively,

while preserving the contrast of non-text regions, as shown in

Figure 3(b).

To determine the gray-level of figure texts, we computed the

average gray-level (M) of an input image (IO), as in Eq. (1). If M

was higher than a certain threshold (d), we considered the

background image to be bright and the figure text dark, and we

used the input image; otherwise, we inverted the input image

before detecting text regions, as in Eq. (2). Implementing this

approach enabled us to eliminate the redundancy of Gatos et al.’s

approach.

M~
1

W|H
:
XW

x

XH
y

IO(x,y) ð1Þ

I(x,y)~
IO(x,y) if Mwd

255{IO(x,y) otherwise

�
ð2Þ

Once the contrast was enhanced and the gray-level of the figure

texts was determined, we adapted Gatos et al.’s approach to first

obtain the binary image (Figure 4(b)) of the input image

(Figure 4(a)) and then extract foreground objects (Figure 4(c))

according to the gray-level of the figure texts. Rather than

identifying regions of foreground objects as others have done

[17,19], we extracted strong edges of foreground objects and then

identified a set of connected components. This approach is

motivated by the fact that figure text usually has a high contrast

with its background due to the contrast stretching transformation

in Figure 3(b). To detect character regions, we first applied

geometrical constraints (e.g., size and aspect ratio of a character) to

remove non-text regions. We then merged adjacent characters into

the same text region with a morphological technique (Figure 4(d)).

We first evaluated the performance of the text localization prior to

applying it for FigTExT. To this end, we manually extracted 2,856

original text regions from 73 figure images randomly selected from

the open-access articles deposited in PubMed Central. We then

Figure 1. Examples of figure text in figures. Biomedical figures generally include biomedical named entities (e.g., tissue, species, chemical, and
gene or protein names) and functional description (e.g., ‘‘DNA binding domain’’). Biomedical figure text (i.e., text appearing in a biomedical figure) is
important for understanding the meaning of a figure.
doi:10.1371/journal.pone.0015338.g001

FigTExT: Figure Text Extraction Tool
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counted the number of correctly detected text regions (Nc), the

number of incorrectly detected text regions (Nf), and the number of

missed text regions (Nm). Recall is computed as Nc/(Nc+Nm);

precision as Nc/(Nc+Nf) and F1-score as the harmonic mean of

recall and precision. Our evaluation results showed that our figure

text localization attained approximately 84% precision, 98%

recall, and 90% F1-score.

B. Image Up-sampling. As described earlier, off-the-shelf

OCR tools generally perform well with high-quality images. In

order to increase the quality of an image, we applied an up-

sampling method called the bi-cubic interpolation method, which

has shown to outperform other interpolation methods (e.g., nearest

neighborhood and bilinear interpolation) [26].

Character Recognition
After localizing figure text regions, we then applied the off-the-

shelf OCR tool. In this study, we chose a widely used OCR tool,

SimpleOCR API [27], for recognizing characters in the localized

text regions. SimpleOCR used an English dictionary (77,537 words)

for text correction. Prior to applying it for FigTExT, we first

evaluated the performance of SimpleOCR API on high-quality

document images which consist of 31,479 characters (including

letters, numbers, and symbols). Our evaluation results showed that

SimpleOCR API attained 97% in overall accuracy and that most

errors were due to the misinterpretation of lowercase letters (e.g., ‘e’

and ‘m’) and symbols.

Text Correction
Text correction is a well-studied field in the open domain.

Dictionary-based approaches [28,29,30] correct typographic

mistakes such as insertions, deletions, substitutions and transpo-

sitions of letters by replacing an error word token with its correct

formation, typically a word in a lexicon. Similarity and frequency

information have been used to rank candidate words using

several approaches, including edit distance [31,32], n-grams

[33,34], probabilistic model [35], and neural nets [36]. One

challenge of dictionary-based methods is the computational time

needed to examine candidate words in a large lexicon. To solve

this problem, Lucas et al. [37] suggested reusing computation in a

trie-formatted lexicon, and Schambach [38] eliminated words

from consideration based on the low probability of their

constituent characters.

In addition to dictionary-based approaches, context-based

approaches have also been developed for text correction.

Context-based approaches detect and correct words errors with

contextual-similarity-based methods [39,40], web knowledge-

based methods [41,42], probabilistic models [43,44,45], and latent

semantic analysis [46]. One advantage of using context-based

Figure 2. FigTExT (Figure Text Extraction Tool). FigTExT has three components: image preprocessing, character recognition, and text
correction. Image preprocessing enhances not only text region detection by improving image contrast and determining the gray-level of figure text,
but also image quality by up-sampling. FigTExT incorporates an off-the-shelf OCR tool for character recognition. For text correction, FigTExT first
corrects misrecognized characters with a figure-specific lexicon and then refines the corrected result to filter out some spurious corrections.
doi:10.1371/journal.pone.0015338.g002

Figure 3. Contrast enhancement using modified contrast stretching transformation. (A) Conventional contrast stretching transformation
may be able to enhance the contrast of non-text regions as well as text regions; therefore, false localization can be anticipated. (B) We focused on
only enhancing the contrast of text regions, not non-text regions. Our figure data presented that the gray-level of black text is usually lower than 10,
and that of white text is higher than 230 in the 256 gray-level image. Therefore, we modified the contrast-stretching transformation by setting a1 = 10
and a2 = 230 to lower and raise the gray-level of black text and white text, respectively, while preserving the contrast of non-text regions.
doi:10.1371/journal.pone.0015338.g003

FigTExT: Figure Text Extraction Tool
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approaches is that the computation time is lower (although the

training is costly). However, such context-based approaches

depend on proper contexts, which are not always available [47].

