
Identification of Genes and Networks Driving
Cardiovascular and Metabolic Phenotypes in a Mouse F2
Intercross
Jonathan M. J. Derry1*¤a, Hua Zhong1¤a, Cliona Molony1, Doug MacNeil2, Debraj Guhathakurta1¤b, Bin

Zhang1¤a, John Mudgett2, Kersten Small2, Lahcen El Fertak3, Alain Guimond3, Mohammed Selloum3,

Wenqing Zhao2, Marie France Champy3, Laurent Monassier3, Tom Vogt2, Doris Cully2, Andrew

Kasarskis1¤a, Eric E. Schadt1¤c

1 Rosetta Inpharmatics LLC, A wholly owned subsidiary of Merck & Co, Seattle, Washington, United States of America, 2 Basic Research, Merck & Co., Inc., Rahway, New

Jersey, United States of America, 3 Institut Clinique de la Souris, Illkirch, France

Abstract

To identify the genes and pathways that underlie cardiovascular and metabolic phenotypes we performed an integrated
analysis of a mouse C57BL/6J x A/J F2 (B6AF2) cross by relating genome-wide gene expression data from adipose, kidney,
and liver tissues to physiological endpoints measured in the population. We have identified a large number of trait QTLs
including loci driving variation in cardiac function on chromosomes 2 and 6 and a hotspot for adiposity, energy metabolism,
and glucose traits on chromosome 8. Integration of adipose gene expression data identified a core set of genes that drive
the chromosome 8 adiposity QTL. This chromosome 8 trans eQTL signature contains genes associated with mitochondrial
function and oxidative phosphorylation and maps to a subnetwork with conserved function in humans that was previously
implicated in human obesity. In addition, human eSNPs corresponding to orthologous genes from the signature show
enrichment for association to type II diabetes in the DIAGRAM cohort, supporting the idea that the chromosome 8 locus
perturbs a molecular network that in humans senses variations in DNA and in turn affects metabolic disease risk. We
functionally validate predictions from this approach by demonstrating metabolic phenotypes in knockout mice for three
genes from the trans eQTL signature, Akr1b8, Emr1, and Rgs2. In addition we show that the transcriptional signatures for
knockout of two of these genes, Akr1b8 and Rgs2, map to the F2 network modules associated with the chromosome 8 trans
eQTL signature and that these modules are in turn very significantly correlated with adiposity in the F2 population. Overall
this study demonstrates how integrating gene expression data with QTL analysis in a network-based framework can aid in
the elucidation of the molecular drivers of disease that can be translated from mice to humans.
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Introduction

Classical genetic approaches to the study of complex pheno-

types have historically been based on relating DNA variation to

trait differences in populations from specific paired matings. These

quantitative trait locus (QTL) mapping techniques have been

successful in identifying regions of the genome that control

phenotypic variation, but have been less productive when it comes

to the identification of causative functional DNA variants or, more

importantly, how these variants act at the molecular level to drive

phenotypes [1]. More recently, a number of groups have shown

how integration of intermediate molecular phenotypes, such as

gene and protein expression levels, can be used to aid the

reconstruction of these pathways and genes [2–6].

Obesity is a significant health burden in the developed world as

a consequence of the associated co-morbidities of diabetes,

cardiovascular disease, and hypertension [7–9]. Historically,

rodents have been used as models of human obesity and

hypertension because the genetic backgrounds and environmental

influences can be controlled and because there is evidence that

homologous genes are involved [10–12]. Multiple studies of

adiposity and hypertension in genetic crosses from rats and mice

have identified a large number of QTL associated with these traits

[13–18].
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Here we report results from a mouse F2 intercross population in

which metabolic parameters, blood pressure, and echocardiography

traits were measured and integrated with gene expression data from

adipose, kidney, and liver. In addition to identifying a large number

of clinical trait QTL we identified a locus on mouse chromosome 8

that is responsible for driving the expression of a large number of

genes specifically in the adipose. Using an integrated approach,

including network modeling, we predicted that this gene signature is

causally associated with adiposity phenotypes. We present data to

support this conclusion by showing metabolic phenotypes in three

knockout mouse strains corresponding to genes from the signature.

We also show that adipose signatures associated with these

knockouts map to the predicted co-expression modules linked to

adiposity in the F2 population.

Results

Cardiovascular and Metabolic Traits in F2 progeny of a
C57BL/6J x A/J cross

An F2 population was derived from a C57BL/6J x A/J cross

(B6AF2) and traits were measured in 360 male and female progeny

using a phenotyping platform outlined in Figure S1. Mice were

placed on a high-fat high-salt balanced diet at week 7 and

maintained on this chow until termination at week 16. Five

principle phenotyping components were used: blood pressure and

heart rate by tail cuff at week 10; echocardiography at week 10;

energy utilization by Oxymax at week 12; oral glucose tolerance

test (OGTT) at week 13; intra-peritoneal insulin sensitivity test

(IPIST) at week 14; and body composition by Dexascan at week

15. In addition, a number of endpoints relevant to size and

adiposity, and serum for blood analytes including lipids, were

collected at final necropsy. Table S1 shows a list of traits and the

mean +/2SD values in the parental, F1, and F2 populations.

Mapping of QTL for body composition,
echocardiography, blood pressure, and cholesterol traits

A genetic map was derived from the genotype data for the F2

progeny and used to identify trait QTL. Table 1 shows the 51

genome-wide significant trait QTL (LOD$4.3/FDR = 0.10) [19]

that were mapped for a total of 27 selected traits. A full set of QTL

for all traits calculated for all animals, as well as males and females

separately, is given in Table S2.

Notable hotspots for QTL associated with body composition,

size, and glucose/insulin traits mapped to chromosomes 1, 6, and

8. These QTL likely correspond to QTL for weight previously

reported by Zhang and Gershenfeld in intercross (F2) and

backcross (N2) populations from these strains [20]. These authors

reported a significant QTL for weight at week 8, Bw8q1 on

chromosome 1, as well as a suggestive QTL on chromosome 8 for

the same trait, and a suggestive QTL for 2-week weight gain on

chromosome 6 [20]. In addition, Shao et al have used

chromosome substitution strains to dissect the chromosome 6

QTL and provide evidence that it is a complex QTL consisting of

four distinct loci [21].

QTL hotspots associated with composition and glucose/insulin

traits on chromosomes 6 and 8 in this study are shown in Figure 1.

Both of these loci have effects on multiple fat depots in the mouse

including gonadal, mesenteric, and subcutaneous adipose. In

addition, % lean mass and tissue weight traits, as a fraction of total

weight of the mouse, also map to these loci. This probably reflects

secondary effects of the increases in fat depots rather than a direct

effect on these traits. This hypothesis is supported by the

observation that absolute measures of either lean mass or tissue

weight fail to show significant or suggestive QTL at these loci. We

conclude that the main effects of the chromosome 6 and

chromosome 8 loci with regard to body composition are on

adiposity. In addition, traits related to maintenance of blood

glucose levels map to both loci while traits relevant to energy

metabolism (Heat, VO2, and VC02) and triglyceride level are

present on chromosome 8 (Figure 1, Figure S2, Table 1, and

Table S2). Overall, these two loci regulate traits that in humans

are associated with metabolic syndrome (obesity, diabetes, and

lipid-related traits). While the adipose traits show very significant

correlation across the population, the lipid and glucose/insulin-

related traits show distinct distributions across individuals

suggestive of complex genetic control (Figure S3). A subsequent

section investigates the genes and networks that are driving this

phenotypic variation (see below).

