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Abstract

Chlamydia trachomatis are obligate intracellular bacteria that survive and replicate in a bacterial-modified phagosome called
inclusion. As other intracellular parasites, these bacteria subvert the phagocytic pathway to avoid degradation in
phagolysosomes and exploit trafficking pathways to acquire both energy and nutrients essential for their survival. Rabs are
host proteins that control intracellular vesicular trafficking. Rab14, a Golgi-related Rab, controls Golgi to endosomes
transport. Since Chlamydia establish a close relationship with the Golgi apparatus, the recruitment and participation of
Rab14 on inclusion development and bacteria growth were analyzed. Time course analysis revealed that Rab14 associated
with inclusions by 10 h post infection and was maintained throughout the entire developmental cycle. The recruitment was
bacterial protein synthesis-dependent but independent of microtubules and Golgi integrity. Overexpression of Rab14
dominant negative mutants delayed inclusion enlargement, and impaired bacteria replication as determined by IFU.
Silencing of Rab14 by siRNA also decreased bacteria multiplication and infectivity. By electron microscopy, aberrant bacteria
were observed in cells overexpressing the cytosolic negative Rab14 mutant. Our results showed that Rab14 facilitates the
delivery of sphingolipids required for bacterial development and replication from the Golgi to chlamydial inclusions. Novel
anti-chlamydial therapies could be developed based on the knowledge of how bacteria subvert host vesicular transport
events through Rabs manipulation.
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Introduction

Chlamydia trachomatis are Gram-negative obligate intracellular

bacteria that constitute the leading cause of bacterial sexually

transmitted diseases and preventable blindness worldwide [1,2].

Chronic infections can result in several sequelae such us pelvic

inflammatory disease, ectopic pregnancy and female infertility. C.

trachomatis have a tropism for genital mucosal epithelium where they

promote their uptake into nonphagocytic cells. Chlamydial

infection and propagation rely upon a unique biphasic lifecycle

which starts when infectious, environmentally resistant, elementary

bodies (EBs) enter the cells within a membrane-bound vacuole

termed the inclusion. Once inside this modified phagosome, EBs

differentiate into metabolically active but non infectious reticulate

bodies (RBs) that multiply by binary fission. After numerous rounds

of replication, RBs undergo a transformation back into infectious

EBs for spreading to adjacent cells [3,4]. Indispensable to

chlamydial growth and development is the establishment of an

intracellular niche that avoids immune response but allows the

acquisition of essential host nutrients [5]. To achieve this residency,

these pathogens have evolved finely adapted mechanisms to

circumvent the endocytic/lysosomal degradative route and for

exploiting numerous intracellular trafficking pathways to acquire

amino acids, nucleotides and lipids from the host cell [6–8]. It has

been shown that chlamydial inclusions intersect TGN-derived

vesicles [9–12], multivesicular bodies [13,14] and lipid droplets

[15,16] for sphingomyelin, cholesterol and neutral lipids acquisition.

At present, the strategies developed by Chlamydia trachomatis to re-

route intracellular trafficking are being actively studied.

Rab GTPases, the masters in control of intracellular vesicular

transport and organelle identity, have been implicated in

chlamydial inclusion development [17]. Rab proteins are small

GTPases that cycle between an active prenylated GTP-bound

form and an inactive cytosolic GDP-bound form. The Rab family

includes almost 70 members and each one is implicated in the

control of a defined transport step [18,19]. It has been reported

that Rab1, Rab4 and Rab11 are recruited to the inclusion

membrane from all chlamydial species, whereas Rab6 and Rab10

are associated with inclusions in a species-specific manner [20–22].

It has been recently shown that silencing of Rab6 and Rab11 by

siRNA impaired lipid acquisition and replication of C. trachomatis

[21]. Conveniently, classical Rabs belonging to the endocytic/

phagocytic pathway like Rab5 and Rab7 are quickly excluded

from the membrane inclusion [6,8]. This selective recruitment of

Rab proteins may serve not only for camouflaging the inclusion

from lysosomes, but also for advantageously targeting host

organelles and vesicles full of nutrients to chlamydial inclusions.

Rab14, a GTPase involved in the delivery of TGN-derived

vesicles to endosomes and the plasma membrane, has recently

been described [23–25]. This protein has been pointed out to
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contribute to Mycobacterium tuberculosis-containing phagosomes

maturation arrest [26]. A Rab14 homologous in Dyctiostelium

discoideum, RabD, participates in homotypic phagosome fusion

[27]. The present study shows and characterizes the recruitment of

Rab14 to Chlamydia trachomatis-containing inclusions. Furthermore,

our data show the beneficial impact of Rab14 on chlamydial

inclusion development, sphingolipid transport and bacteria

replication.