Nearly all off-the-shelf OCR tools have a built-in spelling

correction component using an open-domain dictionary for text

correction. However, such an open-domain dictionary does not

include domain-specific terms that are likely to be encountered in

biomedical figure text, such as gene or protein names and cell or

tissue types. We therefore developed an approach to post-correct

characters wrongly recognized by the OCR tool with a figure-

specific lexicon, to be described below.

A. Lexicon Construction. We developed different figure-

specific lexicons and evaluated them for figure text recognition.

Since figures are a part of full-text articles and the content of

figures – including their important biomedical findings and

methodologies – are usually described in the associated text (e.g.,

title, abstract, caption, or the full-text of the article in which a

figure appears) [3], it is therefore reasonable to assume that figure

text also appears in its surrounding context.

To test this hypothesis, we manually examined our figure

collection (a collection of 382 figures, see ‘‘Data and Gold

Standard’’ in the Methods section) and found that 26.8% of figure

text appears in figure captions, 26.8% in figure-associated text,

34.4% in figure caption + associated text, and 42.2% in the full-

text of the articles they accompany. We found that it is nearly

impossible to build a lexicon that can recover 100% of figure text

(for details, see Error Analysis). Accordingly, we built four figure-

specific lexicons (caption, associated text, caption+associated text,

full-text) and evaluated their performance for post-OCR text

correction.

B. Text Correction. Biomedical figure text rarely takes the

form of complete sentences; rather, such text generally consists of

abbreviations, individual words, word fragments or phrases, as

well as these in combination. Therefore, we speculated that

context-based post-text correction methods [31,32] would not

work well for post-OCR text correlation and explored lexicon-

based approaches.

Lexicon-based approaches require the identification of a specific

lexicon (or word) as a text correction candidate. Such approaches

match each recognized word (w) with each word (ci) in the lexicons

and calculate the similarity between the two words. We explored

three state-of-the-art word-similarity metrics for this work: edit

distance (ED) [48], longest common sequence (LCS) [49], and

multiple sequence alignment (MSA) [50].

ED measures the minimum number of edit operations (i.e.,

insertion, deletion, or substitution of a single character) required to

transform one word into another word: the lower an ED, the

higher the similarity between two words. Figure 5 shows an

example in which we applied ED to compute the number of edit

operations between the recognized word, w = ‘‘antlsnze’’, and its

candidates, ci = ‘‘antisense’’ and cj = ‘‘antiserum.’’ Three edit

operations (i.e., two substitutions and one insertion) are required

Figure 4. Figure text localization. (A) Input image. (B) Binary image. (C) Foreground objects. (D) Figure text regions.
doi:10.1371/journal.pone.0015338.g004

FigTExT: Figure Text Extraction Tool
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to transform ‘‘antlsnze’’ to ‘‘antisense,’’ while five edit operations

(i.e., four substitutions and one insertion) are required to transform

‘‘antlsnze’’ to ‘‘antiserum.’’ Therefore, according to ED, ‘‘anti-

sense’’ has a higher similarity than ‘‘antiserum’’ to the recognized

form ‘‘antlsnze’’ and is thus more likely to be the original form.

LCS identifies the longest subsequence common to a set of

words. A subsequence is a sequence that appears in the same

relative order in all instances but not necessarily contiguously. For

example, the LCS of the two words (w and ci) in Figure 5 is

‘‘antsne,’’ and the similarity of the two words is measured by the

number of the letters in their LCS, which is 6, while the LCS of

the two words (w and cj) is ‘‘ants’’, and its similarity is 4. Therefore,

LCS suggests that ‘‘antisense’’ is more likely than ‘‘antiserum’’ to

have been the word incorrectly recognized as ‘‘antlsnze.’’

Similar to LCS, MSA also identifies regions of similarity

between a word and a set of words. In contrast to LCS, however, it

provides a gap penalty as well as match and mismatch scores to

contribute to the overall score of alignments with a higher MSA

score indicating a greater degree of similarity between the words.

In this study, we assigned a positive match score (2), a negative

mismatch score (21), and a negative gap penalty (22). Figure 6

shows an example in which MSA was used to compute the

similarity of w with respect to ci and cj in Figure 5. As shown in

Figure 6, there were 6 matching characters, 2 mismatched

characters, and 1 gap between w and ci; thus, MSA provides a

value of 8. On the other hand, there were 4 matching characters, 4

mismatched characters, and 1 gap between w and cj; thus, MSA

provides a value of only 2. Therefore, similar to ED and LCS,

MSA selects ‘‘antisense’’ as the original form misrecognized by

OCR as ‘‘antlsnze.’’

Although in this illustration, the three similarity metrics produce

similar results for text correction, the three algorithms differ in

many other cases. In this study, we evaluate all three algorithms

for biomedical figure text correction.

C. Refinement of Text Correction. As described earlier,

only 42.2% of figure texts appear in their associated full-text

articles. Therefore, with our lexicon-based approach, 57.8% of

figure texts that do not appear in the full-text article may be falsely

’corrected’, even though some of them are correctly recognized by

the off-the-shelf OCR tool. To overcome this problem, we

developed an additional process to refine the result of text

correction.