We detected a number of QTL associated with blood pressure,

heart rate, and echocardiography traits (Figure 2). On chromosome

1 we identified an overlapping QTL for systolic blood pressure and

heart rate (QTL peak = 56 cm & 49 cM; maximum LOD = 4.8 &

4.5, respectively) (Figure 2A). This probably corresponds to the

Abbp1 locus identified by Woo et al in a similar strain background

[18]. These investigators identified additional QTL: Abbp2 on

chromosome 4 at 25 cm, Abbp3 on chromosome 7 at 25 cM, and

Abbp4 on chromosome 11 at 58 cM. Interestingly, we detected no

signal above LOD = 3 for a blood pressure QTL on chromosome

11 but did detect a QTL on chromosome 7 (QTL peak = 47 cM;

maximum LOD = 4.2) and a QTL on chromosome 4 (QTL

peak = 19 cM; maximum LOD = 3.0) when we adjusted for serum

insulin levels (Table S2). In regard to electrocardiographic traits, we

identified a cluster on mouse chromosome 2 containing QTL for

velocity time integral, cardiac output, heart rate, LV mass,

LV_EDD, and LV_ESD (Figure 2B). These traits relate to cardiac

structure and function, in particular left ventricular function,

indicating the presence of a locus on chromosome 2 that regulates

overall cardiac output. In this regard, it is interesting to note that

Suzuki et al have mapped a genetic modifier of murine dilated

myopathy (Hrtfm1) to an overlapping region of chromosome 2 in a

C57BL/6J x DBA/2J backcross [22]. In comparison with the

chromosome 2 locus that appears to drive variation in cardiac

output related to left ventricular function, we also identified a locus

on chromosome 6 in which velocity time integral associates with

aorta diameter (Figure 2C).

Significant QTL for serum lipid levels were identified on

chromosome 4 (HDL cholesterol; QTL peak = 49 cM; maximum

LOD = 5.0), chromosome 6 (LDL cholesterol; QTL peak = 52 cM,

maximum LOD = 6.3), and chromosome 8 (triglyceride; QTL

peak = 5 cM, maximum LOD = 4.9). In addition to the trait QTL

identified above, additional loci were mapped for the broad trait

areas of blood analytes/potassium on chromosome 9 (QTL

peak = 0 cM; maximum LOD = 5.1), and bone on chromosomes

10 and 14 (BMD; QTL peak = 60 cm and 13 cm, respectively;

maximum LOD = 5.0 and 4.3, respectively). It is noteworthy that

we did not detect genome-wide significant QTL (LOD$4.3/

FDR = 0.10) for all of the traits measured in the B6AF2 cohort. In

particular, we did not detect significant QTL for any of the IPIST or

Oxymax measurements or for serum measures of glucose, insulin,

creatinine, chloride, sodium, and urea in analyses that included

both genders, although suggestive QTL (LOD.3.0) were identified

in these analyses and significant QTL were identified in the gender-

specific analyses (Table S2).

Mapping of eQTL in liver, adipose, kidney medulla, and
kidney cortex

Whole genome expression data were generated for all F2

progeny for four different tissues (gonadal adipose, liver, kidney

Networks and Metabolism
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Table 1. Significant trait QTL mapped in the B6AF2 cohort.

Trait classification Trait Name Sub-trait Name
Time-
point Chr

QTL
Peak
(cM) LOD Ref

Adiposity Mesenteric Fat % Mesenteric Fat W16 6 35 4.6 [21]

Adiposity Mesenteric Fat % Mesenteric Fat W16 8 34 6.7

Adiposity Mesenteric Fat % Mesenteric Fat W16 16 2 4.3

Adiposity Subcutaneous Fat % Subcutaneous Fat W16 2 26 4.4

Adiposity Subcutaneous Fat % Subcutaneous Fat W16 8 34 6.1

Adiposity Total Fat % Total Fat (DEXA) W15 2 21 4.8

Adiposity Total Fat % Total Fat (DEXA) W15 6 34 5.6 [21]

Adiposity Total Fat % Total Fat (DEXA) W15 8 43 8.9

Adiposity Gonadal Fat Absolute Gonadal Fat W16 6 33 4.6 [21]

Adiposity Gonadal Fat Absolute Gonadal Fat W16 8 34 10.9

Adiposity Mesenteric Fat Absolute Mesenteric Fat W16 6 36 6.7 [21]

Adiposity Mesenteric Fat Absolute Mesenteric Fat W16 8 34 6.4

Adiposity Mesenteric Fat Absolute Mesenteric Fat W16 16 2 6

Adiposity Subcutaneous Fat Absolute Subcutaneous Fat W16 6 33 5.9 [21]

Adiposity Subcutaneous Fat Absolute Subcutaneous Fat W16 8 34 6.3

Adiposity Total Fat Absolute Total Fat (DEXA) W15 6 34 6.6 [21]

Adiposity Total Fat Absolute Total Fat (DEXA) W15 8 43 5.6

Blood Analytes Potassium Potassium W16 9 0 5.1

Blood Pressure Heart Rate Heart Rate W10 1 49 4.5

Blood Pressure SBP Systolic Blood Pressure W10 1 56 4.8 [10,18]

Bone BMD Bone Mineral Density W15 10 60 5

Bone BMD Bone Mineral Density W15 14 13 4.3

Echocardiographic Aorta Diameter Aorta Diameter W10 6 42 5.3

Echocardiographic Velocity Time Integral Velocity Time Integral W10 2 53 5.4

Echocardiographic Ejection Fraction Ejection Fraction W10 17 13 4.5

Glucose/Insulin OGTT OGTT AUC W13 6 47 5.6 [65]

Glucose/Insulin OGTT OGTT Glucose Change (0–15 min) W13 8 31 6.1

Leanness Lean mass % Lean Mass (DEXA) W15 2 21 4.5

Leanness Lean mass % Lean Mass (DEXA) W15 6 33 5.8 [21]

Leanness Lean mass % Lean Mass (DEXA) W15 8 43 8.7

Lipids HDL HDL Cholesterol W16 4 49 5 [66]

Lipids LDL LDL cholesterol W16 6 52 6.3

Lipids Triglyceride Triglyceride W16 8 36 4.9

Size Heart Heart weight/Body weight W16 6 30 7.7

Size Heart Heart weight/Body weight W16 8 49 8.1

Size Heart Heart-Left ventricle weight/BWt W16 8 34 6.8

Size Kidney Kidney weight/Body weight W16 8 34 16.1

Size Kidney Kidney weight/Body weight W16 16 6 4.6

Size Liver Liver weight/Body weight W16 8 32 13.8

Size weight Weight W6 1 64 4.8

Size weight Weight W7 6 31 5.1 [21]

Size weight Weight W8 1 64 4.4 [20]

Size weight Weight W10 1 71 4.5

Size weight Weight W10 6 31 4.7 [21]

Size weight Weight W12 1 64 5.1

Size weight Weight Change W6-W16 W16 1 78 4.5

Size weight Weight Change W6-W16 W16 6 47 5.8 [21]

Size weight Weight Change W6-W16 W16 8 43 4.4

Networks and Metabolism
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cortex, and kidney medulla) using a custom Agilent mouse array

containing ,40,000 unique reporter sequences. Each reporter

sequence was individually considered as a trait for each tissue and

used to map expression QTL (eQTL). The distribution of LOD

scores by tissue is shown in Figure S4A. eQTL were considered

as cis acting QTL if the QTL mapping position lay within

+/220 Mb of the physical gene location. The bin size for

consideration of cis acting eQTL was similar to those used in

previous studies and was derived from the data in Figure S4B,

which show a significant increase in the number of eQTL detected

within 20 Mb of the associated gene only when the gene and QTL

reside on the same chromosome. A list of all eQTL with LOD$5,

corresponding to an FDR,0.05 in all tissues, is given in Table S3

(all animals), Table S4 (males only), and Table S5 (females only).

We also assessed the degree of sharing of eQTLs between tissues

(Table S6). In order to do this we defined eQTL at a reporter,

chromosome, tissue level (that is an eQTL was counted once as the

maximum LOD . = 5 for any particular reporter, chromosome,

tissue group). Pairwise comparison of tissues shows greatest sharing

of eQTLs for the kidneycortex:kidneymedulla comparison (38.4%

cis, 11.9% trans). Overall there is much greater consistency of cis

eQTLs between tissues (average = 27.6%) than trans eQTLs

(average = 8.9%), consistent with previous observations.

An adipose trans eQTL signature drives the body
composition QTL on chromosome 8 in the B6AF2
population

Inspection of the eQTL distribution across chromosomes for

different tissues identified an eQTL hotspot in adipose between 30

and 40 cM on chromosome 8, as shown in Figure S5 (expected

number of eQTL in 10 cM interval = 62; actual number = 1722;

P = 2.5e2321). While trans eQTL hotspots can result from artifacts

we do not believe this is the case for this signature for three

reasons. First, when we permute the eQTL data and plot the

eQTL numbers per 10 Mb genomic bin across the genome we

never see more than 38 eQTL per bin, compared with .1000 in

the observed data for the chromosome 8 region (Figure S6).