Results

Rab14 associates to chlamydial inclusions
Chlamydia trachomatis establish a close relationship with the Golgi

apparatus of the infected host cell [21,28]. To date, it has been

reported that several Rabs involved in Golgi-related transport

events are specifically recruited to chlamydial inclusions. Rab1,

which controls endoplasmic reticulum to Golgi trafficking, and

Rab4 and Rab11, which regulate transport from the endocytic

recycling compartment (ERC) and from endosomes to the trans-

Golgi (TGN), associate with inclusions from all the chlamydial

species tested [20]. On the other hand, Rab6, that rules Golgi to

endoplasmic reticulum retrograde trafficking, is present only in C.

trachomatis-containing inclusions; whereas Rab10, another Golgi-

associated GTPase, is recruited exclusively to C. pneumoniae

inclusions [17,29]. To determine whether Rab14, a Rab that

regulates TGN to endosomes and plasma membrane transport

[23,25], localized to chlamydial inclusions, we examined intracel-

lular distribution of endogenous Rab14 in infected cells. HeLa

cells were infected with C. trachomatis serovar L2, fixed at 10 h p.i.

and processed to detect endogenous Rab14 with a specific

antibody followed by a FITC-labeled secondary IgG (green).

Bacteria were evinced by Hoescht DNA staining (blue). Addition-

ally, cells were labeled with mouse monoclonal anti-TGN 46, a

marker for the Golgi complex, and the appropriated anti-mouse

Cy5-conjugated secondary antibodies to visualize Golgi localiza-

tion (red). Cells were viewed by laser-scanning confocal micros-

copy (LSCM). The immunofluorescence confocal images clearly

showed endogenous Rab14 surrounding chlamydial inclusions

(Figure 1A). Rab14 decorated the periphery of the inclusion in a

defined rim-like staining pattern. Endogenous Rab14 delimiting

the chlamydial inclusions were observed in the totality of the

infected cells once the inclusion had arrived to the perinuclear

region. This finding is of great interest since previous published

reports have described the association of several Rabs (Rab1, 4, 6,

10 and 11) to chlamydial inclusions by using GFP-tagged

overexpressed Rab constructs [20–22].

Since Rab proteins fused to GFP have been shown to colocalize

with their respective endogenous proteins, HeLa cells overex-

pressing GFP-Rab14 were used for the subsequent experiments.

The association of Rab14 to the chlamydial inclusion was further

confirmed by the analysis of the distribution of GFP-Rab14wt

(green) and Hoescht-labeled bacteria (blue) along a line traversing

the chlamydial inclusion. Hoescht labels eukaryotic and bacterial

DNA. The intensity profile showed Hoescht-labeled bacteria

between two pikes of GFP-Rab14wt (Figure 1B). The presence of

Rab14 associated with chlamydial inclusions was further con-

firmed by the analysis of z-sections through the center of the

inclusion. The confocal planes revealed a fine punctuate pattern of

GFP-Rab14wt surrounding the inclusion with Hoescht-labeled

Chlamydia inside (Figure S1A). Several y sections from a 3D-

reconstruction of the z-optical planes are shown in Figure S1B.

The temporal expression pattern of Chlamydia trachomatis genes

varies along their developmental cycle [3–5]. As a consequence, a

differential timing has been demonstrated in the association of

Rab GTPases with the chlamydial inclusion. To analyze the

recruitment of Rab14 to the inclusions along the developmental

cycle, HeLa cells overexpressing GFP-Rab14wt were infected with

C. trachomatis and fixed at different post-infection (p.i.) times. At the

initial stages of infection (2 h and 4 h p.i.) no GFP-Rab14wt

surrounding the nascent inclusions was observed. The recruitment

of GFP-Rab14wt was evident at 10 h p.i. when the vacuoles had

arrived at their peri-nuclear localization. The amount of GFP-

Rab14wt associated to chlamydial inclusions rose during the mid-

stage developmental cycle (18 h to 24 h p.i.) showing a rim-shape

staining pattern delimiting the inclusions. GFP-Rab14wt recruit-

ment was maintained throughout the entire developmental cycle.

At later stages of infection (48 h to 72 h p.i.) some GFP-Rab14wt

remained associated with the inclusion membrane but surprisingly,

most GFP-Rab14wt label was observed inside chlamydial

inclusions (Figure 1C). At the final stages of infection, the inclusion

occupied almost the entire cell and the majority of intracellular

GFP-Rab14wt was found associated with the chlamydial inclusion

whereas the other intracellular stores of this Rab were depleted.

Rab GTPases cycle between an active membrane-associated

GTP-bound form and an inactive cytosolic GDP-bound form.