We assumed that if the recognized word (w) is misspelled, but its

original word (wc) exists in the lexicon, there is a certain degree of

overlap between two words. As a measure of this, we first parsed

words into letter n-grams. During the parsing process, we included

the ‘‘beginning’’ and ‘‘end’’ spaces surrounding the word [43]. We

then estimated the number of matched n-grams between words

(vTF). Finally, the overlap (Toverlap) between two words can be

computed as

Toverlap~
vTF

Nn{gram
, ð3Þ

where Nn-gram is the total number of letter n-grams of a recognized

word. If Toverlap is higher than a certain threshold (c), the corrected

word (wc) is acceptable, as in Eq. (4). Otherwise, the recognized

word (w) is acceptable since it is considered as a wrong text

correction.

wo~wc if Toverlapwc

wo~w otherwise

�
ð4Þ

where wo is the final result of FigTExT.

Data and Gold Standard
The gold standard we used for developing and testing comprises

382 figures appearing in 70 full-text articles randomly selected

from PubMed Central. We then manually transcribed 9,643 figure

texts from the figure collection; this was done by both the first

author of this paper and one University of Wisconsin college

student. The two transcribers showed an agreement of 96% and a

Cohen’s kappa value of 0.95 with 95% confidence. After

redundant figure texts were removed, there were 3,853 unique

figure texts used for evaluation. We used 30% of our figure

collection for developing and the remaining 70% for testing.

Important Figure Texts
Not all figure texts are semantically rich. Some figure characters

(e.g., panel labels) may be important for certain data-mining tasks

(e.g., panel detection [24]), but those texts may not represent the

semantics of the figures. On the other hand, certain figure texts

(e.g., gene and protein names) may play an important role for

representing the semantics of figures, and we evaluated FigTExT

for identifying those semantically important figure texts.

Figure 5. Example of edit distance (i.e., Levenshtein distance).
Three edit operations (i.e., two substitutions and one insertion) are
required to transform ‘‘antlsnze’’ to ‘‘antisense’’, while five edit
operations (i.e., four substitutions and one insertion) are required to
transform ‘‘antlsnze’’ to ‘‘antiserum’’. Therefore, according to ED,
‘‘antisense’’ has a higher similarity than ‘‘antiserum’’ to the recognized
form ‘‘antlsnze’’.
doi:10.1371/journal.pone.0015338.g005

Figure 6. Example of multiple sequence alignment. The LCS of
the two words (w and ci) is ‘‘antsne’’, and its similarity is 6, i.e., the
length of its LCS (‘‘antsne’’), while the LCS of the two words (w and cj) is
‘‘ants’’, and its similarity is 4. Therefore, LCS suggests that ‘‘antisense’’
rather than ‘‘antiserum’’ is the correct form of ‘‘antlsnze.’’
doi:10.1371/journal.pone.0015338.g006

FigTExT: Figure Text Extraction Tool
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First, we evaluated whether semantically important figure texts

could be reliably annotated by domain experts. To this end, we

randomly selected 60 figures in our figure collection and asked

three domain experts (PhDs in the bioscience domain) to

independently identify important figure texts. We calculated

inter-rater agreement. We also evaluated FigTExT using the

extracted important figure texts as a gold standard.

Figure Texts that Do Not Appear in Lexicons
As stated earlier, 57.8% figure texts do not appear in the full-

text. A system that can uncover those ‘‘lost’’ texts has the potential

to improve figure search. We therefore evaluated the performance

of FigTExT on those figure texts that do not appear in lexicons.

Evaluation Methods
Figure text incorporates both word characters and other

symbols. To simplify the evaluation, we ignored numbers and

special symbols (e.g., +, 2, @, #, %, etc.) and evaluated word

characters only. Our evaluation was strict: a recognized text was

considered as correct if every character and its character sequence

completely matched the gold standard text. We then counted the

number of recognized words (NR), the number of correctly

recognized words (NC) of the recognized words, the number of

transcribed figure texts in figures (NF), and the number of correctly

retrieved words (NT) of transcribed figure texts. We adopted

precision, recall, and F1-score as the evaluation metric. Precision is

computed as NC/NR; recall as NT/NF; and F1-score as the

harmonic mean of recall and precision.

Results

Image Preprocessing
As shown in Table 1, using the OCR tool alone attained only

36.6% precision, 19.3% recall, and 25.3% F1-score for figure text

extraction. When text localization was applied prior to the

application of the OCR tool, the performance was only slightly

improved; this may be due to the fact that figure texts in the

localized text regions were still of too poor a quality to be correctly

recognized by the OCR tool. In contrast, when image up-

sampling was applied prior to the application of the OCR tool, the

performance improved, attaining 37.3% precision, 31.1% recall,

and 33.9% F1-score, which was, respectively, 0.7%, 11.8%, and

8.6% (absolute value) higher than the performance of the OCR

tool alone. Interestingly, when we integrated both text localization

and image up-sampling – we applied text localization first and

then added image up-sampling – both recall and F1-score values

further increased by 24.8% and 10.8%, respectively (absolute

value), attaining the final scores of 37.2% precision, 55.9% recall,

and 44.7% F1-score, which is, respectively, 0.6%, 36.6%, and

19.4% (absolute value) higher than the results of applying the

OCR tool alone.