Second, if it was the result of population substructure in the

intercross population we would anticipate seeing an enrichment of

eQTL at this locus across tissues while we actually observe that the

hotspot is specific to adipose (Figure S5). Most importantly, we

have been able to replicate this finding in an independent B6AF2

cohort of comparable size (‘‘Jaxshort BxA’’). Specifically we find

that of the 1,565 eQTLs (LOD. = 5) in the MCI BxA signature at

the chromosome 8 locus that are trans (gene and QTL on different

chromosome), 1,491 (95%) replicate on chromosome 8 in the

Jaxshort BxA cohort at a LOD. = 2. With more stringent

replication criteria, that requires LOD. = 3 and maximum

QTL LOD position in the 30–40 cM interval, 929 (59%) eQTL

replicate. Comparison of the LOD scores for the eQTLs mapping

to chromosome 8 in adipose in the two crosses shows significant

correlation (R2 = 0.25, p = 7.8e-96; Figure S7) and comparable

location (Figure S8). In the Jaxshort BxA cross the hotspot is

specific to adipose, as it is in MCI BxA; in this case specificity is

compared to liver, muscle and hypothalamus. This replication

data for the Jaxshort BxA cross is included as a series of tables

containing the gene expression data for the chromosome 8 eQTL

genes (Table S7), the genotypes for all animals (Table S8), the

Trait classification Trait Name Sub-trait Name
Time-
point Chr

QTL
Peak
(cM) LOD Ref

Size weight Weight Change W6-W16 W16 16 2 5.9

Size weight Weight Change W12-W16 W16 1 64 6.2

Size weight Weight Change W12-W16 W16 6 42 4.9 [21]

QTL Peak is the map position corresponding to the maximum LOD score.
doi:10.1371/journal.pone.0014319.t001

Table 1. Cont.

Figure 1. QTL hotspots for body composition, insulin, and glucose traits on chromosomes 6 and 8. QTL plots for traits mapping to
chromosome 6 (A) and chromosome 8 (B) indicate that shared DNA variation likely drives multiple metabolic phenotypes on the respective
chromosomes. For clarity not all significant QTL mapping to these loci are shown (see Table 1).
doi:10.1371/journal.pone.0014319.g001
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genders of individuals (Table S9). Together all these data provide

convincing evidence that the trans eQTL hotspot is unlikely to be

an artifact.

More than 95% of the eQTL at this locus are trans eQTL,

therefore we refer to this as the "trans8_eQTL" signature. This

location coincides with the position of the body composition QTL

hotspot (Figure 1B). To explore whether the trans8_eQTL

signature influences these traits we looked at the relationship

between the expression of genes in the signature in adipose tissue

and various endpoints. The first principal component of the

trans8_eQTL signature was computed (ch8PC1) and correlated to

the trait values across the population. The correlation coefficients

and associated P values are shown in Table 2. These data indicate

significant correlation of the trans8_eQTL signature with a

number of the traits at this locus. This correlation structure could

be the result of gene expression traits driving the clinical traits in a

causal relationship, or alternatively the gene expression changes

could lie downstream of the variation in the clinical traits. To

distinguish these possibilities we specifically looked for enrichment

of gene expression traits that tested as causal for the individual

clinical traits at this locus using a previously described causality test

[5]. We calculated the fold enrichment for genes testing causal for

a trait at this locus compared with across the genome by

computing the number of reporter_ids from the chromosome 8

eQTL signature testing causal for trait/total reporter_ids in the

chromosome 8 eQTL signature as a ratio to the total number of

reporter_ids testing causal for the trait/total number of reporter_-

ids on the array and used Fisher’s exact test to estimate the

significance of these enrichments. In this way we identified

enrichments for causal genes linked to metabolic traits in the

trans8_eQTL signature of up to 18.6-fold with highly significant

associated p values (Table 2 and Table S10). For example, 75% of

the reporters on the array chip that are expressed in adipose and

test causal for % mesenteric fat are present in the trans8_eQTL

signature (243 reporters out of 322 genome-wide total testing

causal for this trait: Table S10).

Annotation of the trans8_eQTL signature by enrichment analysis

relative to genes in the Gene Ontology (GO) catalogue indicates

that these genes are strongly associated with cellular metabolic

processes, particularly oxidative phosphorylation and mitochondrial

function (Figure S9). The idea that the genes in this signature relate

to mitochondrial function is further supported by the observation

that 307 out of 1537 signature genes are also found in a set of 1098

genes whose protein products have been shown localize to

mitochondria (enrichment p value = 3.36e2144) [23]. We also

mapped the signature to gene co-expression networks. Gene co-

expression network analysis (GCENA) has been used to identify

gene subnetworks and to prioritize gene targets associated with a

variety of common human diseases such as cancer and obesity [24–

28]. One important end product of GCENA is the construction of

gene modules comprised of highly interconnected genes, and a

number of studies have demonstrated that co-expression network

Figure 2. QTLs associated with blood pressure, heart rate, and echocardiography traits highlight different aspects of
cardiovascular physiology. QTL plots showing LOD scores by chromosomal position for the indicated traits. (A) locus on chromosome 1
associated with variation in blood pressure and heart rate; (B) locus on chromosome 2 associated with left ventricular anatomy and function and its
relationship to cardiac output; (C) locus on chromosome 6 regulating cardiac output parameters associated with aorta diameter.
doi:10.1371/journal.pone.0014319.g002

Networks and Metabolism
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modules are generally enriched for known biological pathways, for

genes that are linked to common genetic loci, and for genes

associated with disease [24–32]. The topological overlap map of the

MCI BxA adipose is shown in Figure S10. Intersection of the genes

from the trans8_eQTL signature indicates that they are very highly

enriched in the red (9.4-fold enriched; p = 1.13E2132) and turquoise

(2.2-fold enriched; p = 1.14E226) modules of the co-expression

network. Indeed ,70% of the genes in the red module are regulated

by the chromosome 8 locus indicating this is a key genetic driver of

this subnetwork. Annotation of these modules shows that the red

network is negatively correlated with adiposity traits and is enriched

in GO terms associated with a variety of catabolic and metabolic

processes and with mitochondrial function. The turquoise module is

positively correlated with adiposity traits and is linked to a diverse

set of biological processes including angiogenesis, apoptosis, cell

cycle, and immune cell activation (Figure S10).

We sought also to place this signature in the context of datasets

relevant to human obesity. In this context, the trans8_eQTL

signature shows strong enrichment in a human adipose co-

expression network module that we previously demonstrated to be

associated with BMI in humans (Figure S11) [25]. Specifically,

genes in the trans8_eQTL signature map to two expression

modules in the human adipose connectivity map. The red module

consists of genes involved in mitochondrial function while the

turquoise module is enriched for genes associated with immune

response. Both modules show correlation with metabolic traits

(leptin, BFM, BMI, HDL cholesterol, waist, and weight) and the

turquoise module has been identified as a key driver of obesity

traits in humans [25]. Together, these data support a role for the

chromosome 8 locus in driving adiposity phenotypes via effects on

energy metabolism and through genes and networks that are

conserved in mouse and human.

Validation of effects of chromosome 8 trans eQTL
signature genes on obesity traits

We selected three genes from the trans8_eQTL signature for

validation experiments in knockout mice. These genes were

selected based on a number of criteria, including causality for

adiposity traits based on the trans eQTL in the B6AF2 cohort,

causality for adiposity traits across other F2 crosses [5,6,33], and

availability of genetically modified mice. It is noteworthy that

Akr1b8, Emr1, and Rgs2 are in the top 5% of genes testing causal

for obesity traits in our database.

We first looked at the response to dietary challenge by

maintaining knockout mice and wild-type littermate controls on

a high-fat diet (HFD) for 9 weeks and recording changes in body

weight. The Rgs2 line showed statistically significant genotypic

differences in body weight gain in response to a HFD (Figure 3

and Table S11). This is consistent with the causality prediction of

an effect of Rgs2 on body weight (Table 3). Both male and female

Rgs2 knockout mice gained less weight than littermate controls

after 9 weeks of HFD (67% v 86% for males, p = 2.8e24; 32% v

52% for females, p = 5.7e23). These effects do not appear to be the

consequence of lower food intake, suggesting a mechanism linked

to energy metabolism rather than to hypophagia (data not shown).

We also compared the body composition of knockout and wild-

type mice measured by qNMR at two time-points, before and after

HFD feeding (Figure 4 and Table S12). We observed that the

Rgs22/2 mice gained less overall weight on HFD and that the male

knockout mice were leaner than the wild-type mice (37.6+/22.1%

fat versus 40.5+/21.2% fat; p = 2.6e23). The female Rgs2 mice did

not show a statistically significant difference between the genotypic

groups in body composition after HFD. A similar sexual

dimorphism towards a male effect was seen in the Akr1b82/2

strain, although in this case the tendency was for the male knockout

mice to be fatter than their wild-type littermate controls on both

chow (13.0+/22.1% fat versus 10.1+/21.6% fat; p = 4.4e23) and

HFD (41.7+/21.5% fat versus 36.4+/24.6% fat; p = 4.9e23)

(Figure 4 and Table S12). The male Akr1b82/2 mice also had

higher serum cholesterol levels after HFD (7.50+/20.58 mmol/L

versus 6.33+/20.76 mmol/L; p = 2.0e23) reflecting increases in

both HDL and LDL cholesterol (Table S13). The Emr12/2 strain

showed larger effects in the female than the male mice, with the

knockout showing a strong tendency to be leaner, particularly in

response to a HFD (22.0+/24.6% fat versus 32.2+/25.0% fat;

p = 5.2e24). Overall, these data validate our predictions from

Table 2. Association of eQTL signature to trait QTL on chromosome 8.

Sub-trait Name Correlation to PC Correlation p value
Fold enrichment for
causal genes

Enrichment
p value

% Total Fat (DEXA) 0.61 1.4E-31 7.5 7.7E-24

Absolute Gonadal Fat 0.58 8.5E-28 13.3 2.7E-42

Absolute Total Fat (DEXA) 0.54 8.2E-24 12.4 8.7E-144

% Mesenteric Fat 0.50 3.7E-19 18.6 3.3E-176

% Subcutaneous Fat 0.50 1.6E-18 16.5 2.6E-154

Absolute Mesenteric Fat 0.48 1.7E-18 9.7 2.5E-147

Absolute Subcutaneous Fat 0.47 7.4E-18 8.6 1.5E-95

Weight Change W6-W9 0.42 9.0E-14 14.6 7.3E-41

Triglyceride 0.34 3.0E-09 14.0 3.1E-273

Heart weight/Body weight 20.53 1.0E-22 1.4 3.0E-01

OGTT Glucose Change (0–15 min) 0.24 3.4E-05 12.0 2.9E-11

% Lean Mass (DEXA) 20.62 3.4E-32 7.2 1.1E-20

Fold enrichment obtained by calculating: (# reporter_ids from ch8 eQTL signature testing causal for trait/total reporter_ids in ch8 eQTL signature)/(total # reporter_ids
testing causal for trait/total reporter_ids on array).
Enrichment p value is from Fisher’s exact test.
PC = 1st principal component for chromosome 8 eQTL signature.
doi:10.1371/journal.pone.0014319.t002
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genetic analysis that these genes are involved in driving adiposity

traits in mice (as summarized in Table 3). Specifically, our genetic

analysis indicated a causal relationship between Akr1b8, Emr1, and

Rgs2 expression level and measures of body adiposity, with a

negative correlation between Akr1b8 expression in adipose and %

fat, and a positive correlation between Emr1 and Rgs2 expression

and % fat. All of these predictions were recapitulated in knockout

mice, in which loss of Rgs2 led to increased % fat and loss of Emr1 or

Rgs2 to decreased % fat. These data also underscore the strong

influence of gender on metabolic traits in mice, an observation we

have previously noted [34].

We also analyzed the transcriptional consequences of knocking

out the Akr1b8 and Rgs2 genes; unfortunately tissues were not

available from the Emr12/2 mice for profiling analysis. Specifically

we sought to explore whether the adipose knock out signatures

from these mice were enriched in the network modules

corresponding to the trans8_eQTL signature, namely the red

and turquoise modules that show strong correlation with adiposity

traits (Figure S10). This analysis (Table S14) indicates that the

gene expression signature in adipose associated with deletion of the

Akr1b8 gene is very significantly enriched specifically in the

turquoise module (fold enrichment = 1.77-fold; hypergeometric

P value = 0) but not in the red module (fold enrichment = 1.02-

fold; hypergeometric P value = 0.49). The Rgs2 signature shows

modest fold enrichments in both the turquoise (fold enrich-

ment = 1.21-fold; hypergeometric P value = 0.004) and the red

(fold enrichment = 1.45-fold; hypergeometric P value = 0.02)

modules although it only reaches significance P,0.01 in the

Figure 3. Growth Curves for Akr1b82/2, Emr12/2 and Rgs22/2 mice. Akr1b8, Emr1 and Rgs2 knockout (n = 9 per gender)* and littermate control
(n = 9 per gender)# mice were placed on HFD at 9, 11, and 9 weeks of age respectively (W1 above). Body weights were recorded weekly for a total of
9 weeks. Statistically significant differences between genotypic groups split by gender are marked. Blue = WT males; Black = KO males; Red = WT
females; Green = KO females. *actual number of Emr1+/+ female mice = 8. #actual number of Rgs22/2 female mice = 6.
doi:10.1371/journal.pone.0014319.g003

Table 3. Summary of Causality and Knockout Phenotype Data for Akr1b8, Emr1, and Rgs2.

Knockout Phenotypes

Gene
Symbol

Traits for which genes test
causal based on eQTL/cQTL
overlap

Direction of
correlation of
expression to
trait

Change Body
Weight on HFD

Body Composition
on chow or HFD Serum Lipid

Akr1b8 % gonadal fat negative No difference KO v WT
for males or females

Increased % Fat in KOs
on chow or HFD compared
to WTs (males)

Increased serum
cholesterol in KOs on
HFD compared to WTs
(males)

Emr1 Weight, Absolute Subcutaneous adipose,
Absolute gonadal adipose, Absolute
mesenteric adipose, weight change W6-W12

positive No difference KO v WT
for males or females

Decreased % Fat in KOs
on chow or HFD
compared to WT (females)

No difference in serum
lipids KO v WT for males
or females

Rgs2 Weight, Absolute Total Fat, % Total Fat, %
subcutaneous adipose, Absolute mesenteric
adipose, absolute gonadal adipose

positive Male and female KO
mice gain less weight
on HFD

Decreased % Fat in KOs
in response to HFD
compared to WT (males)

Increased serum
cholesterol in KOs on
chow compared to WTs

Rgs2 % Lean Mass (DEXA) negative Male and female KO
mice gain less weight
on HFD

Decreased % Fat in KOs in
response to HFD compared
to WT (males)

Increased serum
cholesterol in KOs on
chow compared to WTs

doi:10.1371/journal.pone.0014319.t003
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turquoise module. Overall this analysis supports the view that the

Akr1b8 and Rgs2 genes are important regulators of adiposity in the

mouse and that their perturbation leads not only to predicted

metabolic changes in the mouse but also to changes in the

transcriptional networks in which they operate.

Trans8_eQTL signature is enriched for genes that show
association to T2D in human GWAS

In addition to being linked to adiposity traits, the trans eQTL

signature is associated with endpoints relevant to diabetes, namely

glucose traits (Table 1, Table S2, and Figure S2). We reasoned

that if this set of genes is important in human disease, SNPs linked

to these genes would show enrichment of association with

particular disease phenotypes. Toward this end, we identified

human eSNPs (SNPs that significantly associate with expression

traits) corresponding to the orthologous human genes from the

trans8_eQTL signature using data from a genetics of gene

expression (GGE) study in an obesity cohort comprised of 800

individuals from which liver, subcutaneous, and omental adipose

tissues were collected (Zhong, H. et al. Elucidating Networks of

eSNPs Associated with Type 2 Diabetes. Submitted). To test

whether the eSNPs were enriched for association to type 2 diabetes

(T2D), we assembled GWAS results from the meta-analysis of

multiple T2D cohorts, referred to here as the DIAGRAM study

[35].