Text Correction
We evaluated text correction on three similarity metrics: ED,

LCS and MSA, as well as on four figure-specific lexicons: figure

caption, associated text, caption+associated text, and full-text. The

average numbers of word tokens were 99, 410, 509, and 6,156,

respectively, corresponding to the four lexicons. We found that

text correction methods performed poorly without image prepro-

cessing. As a result, our text correction methods were built upon

the improved OCR tool, which integrates both the processes of

text localization and image up-sampling described in the previous

paragraph (Image Preprocessing).

As shown in Table 2, of all four figure-specific lexicons, ED

outperformed both LCS and MSA, and MSA outperformed

LCS. With figure captions, for example, the performances of ED,

LCS, and MSA were 48.2%, 27.4%, and 38.1% F1-score,

respectively.

Of the four types of lexicons, caption+associated text outper-

formed all three other lexicons in all three similarity metrics (ED,

LCS and MSA), attaining the best F1-score of 56.2% in the ED

method, followed by F1-scores of 30.8% and 42.9% F1-scores

using the LCS and MSA methods, respectively. In contrast, the

results of using figure caption, associated text, and full-text article

as lexicons are mixed. For example, using full-text articles as the

lexicon, the ED method led the performance of 51.6% F1-score,

outperforming figure caption and associated text. On the other

hand, using full-text as the lexicon did not lead to good

performance for LCS and MSA, results in F1-scores of 18.7%

and 32.1%, respectively. Figure caption outperformed both

associated text and full-text when LCS and MSA were applied,

attaining an F1-score of 27.4% and 38.1%, respectively.

As described earlier, we developed methods in text correction

refinement to prevent inaccurate out-of-lexicon text correction. As

shown in Table 3, the refinement approaches increased the

performance of LCS and MSA. On the other hand, the

performance of ED decreased, although it still outperformed

LCS and MSA. Similar to the results shown in Table 2,

caption+associated text remained as the best performing lexicon.

Performance in Terms of Character and Term Accuracies
We evaluated whether the performance of FigTExT related to

word length. Figure 7(a) plots character accuracy as a function of

word length. The plot is based on the best system (ED+captio-

n+associated text) in Table 3 because it has the highest recall. As

shown in Figure 7(a), the overall character accuracy of the baseline

system (i.e., No correction in Figure 7(a)) was 79.2% and its

variance 0.9%. The results show that FigTeXT’s performance

does not depend on word length. ED attained 81.7% overall

character accuracy, which is 2.5% higher than the baseline system.

In contrast to ED, LCS and MSA attained 75.5% and 78.8%

overall character accuracies, which is 3.7% and 0.4% lower,

respectively, than the baseline system.

Figure 7(b) shows the word accuracy (in contrast to character

accuracy) of FigTExT. As expected, word accuracy decreases

when the number of characters in a figure text is increased. ED

still outperformed both LCS and MSA, and MSA outperformed

LCS in all word length.

FigTExT on Important Figure Texts
Table 4 shows the results of inter-rater agreement on identifying

important figure texts. The pairwise agreement of the three

annotators A, B, and C showed a kappa value of 0.911, 0.936 and

0.563 for A and B, B and C, and A and C, respectively. The lower

agreement between A and C was due to C selecting much more

important figure texts.

With the best FigTExT system (ED+caption+associated text) as

shown in Table 2, we evaluated the system on important figure

texts. As shown in Table 5, the joint A and B data led to the

highest number of figure texts comparing to other pairs. However,

its precision, recall, and F1-score presented the lowest values. In

contrast, the joint A and C text sets resulted in the lowest number

of figure texts and resulted in the best performance: an F1-score of

77%. The three domain experts annotated a combined set of 757

important figure texts, for which FigTExT performed with 73.0%

precision, 62.0% recall and 67.1% F1-score. We found that 69.2%

of the 757 important figure texts appeared in the lexicon

FigTExT: Figure Text Extraction Tool
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(caption+associated text), the percentage of which is significantly

higher than the 34.8% of all figure texts that appear in the lexicon.

For the remaining 30.8% of important figure texts not appeared

in the lexicon, FigTExT did not extract any original texts since they

were corrected with word tokens in the lexicon. However, after we

applied the text correction refinement, FigTExT recovered 38.1%

figure texts that do not appear in the lexicons, although the overall

FigTExT’s precision was reduced from 40.1% to 24.3%.

Error Analysis
Our results show that only 42.2% of figure texts appear in the

corresponding full-text articles, the result of which explained the

low recall of FigTExT. We manually analyzed why figure texts do

not appear in the full-text.

1) Abbreviations. Biomedical researchers tend to maximize

the usage of image space and using abbreviations is one

strategy. We found that abbreviations frequently appear in

figures. For example, as shown in Figure 8(a), ‘‘transcr.’’ is the

abbreviation of ‘‘transcription’’ and ‘‘ab’’ is that of ‘‘antibod-

ies’’. However, many abbreviations that appear in figures do

not appear in the full-text article, and this constitutes a

challenge.

2) Linked Terms. Biomedical researchers are creative in their

use of limited image space. We found that two or more

different terms were connected by symbols such as ‘–’, ‘+’,

and ‘/’. For example, as shown in Figure 8(a), ‘‘TBP-TFB-

RNAP’’ is shown in the full-text as ‘‘the association of RNAP

to the TBP–TFB complex’’ and ‘‘TBP-TFB-LrpA’’ stands for

‘‘the binding sites of LrpA and TBP/TFB’’.