Among the 1537 genes, 1249 have human orthologs, of which

502 have at least one eSNP in adipose tissue. The distribution of

their T2D association P values from the DIAGRAM (referred to

here as PT2D) is shown in Figure S12. It is apparent that the

PT2D distribution of the eSNPs associated with genes in the

trans8_eQTL signature is enriched for SNPs associated with T2D,

in that the eSNP PT2D values are skewed towards the significance

end of the PT2D spectrum. To statistically estimate the degree of

enrichment and associated significance, we empirically estimated

the null distribution by randomly sampling 100,000 sets of SNPs

from the DIAGRAM data such that the SNP set size, the location

distribution of the SNPs with respect to protein coding genes, the

linkage disequilibrium structure, and the minor allele frequency

matched that of the eSNP set (Methods S1 and Materials and

Methods). We found that 6.85% of SNPs in the eSNP set (460 out

of 6,720 SNPs) had PT2D values ,0.05, compared with an average

of 5.62% SNPs (95% CI: 5.01% to 6.17%) in the random sets

(Z = 4.38; P = 6.0e206). It is of note that the eSNP sets

corresponding to the trans8_eQTL signature generated from

subcutaneous and omental adipose tissue separately were both

enriched for lower PT2D values: for the omental adipose 394 SNPs

out of 5,639 SNPs (6.99%) had PT2D values ,0.05; for the

subcutaneous adipose 338 SNPs out of 4,841 SNPs (6.98%) had

PT2D values ,0.05 (data not shown). Therefore, this enrichment is

consistently observed for the trans8_eQTL signature.

Discussion

This study contributes significantly to our knowledge of QTL in

mouse that genetically regulate traits relevant to metabolic and

cardiovascular disease, as well as hypertension. Furthermore, the

tissue gene expression data provided in this paper provide a

powerful framework for relating DNA variation to gene expression

changes, and in turn to phenotypic variation. We have shown how

this can be applied to help elucidate the molecular mechanisms

underlying complex trait variation in the context of a chromosome

8 adiposity QTL.

The emphasis of our approach is not to directly define the cis

variants that underlie QTL but rather to understand how this

variation drives changes in entire networks of genes that regulate

physiological processes. For example, it is unclear from our

analysis what the underlying perturbation(s) on chromosome 8

that drive the trans8_eQTL signature are, but it is apparent that

the genes whose expression traits map here in trans are the

molecular effectors of the cis signal. We have shown this by

demonstrating: a) that the adipose expression of genes in the

trans8_eQTL signature is highly correlated with the adiposity-

related traits; b) that the genes test causal for driving variation in

the adiposity traits; c) that the genes map to modules in human

adipose that have been implicated in human obesity; and d) by

validating three of the genes in the signature by phenotyping

knockout mice.

Figure 4. Body Composition by qNMR for Akr1b82/2, Emr12/2 and Rgs22/2 mice on chow and HFD. Body composition for Akr1b8, Emr1
and Rgs2 knockout and littermate control mice was assessed on chow diet (8–10 weeks of age) and after 9 weeks on HFD (17–23 weeks of age). Data
points are averages with 95% confidence intervals. Statistically significant differences between genotypic groups split by gender are marked. All
gender, genotype, diet groups were n = 9 except for the female Emr1+/+ HFD fed and female Rgs22/2 chow fed groups were n = 8.
doi:10.1371/journal.pone.0014319.g004
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Annotation of the trans8_eQTL signature by reference to

existing datasets strongly suggests that the mechanism underlying

the effects of the chromosome 8 DNA variation on adiposity

relates to energy expenditure. The genes in the signature are

highly enriched for metabolic processes associated with generation

of precursor metabolites, oxidative phosphorylation, and mito-

chondrial ATP synthesis. Remarkably, 20% of the genes are found

within a curated set of 1090 genes with protein products predicted

to be located in the mitochondrion [23]. Given that the curated

mitochondrial gene set is highly unlikely to be comprehensive, the

true fraction of the genes in the trans8_eQTL signature that

localize to the mitochondrion is likely to be much higher. In this

context it is interesting to note that one of the cis acting candidates

at the chromosome 8 locus is Fto, a gene that has been robustly

validated for association with human obesity [36–38] and has

recently been implicated in regulating energy expenditure in mice

[39]. Fto2/2 mice show significantly elevated oxygen consumption

(V02), carbon dioxide production (VCO2), and calculated heat

production (Heat) relative to their wild-type littermates. Consistent

with an Fto driven mechanism underlying the chromosome 8

locus, there are highly suggestive QTL at this locus for traits

associated with energy metabolism (Figure S2 and Table S2). FTO

is also associated with T2D in human populations [40–42]. In this

regard it is interesting that we were able to demonstrate that genes

in the signature show greater association with T2D than similar

sets of randomly selected genes (Figure S12). An alternative

candidate gene on chromosome 8 that has a well-established role

in adiposity and mitochondrial function is Ucp1[43]; however, we

did not detect a significant cis eQTL for Ucp1 in B6AF2 adipose,

nor are there known non-synonymous SNPs in the gene between

these two strains. Furthermore, we detected a significant adipose

cis eQTL for Ucp1 in a C57BL/6J ob/ob vs. BTBR ob/ob F2 cross

[44] but this cis eQTL is not associated with the trans8_eQTL

signature or a significant adiposity QTL on chromosome 8. We

conclude that Fto is a good candidate for explaining the

chromosome 8 adiposity QTL although additional studies into

Fto perturbation in mice will be necessary to validate this

connection.

We have shown experimentally the effects of deleting three

genes regulated by the chromosome 8 locus on adiposity traits in

knockout mice. These genes are Emr1, Rgs2, and Akr1b8, and the

associations with metabolic phenotypes represent novel findings.

Emr1 is the prototypical macrophage lineage marker in the mouse,

although its tissue distribution appears to be different in humans

[45]. It is a seven-membrane spanning molecule (TM7) and,

together with CD97, EMR2, EMR3, and EMR4, belongs to the

EGF-TM7 family, a subfamily within the adhesion class of TM7

receptors [46]. Although these receptors have variable numbers of

EGF-like domains that can mediate ligand binding, a cellular

ligand for Emr1 has not yet been identified. Emr1-deficient mice

are healthy and do not show abnormalities in macrophage

development and function [46]. Rgs2 acts downstream of TM7

proteins to regulate and integrate G-protein coupled signaling

[47]. Specifically, RGS2 is a selective and potent inhibitor of Gaq

signaling [48], is ubiquitously expressed throughout the cardio-

vascular system, and is capable of inducing adipocyte differenti-

ation [49]. Rgs2-null mice are hypertensive [50–52] and

polymorphisms in RGS2 have been implicated in human

hypertension [53,54]. More recently, RGS2 variation has been

associated with metabolic syndrome and weight gain in humans

[55,56]. Akr1b8 is a member of the aldo-keto reductase (AKR)

superfamily encompassing more than 140 proteins with different

physiological roles, most of which are NAD(P)(H)-dependent

oxidoreductases that metabolize carbohydrates, steroids, prosta-

glandins, and other endogenous aldehydes and ketones, as well as

xenobiotic compounds. This family is thought to play physiological

roles in osmotic homeostasis, steroid and xenobiotic metabolism,

signal processing, and oxidative defense mechanisms [57]. All

three of these genes show association with the trans8_eqtl

signature and each displays a unique pattern of metabolic

dysfunction when knocked out in mice.

In addition to the chromosome 8 eQTL hotspot in adipose

there are other potential hotspots in other tissues. For example,

there is an enrichment of eQTLs on chromosome 6 in liver, on

chromosome 18 in liver and kidney cortex, on chromosome 1 in

liver and adipose, and on chromosomes 4 and 13 in kidney cortex

and kidney medulla (Figure S5). While all of these are significant

with respect to the permuted eQTL data we have been unable to

replicate them in an independent cohort in the same way as we

have demonstrated for the chromosome 8 adipose eQTL hotspot;

the chromosome 6 liver eQTL hotspot is present in the Jaxshort

BxA cohort but is much weaker. Therefore at this point it appears

that strong replicating eQTL hotspots are uncommon, at least

those containing eQTLs with effect sizes that we are powered to

detect with F2 cohorts of 300–500 animals.

In conclusion we believe that the data contained in this paper,

including the eQTL for the four tissues– adipose, liver, kidney

cortex, kidney medulla – as well the trait QTL, will be a rich

source of information for the community in ongoing research to

identify the genes and networks associated with metabolic and

cardiovascular disease.