3) Gene Sequence. We found that figures frequently incor-

porate gene sequences, many of which do not appear in the

full-text article. For instance, as shown in Figure 8(b), of the

three sequences, ‘‘GGCA’’ is the only one that appears in the

full-text.

We analyzed sources of errors when figure texts appeared in the

full-text. Using the best system (ED+caption+associated text in

Table 2) as FigTExT, our results show that 62.4% of figure texts

were correctly identified. None of the figure texts not appearing in

the lexicon were extracted since they were corrected with word

tokens in the lexicon. Our manual analyses of the remaining

37.6% of wrongly identified figure texts revealed the following five

additional causes of errors: complexity, thick stroke, contrast, font

size, and font type.

4) High Image Complexity.Biomedical figures are com-

plex. Text and image content are frequently intertwined (an

example is shown in Figure 9(a)), and as a consequence, text

localization frequently detects non-text regions by mistake

and decreased both the recall and precision.

5) Thick Stroke. Thick strokes not only close the loops in

letters such as ‘‘a’’ and ‘‘e’’, completely or partially, but they

also often touch neighboring characters, as shown in

Figure 9(b). This sometimes makes it difficult even for

human to correctly identify such figure texts. As a result,

character recognition and text correction can produce errors

even when text localization correctly detects text regions.

6) Low Image Contrast. Image contrast is as important as

image quality for text recognition. Color text shown in

Figure 9(c) usually presents visually high contrast with

background. However, its gray-level difference is much

lower than that of black text. This low contrast prevents

FigTExT from localizing text regions and consequently from

recognizing text correctly.

7) Small Font Size. In general, figures have limited space for

incorporating figure text. Hence, authors often use a small

font size when inserting text. Small font size, however, often

lowers both image quality and contrast, as in Figure 9(d),

serving as another error source despite enlarging it using

bicubic interpolation.

8) Non-Standard Font Type. Typically, the off-the-shelf

OCR tool that we used in this study can recognize such

standard font types as Arial, Century, and Times New

Roman. However, we found that authors often use non-

standard font type (e.g., outlined) to emphasize their results

(e.g. Figure 9(e)). Although text localization can detect these

non-standard font-type character regions, the OCR tool

cannot always deal with them properly.

Table 1. Results of text localization and up-sampling prior to the application of the OCR tool.

Precision (%) Recall (%) F1-score (%)

Off-the-shelf OCR tool 36.6 19.3 25.3

Applying text localization prior to OCR tool 36.6 19.5 25.4

Applying image up-sampling prior to OCR tool 37.3 31.1 33.9

Applying text localization and image up-sampling prior to the OCR tool (baseline system) 37.2 55.9 44.7

doi:10.1371/journal.pone.0015338.t001

Table 2. Performance of FigTExT for four figure-specific lexicons.

Figure caption Associated text Caption+Associated text Full-text article

F1-score (%) (Recall, Precision) F1-score (%) (Recall, Precision) F1-score (%) (Recall, Precision) F1-score (%) (Recall, Precision)

ED 48.2 (40.6, 59.4) 47.0 (41.8, 53.7) 56.2 (51.0, 62.5) 51.6 (56.1, 47.8)

LCS 27.4 (28.5, 26.4) 24.3 (26.4, 22.4) 30.8 (34.2, 28.0) 18.7 (24.4, 15.1)

MSA 38.1 (37.2, 38.6) 36.1 (37.7, 34.6) 42.9 (46.7, 39.6) 32.1 (41.3, 26.3)

doi:10.1371/journal.pone.0015338.t002
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Discussion

Although the off-the-shelf OCR tool attained 97% accuracy in

character recognition for high-quality document images, our

results (as shown in Table 1) show that it performed poorly (25.3%

F1-score) on biomedical figures. Therefore, it is important to

develop a recognition tool specifically for biomedical figure text.

Our FigTExT was built by implementing components for image

preprocessing, character recognition, and text correction. Below,

we will discuss each component.

Image Preprocessing
We explored figure text localization and image up-sampling

techniques for image preprocessing. Our results show that figure

text localization did not affect the performance of the OCR tool in

spite of its high performance (90% F1-score). Meanwhile, image

up-sampling improved the performance of the OCR tool to attain

a 33.7% F1-score. Accordingly, image up-sampling is more

effective than figure text localization for biomedical figures. We

speculate that poor image quality was accountable for the

performance difference between the two approaches. Our

integrated approach takes advantage of figure text localization

for removing nontext regions and image up-sampling for

improving the quality of localized figure texts. As a result, the

performance of the integrated approach significantly improved,

attaining a 44.7% F1-score, as shown in Table 1.

Text Correction Methods
We explored three different similarity metrics – edit distance (ED),

longest common subsequence (LCS), and multiple sequence

alignment (MSA) – and the results show that ED performed the

best (as shown in Tables 2 and 3). In contrast to ED, both MSA and

LCS are approximation matching algorithms that did not work well

in figure text correction. For example, the off-the-shelf OCR tool

misrecognized a protein ‘‘Rad52p’’ as ‘‘Radsap’’. ED corrected it as

‘‘Rad52p’’, while LCS corrected it as ‘‘paraformaldehyde/saponin’’

because all characters in ‘‘Radsap’’ appeared in ‘‘paraformalde-

hyde/saponin’’. Since MSA added a penalty (negative) to the overall

score in mismatch and therefore it performed better than LCS.

We also explored text correction refinement based on letter n-

gram term frequency, and our results show that the approach did

not work well in biomedical figures. On the other hand, although

the overall F1-scores did not improve, the best recall increased

from 51% to 60.6%, indicating that the refinement approaches

may still be useful if a user prefers a high recall.

Table 3. Performance of FigTExT for four figure-specific lexicons with refinement.

Figure caption Associated text Caption+Associated text Full-text article

F1-score (%) (Recall, Precision) F1-score (%) (Recall, Precision) F1-score (%) (Recall, Precision) F1-score (%) (Recall, Precision)

ED 47.2 (58.2, 39.8) 47.7 (58.5, 40.3) 49.1 (60.6, 41.3) 49.4 (61.4, 41.3)

LCS 45.8 (56.2, 38.6) 45.2 (55.2, 38.3) 46.4 (56.9, 39.1) 44.1 (54.1, 37.2)

MSA 46.6 (57.5, 39.2) 46.7 (57.6, 39.3) 47.9 (59.3, 40.2) 46.8 (58.1, 39.1)

doi:10.1371/journal.pone.0015338.t003

Figure 7. Performance of FigTExT in terms of character and
term accuracies. (A) Overall character accuracy of the baseline system
(i.e., No correction) is 79.2% and its variance 0.9%. Our character
recognition performed equally well regardless of word length. ED
attained 81.7% overall character accuracy, which is 2.5% higher than the
baseline system. In contrast to ED, LCS and MSA attained 75.5% and
78.8% overall character accuracies, which is 3.7% and 0.4% lower,
respectively, than the baseline system. (B) Term accuracy decreases
when the number of characters in a figure text is increased. ED still
outperformed both LCS and MSA, and MSA outperformed LCS in all
word lengths.
doi:10.1371/journal.pone.0015338.g007

Table 4. Inter-rater agreement and its kappa value on
important figure text (95% confidence).

Pair of annotators Agreement Cohen’s kappa value

A 2 B 96.5% 0.911

B 2 C 98.0% 0.936

A 2 C 80.8% 0.563

doi:10.1371/journal.pone.0015338.t004
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Figure-Specific Lexicons
One significant challenge for biomedical figure text extraction is

that figure texts are domain-specific and include specialized terms

(e.g., gene or protein names), unexpected word boundaries (e.g.,

hyphens and other punctuation), abbreviations, etc. For instance,

an ordinary dictionary includes ‘‘DNA’’ and ‘‘RNA’’, but it does

not include ‘‘rDNA’’ and ‘‘rRNA’’ since they are specific types of

‘‘DNA’’ and ‘‘RNA’’. As a result, off-the-shelf OCR tools do not

perform well on biomedical text, and we therefore constructed

domain-specific lexicons.

We show that domain-specific lexicons improve the perfor-

mance of FigTExT. We evaluated four domain-specific lexicons:

figure caption, figure associated text, figure caption+associated

text, and full-text. Our results show that without domain-specific

lexicons, FigTExT attained a 44.7% F1-score. Adding captions

and associated text improved F1-scores to 48.2% and 47%,

respectively. The addition of caption+associated text further

improved the F1-score to 56.2%. Interestingly, when the full-text

article was used as the lexicon, the performance decreased.

A full-text article typically has over 6,000 word tokens and

therefore may introduce ‘‘noise.’’ For example, we found that our

Table 5. Performance of FigTExT on the important figure
texts identified by annotators.

A>B B>C A>C A<B<C All figure texts

No. of figure texts 78 65 47 757 3,853

Precision (%) 37.2 74.3 87.3 73.0 62.5

Recall (%) 44.7 52.6 68.8 62.0 51.0

F1-score (%) 40.6 61.6 77.0 67.1 56.2

doi:10.1371/journal.pone.0015338.t005

Figure 8. Reasons that figure text do not appear in the lexicons. (A) Abbreviations and linked terms. (B) Gene sequences.
doi:10.1371/journal.pone.0015338.g008
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character recognition system misrecognized the figure text

‘‘serum’’ as ‘‘seeqmz.’’ Our text correction system matched

‘‘seeqmz’’ with the lexicon. When the full-text was used as the

lexicon, the word ‘‘seems’’ was selected because it had a lower ED

(one deletion and one substitution) than ‘‘serum’’ which requires

two substitutions and one deletion. In contrast, the error did not

occur when the lexicon was caption+associated text. These results

show that bigger does not necessarily mean better.

Our domain-specific lexicons have limitations. As shown in

the error analysis, only 42.2% of our figure texts appeared in

the corresponding full-text articles, which significantly reduced

the recall of the overall FigTExT system. In contrast, 69.2%

of important figure texts appeared in the lexicon – a significant

increase of 34.8% (absolute value) – and it is not surprising

that FigTExT attained 73% precision, 62% recall, and 67.1%

F1-score, which is 10.5%, 11%, and 10.9% (absolute value),

respectively, for detecting important figure texts. The perform-

ance was significantly better than the performance of FigTExT

on all figure texts (Table 2). This result suggests a positive

correlation between the coverage of a lexicon and FigTExT’s

performance.

Conclusion and Future Work
In this study, we reported the development of FigTExT

(Figure Text Extraction Tool), a domain-specific image-natural

language processing system that automatically extracts text from

biomedical figures. As a part of the development of FigTExT,

we explored figure text localization and image up-sampling,

which improved the performance of an off-the-shelf OCR tool.