Materials and Methods

Ethics Statement
All mouse procedures were performed with the approval of

Merck & Co (Whitehouse Station, NJ, USA) and the Institutional

Animal Care and Use Committees at the Jackson Laboratories

(Jax West, West Sacramento, California) or Mouse Clinical

Institute (MCI: Strasbourg, France) as appropriate under IACUC

approval 07-254.

Mouse breeding, husbandry, and physiological trait
measurements

Additional detail on mouse study design and procedures is

available in the complete study protocol in Methods S1. In

general, the SOPs in this study were modeled on those of the

Eumorphia program (www.empress.har.mrc.uk). All procedures

were performed with the approval of Merck & Co (Whitehouse

Station, NJ, USA) and the Institutional Animal Care and Use

Committees at the Jackson Laboratories (Jax West, West

Sacramento, California) or Mouse Clinical Institute (MCI:

Strasbourg, France) as appropriate.

All F2 breeding was performed at JAX West (Sacramento, CA),

and knockout animals were bred at Taconic Farms (Germantown,

NY). Three hundred and sixty F2 mice were produced from a

C57BL/6J (female) x A/J (male) cross (B6AF2). F1 mice (n = 12 of

each gender) and parental strain mice (n = 12 of each strain and

gender) were tested in parallel at the same age under the same

conditions. Mice were weaned into cages of three same-sex pups

per litter per cross at 3 weeks of age. These three littermate mice

remained together for the duration of the study. At 6 weeks, mice

were shipped by air to MCI and allowed to acclimate to that

environment for 1 week before entering the study. Twenty-four F2

mice entered MCI every week for 18 weeks, except for weeks 1, 3,

and 16, when eight each of the parental and F1 mice entered.

An overview of the experimental protocol is provided in Figure

S1. Mice were weighed after arrival at week 6, and switched to a
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custom high-fat high-salt balanced diet. This diet provides 60%

kcal from fat, and a potassium and sodium concentration per kcal

that is identical to that found in the standard D12450B diet, which

provides 10% kcal from fat. All diets were prepared by Research

Diets (New Brunswick, NJ). Body weight was measured weekly

through week 12, with blood pressure measurement by tail cuff on

a BP-2000 Blood Pressure Analysis System (Visitech Systems Inc,

Apex, NC) in week 10. The mice also received a complete

echocardiographic exam (Sonos 5500, Philips Electronics, Kon-

niklijke, Netherlands) at the end of week 10 after completing the

blood pressure measurements. The mice were assayed in an

Oxymax metabolic chamber in week 12, underwent an overnight

fast (16–18 h) followed by an Oral Glucose Tolerance Test

(OGTT) in week 13, an Intra-Peritoneal Insulin Sensitization Test

(IPIST) in week 14, and a Dexascan procedure in week 15. In

week 16, mice were fasted for 4 hours prior to CO2 asphyxiation

and necropsy. Detailed SOPs for these protocols are listed in the

Methods S1.

Genotyping
Genomic DNA was isolated from tail sections by Bioserve

(Beltsville, MD) using standard methods and genotyping was

performed by Affymetrix (Santa Clara, CA) using the Affymetrix

GeneChip Mouse Mapping 5K Panel.

Microarray analysis
RNA extraction, probe preparation, and array hybridizations

were all carried out at the Rosetta Inpharmatics Gene Expression

Laboratory (Seattle, WA). Mouse tissues (gonadal adipose, kidney

medulla, kidney cortex, hypothalamus) were pulverized prior to

homogenization in a solution of GITC/BME (1:50 ratio) using a

Covaris S2 cryo-prep (Covaris, Inc, Woburn, MA), followed by

addition of a TRIzol water solution (4:1 ratio). 100% Chloroform

was added to the TRIzol/GITC lysate (1:5 ratio) to facilitate

separation of the organic and aqueous components using the

phaselock (Eppendorf) system. The aqueous supernatant was

further purified using a Promega SV-96 total RNA kit (Promega,

Madison, WI), incorporating a DNase treatment. Total RNA

samples were assayed for quality using an Agilent Bioanalyzer

(Agilent Technologies, Santa Clara, CA) and for yield using

Ribogreen (Ambion, Austin, TX) metrics prior to amplification.

All samples, with the exception of kidney medulla, were amplified

and labeled using a custom automated version of a 5 mg RT/IVT

protocol and hybridizations to custom Agilent microarrays were

performed as described [58].

The custom ink-jet microarrays used in this study were

manufactured by Agilent Technologies and consisted of 4,732

control probes and 39,558 non-control oligonucleotides derived

from mouse Unigene clusters, combined with RefSeq sequences

and RIKEN full-length cDNA clones. For each individual animal

tissue sample, labeled complementary RNA (cRNA) was hybrid-

ized against a pool of labeled cRNAs constructed from equal

aliquots of RNA for that specific tissue from at least 200

individuals.

Gene expression profiling of Akr1b82/2, Rgs2 2/2 and control

wt mice was performed on Merck/Affymetrix mouse 1.0 custom

arrays monitoring 43,682 individual transcripts (28,782 Entrez

genes). Total RNA was isolated from frozen tissues after

homogenizing in TRIzol reagent (Invitrogen, Carlsbad, CA) and

processed using RNeasy kits (QIAGEN, Valencia, CA) according

to manufacturers’ instructions. Samples were amplified and

labeled using a custom automated version of the RT/IVT

protocol and reagents provided by Affymetrix (Santa Clara, CA).

Hybridization, labeling and scanning were completed following

the manufacturer’s recommendations (Affymetrix).

All microarray data is MIAME compliant and has been deposited

in GEO with the following accession number: GSE25506.

QTL mapping and Network Construction
QTL mapping was performed using R/qtl [60], and testing for

linkage of both clinical traits and gene expression (using the mean

log ratio of the expression) was conducted using a linear model

[33,59]. Briefly, we first calculated QTL genotype probabilities,

conditional on the available marker data (‘‘calc.genoprob’’

function), and then used Haley-Knott regression (‘‘scanone’’

function) to perform single-QTL genome scans with a normal

model [60]. Specifically, each clinical and expression trait was

parameterized as:

y*b0zbALAizbDLDi

where y is the trait of interest, LAi = Pri(AA)-Pri(BB) is the additive

genotypic component at the ith locus and LDi = Pri(AB) is the

dominance genotypic component. For eQTL analyses, the gene

expression trait values were first pre-adjusted with gender as a

covariate in a linear model and the gender adjusted gene

expression trait residuals used as the dependent variable in the

QTL mapping. eQTL and cQTL mappings were also performed

in female and male samples separately using ‘‘non-gender

adjusted’’ values.

We conducted a permutation approach to compute False

Discovery Rate (FDR) for cQTL and eQTL. LOD scores of

cQTLs were empirically adjusted on a trait-by-trait basis using

1,000 permuted datasets. First, p-values were computed for each

LOD score on a trait-by-trait basis, using the LOD scores from

permuted data as the distribution under the null. LOD scores from

the permuted data were adjusted using the same approach. FDR

estimates were then computed by comparing the observed results to

the permuted. Using this approach, a LOD score of 4.3 for cQTL

corresponds to FDR 0.10 (Figure S13). FDR for eQTLs were

computed on a tissue by tissue level using five permuted datasets.

LOD scores from permuted data for all the probes were used as the

distribution under the null. A LOD score of 5 for eQTL

corresponds to an FDR ,0.05 for all four tissues (Figure S14).

For co-expression analysis, the 9,889 (the top 25%) most

differentially expressed genes were selected for constructing a

weighted gene co-expression network [30]. In contrast to

traditional un-weighted gene co-expression networks where two

genes (nodes) are either connected or disconnected, the weighted

gene co-expression network analysis assigns a connection weight to

each gene pair using soft-thresholding and thus is robust to

parameter selection. The weighted network analysis begins with a

matrix of the Pearson correlations between all gene pairs, then

converts the correlation matrix into an adjacency matrix using a

power function f(x) = xb. The parameter b of the power function is

determined in such a way that the resulting adjacency matrix, i.e.,

the weighted co-expression network, is approximately scale-free.

To measure how well a network satisfies a scale-free topology, we

use the fitting index proposed by Zhang & Horvath [30], i.e., the

model fitting index R2 of the linear model that regresses log(p(k)) on

log(k) where k is connectivity and p(k) is the frequency distribution

of connectivity. The fitting index of a perfect scale-free network is

1. For this dataset, we select the smallest b ( = 6) which leads to an

approximately scale-free network with the truncated scale-free

fitting index R2 greater than 0.8. The distribution p(k) of the

resulting network approximates a power law: p(k)*k{1:63.
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To explore the modular structures of the co-expression network,

the adjacency matrix is further transformed into a topological

overlap matrix. Topological overlap between two genes reflects

not only their direct interaction but also their indirect interactions

through all the other genes in the network, and previous studies

[30,61][30,62][28,60]have shown that topological overlap leads to

more cohesive and biologically more meaningful modules [30]. To

identify modules of highly co-regulated genes, we used average

linkage hierarchical clustering to group genes based on the

topological overlap of their connectivity, followed by a dynamic

cut-tree algorithm to dynamically cut clustering dendrogram

branches into gene modules. 35 modules are identified and the

module size, in number of genes, varies from 20 to 2,035.

To distinguish between modules, each module was assigned a

unique color identifier, with the remaining, poorly connected genes

colored grey. Figure S10 shows the hierarchical clustering over the

topological overlap matrix (TOM) and the identified modules for

the MCI BxA adipose. In this type of map, the rows and the

columns represent genes in a symmetric fashion, and the color

intensity represents the interaction strength between genes. This

connectivity map highlights genes in the adipose transcriptional

network that fall into distinct network modules, where genes within

a given module are more interconnected with each other (blocks

along the diagonal of the matrix) than with genes in other modules.

Likelihood-based causality model selection test and
causal gene enrichment test

Three basic relationships between genotypes, RNA levels and

complex traits are possible once the expression of a gene (R) and a

complex trait (C) have been shown to both correlated with a

common QTL (L) in an F2 intercross population: where L the

common locus is defined as the marker equidistant between the

overlapping QTL peaks. Model M1 is a causal relationship with

respect to R, in which L acts on C through transcript R. Model

M2 is a reactive model with respect to R, in which R is modulated

by C. Model M3 is the independent model, in which the QTL at

locus L acts on traits R and C independently. M1 implies L lead to

changes in trait R that in turn lead to changes in C; while M2 and

M3 imply the gene expression changes lie downstream of the

variation in the clinical traits or independently of the clinical traits

[5]. We applied a likelihood-based causality model selection

(LCMS) test that uses conditional correlation measures to

determine which relationship among traits is best supported by

the data [5]. The joint probability distributions corresponding to

these three models, respectively, are

M1: P L, R, Cð Þ~P Lð ÞP RjLð ÞP CjRð Þ

M2: P L, R, Cð Þ~P Lð ÞP CjLð ÞP RjCð Þ

M3: P L, R, Cð Þ~P Lð ÞP CjLð ÞP RjC,Lð Þ

where P(L) is the genotype probability distribution for locus L and

is based on a previously described recombination model [62]. The

random variables R and C are taken to be normally distributed

about each genotypic mean at the common locus L, so that the

likelihoods corresponding to each of the joint probability

distributions are based on the normal probability density function.

Likelihoods associated with each of the models are constructed

and maximized with respect to the model parameters, and the

model with the smallest Akaike Information Criterion (AIC) value

is identified as the model best supported by the data [63]. If M1 is

selected as the best model we conclude that the data suggests that

the gene expression trait is supported as causal for the clinical trait

[5]. In practice we applied the LCMS test as follows. On a tissue,

gender group basis we scanned the genome for cQTL and eQTLs

with LOD. = 2, and then collected cQTL:eQTL genomic

overlaps each time we detected peaks that overlapped at the

LOD.1 threshold. These overlaps were subjected to the LCMS

procedure using a marker (L) for testing selected equidistant

between the overlapping QTL peaks. The statistics for these

overlaps and test results are given in Table S15.

We calculated the fold enrichment for genes testing causal for a

trait in the chromosome 8 eQTL signature set compared with across

the genome by computing the fraction of causal reporter_ids in the

chr8-eQTL signature/the fraction of causal reporter_ids on the

array. The significance of the fold increase is estimated using

Fisher’s exact test statistics under the null hypothesis that the

frequency of the causal genes in the signature set was the same

between the whole reference set of genes on the array.

Statistical Methods for eSNP Enrichment
We used a random sampling strategy to assess whether a given

set of eSNPs was more likely to associate with T2D than

randomly selected sets of SNPs of equal number. In each random

sample, we randomly selected genotyped SNPs that were located

within 1 MB of human gene regions and that had minor allele

frequency (MAF) .4%, to ensure the location and MAF

distributions of the random SNP sets matched that of the eSNP

set of interest. The process was repeated 100,000 times. For each

random SNP set, we counted the percentage of SNPs with GWAS

p,0.05, P1
0:05 . . . P100,000

0:05 , and constructed the null distribution

based on these counts. By the central limit theorem, the null

distribution should approximately follow a normal distribution.

This was confirmed by direct observation. We then compared the

observed percentage of eSNPs with GWAS p,0.05 in the eSNP

set, Pobs
0:05, with the null distribution. We defined the Z statistic as

Z~
Pobs

0:05{
�PP0:05ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
B{1

PB
1

(Pi
0:05{

�PP0:05)2

s , and the p value for enrichment at

the 0.05 level was thus calculated as W(Z), where W(:) is the

standard normal cumulative probability. Here we used the p value

derived from the normal distribution rather than defining it as the

percentage exceeding the observed P in the eSNP set from random

samples (P~

PB
1

1(Pi
0:05w~Pobs

0:05)

B
). We chose to report the

theoretical p values to increase the resolution of our results, since

over most of the testing few p values from the 100,000 random

samples were smaller than those for the observed eSNP sets. In

cases where the empirical p values were greater than zero, they

were consistent with the theoretical p values.

Methods for KO generation and phenotyping
Mice with inactivated Akr1b8, Emr1, and Rgs2 genes were

constructed by replacing coding regions in exon 1 of the genes

(Akr1b8, 25 nt; Emr1, 71 nt; Rgs2, 83 nt) with a pGK-Neo cassette

that would both block further transcription and cause a frame shift

in any resulting mRNA. A detailed description of the Emr1 KO

generation is provided by Lin et al [64]. The Akr1b8 and Rgs2 null

mice were provided by Deltagen (San Mateo, CA). All three KO

mice strains were backcrossed to C57Blk6/N, the Akr1b8 and Rgs2

KO mice were backcrossed to N = 6, while the Emr1 KO mice were

backcrossed to N = 11. Mice were shipped to MCI for phenotyping.
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For gene expression profiling adipose tissues were collected from

Akr1b8 (n = 3) and Rgs2 (n = 3) KO male mice and littermate

controls (n = 3 per line). RNA was extracted and processed for

microarray as described above. Analysis of microarray data was

performed using a one-way ANOVA to compare the genotypic

groups (KO v WT) following normalization of the data with the

RMA algorithm. The results of this analysis are available in Table

S16. Enrichment analysis of the KO signatures versus the MCI BxA

F2 adipose co-expression modules (Figure S10) was performed using

Entrez Gene IDs (LLIDs) to match across platforms (Affymetrix to

Agilent). Unique IDs for each category were tallied and fold-

enrichment calculated with significance derived from the hypergeo-

metric P value (Table S14).

Supporting Information

Figure S1 Phenotyping platform and timeline for trait collection

in the B6AF2 cohort. - Mice were shipped from USA to France at

6 weeks of age, acclimatized for 1 week and then entered the study.

Mice were fed a modified high fat, salt balanced diet for the

duration of the study (9 weeks), and were subjected to phenotying

at the illustrated times. Details on the individual trait measures are

included in the methods and supplemental methods. Mice were

sacrificed at 16 weeks and tissues harvested for gene expression

profiling.

Found at: doi:10.1371/journal.pone.0014319.s001 (0.43 MB TIF)

Figure S2 Adiposity QTL hotspot on chromosome 8 coincides

with QTL for Energy and Glucose Traits. - QTL plots showing

adiposity, energy, and glucose traits mapping to chromosome 8.

Note that not all traits are shown for clarity. For additional

information on QTLs at this locus see Supplemental Table S2.