In addition, we developed approaches for text correction in which

we explored different domain specific lexicons and similarity

metrics. In addition, we explored domain-specific text-correction

refinement.

Our study is an important step towards biomedical full-text

mining. Since we found that FigTExT’s performance is mostly

positively correlated with the coverage of figure texts in domain-

specific lexicons, in future work we will explore approaches to

increase the coverage of lexicons. We may do so by adding words

that appear in related articles to the lexicon.

However, our results also show that lexicon coverage was not

always positively correlated with FigTExT’s performance. The

best FigTExT system incorporated caption+associated text as

the lexicon, outperforming the system that incorporated the larger

full-text as the lexicon. Lexicon quality is also important.

Therefore, we will explore natural language processing approaches

to improve the quality of lexicons. For example, as a part of

these approaches, we will find ways to limit lexicons to domain-

specific named entities including gene, protein, small molecules,

tissue names, etc. We will also explore approaches by which

abbreviations can be mapped to full-forms and then added to

lexicons.

Another research direction we intend to pursue is that of image

quality assessment. Since biomedical figures tend to be of low

quality, an alternative is to extract from high quality images and

figure texts only. We will also explore techniques implementing

super-resolution [51,52] to improve image quality.

Figure 9. Additional reasons for OCR errors. (A) High image complexity. (B) Thick stroke. (C) Low image contrast. (D) Small font size. (E) Non-
standard font type.
doi:10.1371/journal.pone.0015338.g009

FigTExT: Figure Text Extraction Tool

PLoS ONE | www.plosone.org 10 January 2011 | Volume 6 | Issue 1 | e15338



Acknowledgments

We thank Feifan Liu for comments, Shashank Agarwal and Zuofeng Li for

annotating important figure texts, and Alexander Kruse for generating a

part of the figure text gold standard.

Author Contributions

Conceived and designed the experiments: DK HY. Performed the

experiments: DK. Analyzed the data: DK HY. Contributed reagents/

materials/analysis tools: DK. Wrote the paper: DK HY.

References

1. Shatkay H, Chen N, Blostein D (2006) Integrating image data into biomedical
text categorization. Bioinformatics 22(14): 446–453.

2. Rafkind B, Lee M, Chang SF, Yu H (2006) Exploring text and image features to
classify images in bioscience literature. Proc. of the BioNLP workshop on

Linking Natural Language Processing and Biology. pp 73–80.

3. Yu H, Lee M (2006) Accessing bioscience images from abstract sentences.

Bioinformatics 22(14): 547–556.

4. Hearst MA, Divoli A, Guturu H, Ksikes A, Nakov P, et al. (2007) BioText

Search Engine: beyond abstract search. Bioinformatics 23(16): 2196–2197.

5. Kahn CE, Thao C (2007) GoldMiner: a radiology image search engine.

American Journal of Roentgenology 188: 1475–1478.

6. Qian Y, Murphy RF (2008) Improved recognition of figures containing

fluorescence microscope images in online journal articles using graphical
models. Bioinformatics 23(4): 569–576.

7. Xu S, McCusker J, Krauthammer M (2008) Yale Image Finder (YIF): a new

search engine for retrieving biomedical images. Bioinformatics 24(17):

1968–1970.

8. Ahmed A, Xing EP, Cohen WW, Murphy RF (2009) Structured correspondence

topic models for mining captioned figures in biological literature. International
Conference on Knowledge Discovery and Data Mining. pp 39–47.

9. Murphy RF, Velliste M, Yao J, Porreca G (2001) Searching online journals for

fluorescence microscope images depicting protein subcellular location patterns.

IEEE International Symposium on Bio-Informatics and Biomedical Engineering
(BIBE). pp 119–128.

10. Yu H, Lee M (2006) BioEx: a novel user-interface that accesses images from
abstract sentences. New York, USA: HLT-NAACL.

11. Agarwal S, Yu H (2009) FigSum: automatically generating structured text

summaries for figures in biomedical literature. AMIA Annual Symposium.

12. Yu H, Agarwal S, Johnston M, Cohen A (2009) Are figure legends sufficient?

Evaluating the contribution of associated text to biomedical figure comprehen-
sion. Journal of Biomedical Discovery and Collaboration 4.

13. Yu H, Liu F, Ramesh BP (2010) Automatic figure ranking and user interfacing
for intelligent biomedical figure search. PLoS ONE (in press).

14. Shatkay H, Pan F, Rzhetsky A, Wilbur WJ (2008) Multi-dimensional
classification of biomedical text: toward automated, practical provision of

high-utility text to diverse users. Bioinformatics 24: 2086–2093.

15. Kim D, Yu H (2009) Hierarchical image classification in the bioscience

literature. AMIA Annual Symposium.

16. Agarwal S, Yu H (2009) Automatically classifying sentences in full-text

biomedical articles into introduction, methods, results and discussion. Bioinfor-
matics 25(23): 3174–3180.

17. Liu Z, Sarkar S (2008) Robust outdoor text detection using text intensity and
shape features. International Conference on Pattern Recognition.

18. Chen D, Odobez J, Thiran J (2004) A localization/verification scheme for

finding text in images and videos based on contrast independent features and

machine learning methods. Image Communication 19(3): 205–217.