Found at: doi:10.1371/journal.pone.0014319.s002 (0.53 MB TIF)

Figure S3 Hierarchical clustering of traits across the mouse F2

population. - Trait values from the 360 individuals from the F2

population were normalized to allow comparison by converting to

Z-scores. They were hierarchically clustered using an UPGMA

unweighted average. Individual mice are represented as rows and

traits as columns. Red represents Z.2 and green Z,-2.

Found at: doi:10.1371/journal.pone.0014319.s003 (1.60 MB TIF)

Figure S4 eQTL tissue distributions and characterization of cis

versus trans eQTL. - (A) cis and trans eQTL LOD distribution

across tissues; (B) counts of eQTL (Y-axis) versus distance in bp

between gene and QTL position (X-axis) for genes that are

physically located on a different chromosome from the eQTL

(gray) or on the same chromosome as the eQTL (black).

Found at: doi:10.1371/journal.pone.0014319.s004 (1.21 MB TIF)

Figure S5 eQTL chromosomal distribution by tissue - adipose

(A), kidney cortex (B), kidney medulla (C), liver (D). - The count

indicated on the Y-axis refers to the number of unique

reporter_ids. Note the peak of eQTLs in the middle portion of

chromosome 8 specific to the adipose tissue (A). Other eQTL

hotpsots are apparent, notably a liver-specific eQTL signature on

chromosome 6.

Found at: doi:10.1371/journal.pone.0014319.s005 (1.18 MB TIF)

Figure S6 Frequency of eQTL Hotspots in Observed and

Permuted Data. The figure shows a frequency distribution for the

number of times a 10 Mb genomic bin contains a certain number

of eQTLs with LOD.5 (X-axis) for the observed and permuted

data from adipose. All four of the 10 Mb bins containing .1000

eQTLs in the observed data are from chromosome 8. The

maximum number of eQTLs seen in any 10 Mb bin across the

permuted data is 38 in Permute set 1.

Found at: doi:10.1371/journal.pone.0014319.s006 (0.14 MB TIF)

Figure S7 Plot of the MCI BxA adipose LOD scores versus the

Jaxshort BxA adipose LOD scores for trans eQTL from the

chromosome 8 hotspot. Shown are gene reporters that map to the

30-40 cM interval on chromosome 8 in the MCI BxA cohort and

the maximum LODs for the corresponding reporters in the

Jaxshort BxA cohort on chromosome 8.

Found at: doi:10.1371/journal.pone.0014319.s007 (0.15 MB TIF)

Figure S8 QTL maximum position on chromosome 8 for the

replicating trans eQTL in the Jaxshort BxA cross. This figure

illustrates that most of the eQTL map to a similar position (30–

40 cM interval) on chromosome 8.

Found at: doi:10.1371/journal.pone.0014319.s008 (0.08 MB TIF)

Figure S9 Mouse Trans8_eQTL signature is enriched in GO

Biological Process terms associated with energy metabolism,

oxidative phosphorylation and mitochondrial function. - The

hierarchical structure represents the relationship between GO

biological terms in the human Gene Ontology. The terms are

colored according to the degree of enrichment for genes in the

trans8_eQTL signature (red, P,10-30: mid pink, P,10-10: light

pink, P,10-6). Only terms with statistically significant enrich-

ments are shown (P,10-6).

Found at: doi:10.1371/journal.pone.0014319.s009 (1.73 MB TIF)

Figure S10 Mouse Trans8_eQTL signature maps to two

modules in the adipose co-expression network. - This figure shows

the topological overlap map for adipose from the MCI BxA

cohort. The trans8_eQTL signature is highly enriched in the red

and turquoise modules. These modules are highly correlated with

metabolic traits and associated with GO terms for mitochondria

and metabolic processes (red) and angiogenesis, apoptosis, cell

cycle, and immune cell function (turquoise).

Found at: doi:10.1371/journal.pone.0014319.s010 (1.68 MB TIF)

Figure S11 Mouse Trans8_eQTL signature maps to human

adipose modules whose expression correlates with metabolic traits.

- The human male adipose connectivity map is as previously

described [25]. The enrichment P values for the overlap of the

mouse trans8_eQTL signature to the red and turquoise modules

are given as well as the traits with which the modules correlate.

Gene ontology annotation of the genes in these modules is also

shown.

Found at: doi:10.1371/journal.pone.0014319.s011 (1.11 MB TIF)

Figure S12 SNP Set P value Distribution from DIAGRAM

GWAS. - The binned P values are shown on the X-axis for (A) the

full set of all SNPs with MAF .4% and (B) the set of 6,720 eSNPs

associated with adipose gene expression in the trans8_eQTL

signature.

Found at: doi:10.1371/journal.pone.0014319.s012 (0.72 MB TIF)

Figure S13 FDR by LOD score plot for cQTL.

Found at: doi:10.1371/journal.pone.0014319.s013 (0.00 MB

PNG)

Figure S14 FDR by LOD score plot for eQTL for Four Tissues;

Liver, Adipose, Kidney Medulla, Kidney Cortex.

Found at: doi:10.1371/journal.pone.0014319.s014 (0.00 MB

PNG)

Table S1 Trait values across the Parental, F1 and F2 cohorts.

Found at: doi:10.1371/journal.pone.0014319.s015 (0.03 MB

XLS)

Table S2 Trait QTL identified in the B6AF2 Cohort.

Found at: doi:10.1371/journal.pone.0014319.s016 (0.18 MB

XLS)
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Table S3 eQTL identified in the B6AF2 Cohort using All

genders.

Found at: doi:10.1371/journal.pone.0014319.s017 (5.93 MB

XLS)

Table S4 eQTL identified in the B6AF2 Cohort using Male

only.

Found at: doi:10.1371/journal.pone.0014319.s018 (3.59 MB

XLS)

Table S5 eQTL identified in the B6AF2 Cohort using Female

only.

Found at: doi:10.1371/journal.pone.0014319.s019 (3.84 MB

XLS)

Table S6 cis and trans eQTL sharing between tissues for eQTLs

LOD. = 5.

Found at: doi:10.1371/journal.pone.0014319.s020 (0.02 MB

XLS)

Table S7 Corrected (batch and gender) Gene Expression Data

for 1722 reporter_ids representing the chromosome 8 hotspot in

the Jaxshort BxA Adipose Replication Cohort.

Found at: doi:10.1371/journal.pone.0014319.s021 (4.35 MB

CSV)

Table S8 Genotype Data for the Jaxshort BxA Replication

Cohort.

Found at: doi:10.1371/journal.pone.0014319.s022 (2.84 MB

CSV)

Table S9 Gender assignments for Jaxshort BxA replication

cohort.

Found at: doi:10.1371/journal.pone.0014319.s023 (0.04 MB

XLS)

Table S10 Enrichment Analysis for causal genes in trans8_-

eQTL signature.

Found at: doi:10.1371/journal.pone.0014319.s024 (0.02 MB

XLS)

Table S11 Body Weight data for Akr1b8-/-, Emr1-/-, and

Rgs2-/- and littermate controls.

Found at: doi:10.1371/journal.pone.0014319.s025 (0.03 MB

XLS)

Table S12 Body Composition data by qNMR for Akr1b8-/-,

Emr1-/-, and Rgs2-/- and littermate controls.

Found at: doi:10.1371/journal.pone.0014319.s026 (0.07 MB

XLS)

Table S13 Serum Lipid composition for Akr1b8-/-, Emr1-/-,

and Rgs2-/- and littermate controls.

Found at: doi:10.1371/journal.pone.0014319.s027 (0.05 MB

XLS)

Table S14 Enrichment of Akr1b8-/- and Rgs2-/- adipose

signatures in the MCI BxA F2 adipose co-expression modules

associated with the trans eQTL signature and adiposity traits.

Found at: doi:10.1371/journal.pone.0014319.s028 (0.02 MB

XLS)

Table S15 Number of cQTL:eQTL pairs tested for causal/

reactive/independent/no call relationship grouped by Tissue and

Gender.

Found at: doi:10.1371/journal.pone.0014319.s029 (0.03 MB

XLS)

Table S16 ANOVA Analysis of Akr1b8-/- (n = 3) and Rgs2-/-

(n = 3) adipose signatures versus littermate controls.

Found at: doi:10.1371/journal.pone.0014319.s030 (7.64 MB

XLS)

Methods S1

Found at: doi:10.1371/journal.pone.0014319.s031 (0.07 MB

DOC)
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