19. Gatos B, Pratikakis I, Perantonis SJ (2005) Text detection in indoor/outdoor

scene images. International Workshop on Camera-based Document Analysis
and Recognition. pp 127–132.

20. Chen D, Odobez J, Bourlard H (2004) Text detection and recognition in images

video frames. Pattern Recognition 37: 595–608.

21. Anthimopoulos M, Gatos B, Pratikakis I (2008) A hybrid system for text

detection in video frames. IAPR Workshop on Document Analysis System. pp

286–292.

22. Kim DH, Sohn K (2008) Static text region detection in video sequences using
color and orientation consistencies. International Conference on Pattern

Recognition.

23. Shivakumara P, Huang W, Tan CL (2008) Efficient video text detection using

edge features. International Conference on Pattern Recognition.

24. Kou Z, Cohen WW, Murphy RF (2003) Extracting information from text and

images for location proteomics. ACM SIGKDD Workshop on Data Mining in
Bioinformatics.

25. Gonzalez R, Woods R (2002) Digital image processing. Upper Saddle River, NJ:
Prentice Hall, 2nd edition. pp 75–146.

26. Hsieh H, Andrew H (1978) Cubic splines for image interpolation and digital

filtering. IEEE Trans. on Acoustics Speech Signal Process 26(6): 508–517.
27. http://www.ScanStore.com/Software/.

28. Chen X, Yang J, Zhang J, Waibel A (2004) Automatic detection and recognition
of signs from natural scenes. IEEE Transactions on Image Processing 13: 87–99.

29. Chen X, Yuille AL (2004) Detecting and reading text in natural scenes.

International Conference on Computer Vision and Pattern Recognition
(CVPR). pp 366–373.

30. Weinman JJ, Learned-Miller E, Hanson A (2007) Fast lexicon-based scene text
recognition with sparse belief propagation. International Conference on

Document Analysis and Recognition.
31. Damerau FJ (1964) A technique for computer detection and correction of

spelling errors. Commun ACM 7(3): 171–176.

32. Wagner RA, Michael JF (1974) The string-to-string correction problem. J ACM
21(1): 168–173.

33. Riseman EM, Hanson AR (1974) A contextual postprocessing system for error
correction using binary n-grams. IEEE Trans Comput. 23(5): 480–493.

34. Zamora EM (1981) The use of trigram analysis for spelling error detection.

Information Processing and Management 17(6): 305–16.
35. Kashyap RL, Oommen J (1984) Spelling correction using probabilistic methods.

Pattern Recognition Letters 2: 147–154.
36. Hodge V, Jim A (2001) A novel binary spell checker. In Artificial Neural

Networks. ICANN. pp 1199–1204.
37. Lucas SM, Patoulas G, Downton AC (2003) Fast lexicon-based word recognition

in noisy index card images. International Conference on Document Analysis and

Recognition.
38. Schambach MP (2005) Fast script word recognition with very large vocabulary.

International Conference on Document Analysis and Recognition.
39. Ruch P (2002) Using contextual spelling correction to improve retrieval

effectiveness in degraded text collections. In Proceedings of the 19th

international conference on Computational linguistics 1: 1–7.
40. Li M, Yang Z, Muhua Z, Ming Z (2006) Exploring distributional similarity

based models for query spelling correction. In Proceedings of the 21st
International Conference on Computational Linguistics and the 44th annual

meeting of the Association for Computational Linguistics. pp 1025–1032.

41. Ringlstetter C, K US, Stoyan M (2007) Adaptive text correction with Web-
crawled domain-dependent dictionaries. ACM Trans. Speech Lang Process 4(4):

9.
42. Donoser M, Bischof H, Wagner S (2009) Using web search engines to improve

text recognition. International Conference on Pattern Recognition.
43. Tong X, Evans DA (1996) A statistical approach to automatic OCR error

correction in context. Proc. of the 4th Workshop on Very Large Corpora.

44. Thillou C, Ferreira S, Gosselin B (2005) An embedded application for degraded
text recognition. EURASIP Journal on Applied Signal Processing 13:

2127–2135.
45. Stehouwer H, Zaanen M (2009) Language models for contextual error detection

and correction. Proc. of the EACL Workshop on Computational Linguistic

Aspects of Grammatical Inference. pp 41–48.
46. Jones MP, James HM (1997) Contextual spelling correction using latent

semantic analysis. In Proceedings of the 5th conference on applied natural
language processing. pp 166–173.

47. Martins B, Mário JS (2004) Spelling correction for search engine queries. In
Advances in Natural Language Processing. pp 372–383.

48. Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions,

and reversals. Soviet Physics Doklady 10: 707–10.
49. Paterson M, Dancik V (1994) Longest common subsequences. International

Symposium on Mathematical Foundations of Computer Science 841: 127–142.
50. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the

sensitivity of progressive multiple sequence alignment through sequence

weighting, position-specific gap penalties and weight matrix choice. Nucleic
Acids Research 22: 4673–4680.

51. Glasner D, Bagon S, Irani M (2009) Super-resolution from a single image.
International Conference on Computer Vision (ICCV2009).

52. Fattal R (2007) Image upsampling via imposed edge statistics. ACM Trans.
Graphics (Proc. SIGGRAPH 2007) 26(3): 95–102.

FigTExT: Figure Text Extraction Tool

PLoS ONE | www.plosone.org 11 January 2011 | Volume 6 | Issue 1 | e15338