Usually GTP-charged Rabs are associated with membranes

through isoprenoid molecules added at their C-terminus. This

hydrophobic tail is hidden when the Rab is bound to GDP,

turning the Rab cytosolic and associated to a chaperon protein

named GDP Dissociating Inhibitor (GDI) [18,19]. However, this

general model for Rabs behavior is being challenged by increasing

evidence supporting that GDP/GTP cycles can also occur on

membranes without recycling to the cytosol. An example is the

GDP-bound form of Rab11 which, by the formation of a

symmetrical dimmer, remains associated with membranes and

could interact with certain Rab11 partners [30]. In uninfected

HeLa cells, GFP-Rab14wt distributed to its appropriate subcellu-

lar localization showing a punctuate pattern dispersed throughout

the cytosol and mostly concentrated at the Golgi apparatus. Its

inactive GDP-bound form, GFP-Rab14S25N, is mostly anchored

to membranes and trapped at the Golgi apparatus whereas

another negative non-prenylated mutant, GFP-Rab14DGCGC, is

exclusively diffuse and cytosolic (Figure S2).

To assess the distribution of GFP-Rab14wt and its mutants in

infected cells, transfected HeLa cells were infected with C.

trachomatis and fixed 24 h later. Confocal images showed that

GFP-Rab14wt decorated the chlamydial inclusion whereas its

negative mutant GFP-Rab14DGCGC was not found associated

with the inclusion and remained cytosolic. GFP-Rab14S25N, the

negative GDP-anchored mutant, was retained at the Golgi

apparatus in the vicinity of the vacuole (Figure 2). Rab14

recruitment was independent of the MOI used, since we have

observed Rab14 associated to inclusions in cells infected at an

MOI of less than 1 or more than 20.

To further analyze the recruitment of Rab14 to chlamydial

inclusions, Hela cells overexpressing GFP-Rab14wt and its

mutants were infected with C. trachomatis and fixed at 10 h p.i.

Confocal images showed a clear association of GFP-Rab14wt

(green) with perinuclear chlamydial inclusions at early stages of

development. A well-defined ring of GFP-Rab14wt delimiting the

bacterial inclusion was observed, whereas no association of the

negative mutants neither the GDP-bound form (GFP-

Rab14S25N) nor the non-prenylated cytosolic protein (GFP-

Rab14DGCGC) was appreciated (Figure 3). In order to gain

deeper insight into the recruitment of Rab14 to chlamydial

inclusions, another group of infections were carried out under

similar conditions but cells were fixed at 48 h p.i. Interestingly we

found intrainclusion structures labeled with Rab14, mainly in cells

C. trachomatis Recruits Rab14
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Figure 1. Rab14 is associated with chlamydial inclusions. A) HeLa cells were infected with C. trachomatis serovar L2 (MOI 5) for 10 h. Cells
were fixed, permeabilized and stained with rabbit polyclonal anti-Rab14 (1:100) followed by FITC-labeled goat anti-rabbit IgG (1:200) (green). Bacterial
DNA was evidenced by Hoescht staining (blue). Golgi apparatus was stained with mouse monoclonal anti-TGN 46 antibodies (1:200) followed by Cy5-

C. trachomatis Recruits Rab14
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overexpressing GFP-Rab14wt. In contrast, cells overexpressing the

negative non-prenylated mutant GFP-Rab14DGCGC displayed

inclusions without Rab14-labeling inside, as well as, with less blue

fluorescence associated to Hoescht-labeled bacterial DNA. To

delimit better the chlamydial inclusion edges, cells were stained

with rabbit polyclonal anti-IncG antibodies followed by anti-rabbit

Texas Red-labeled secondary IgG. IncG is a bacterial protein

expressed early in the bacterial developmental cycle that serves as

a trustworthy marker of inclusion membrane (Figure 4). These

GFP-Rab14wt positive structures observed in the inclusion lumen

by confocal microscopy resembled intrainclusion vesicles. The

three-dimensional reconstruction of GFP-Rab14wt overexpressing

cells (green) infected with C. trachomatis (blue) for 48 h and labeled

with anti-IncG antibodies (red) showed vesicular structures

Figure 2. Rab14DGCGC is not recruited to chlamydial inclusions. HeLa cells were transfected with pEGFP, pEGFP-Rab14wt, pEGFP-
Rab14S25N and pEGFP-Rab14DGCGC and 24 h later were infected with C. trachomatis serovar L2 (MOI 5). Cells were fixed at 24 h p.i. and bacterial
DNA was stained with Hoescht (blue). GFP-Rab14wt (green) was localized at the chlamydial inclusion membrane. Confocal images are representative
of four independent experiments. Bar 10 mm.
doi:10.1371/journal.pone.0014084.g002

conjugated anti-mouse IgG (1:700) (red) Endogenous Rab14 was clearly recruited to the inclusion. B) HeLa cells overexpressing GFP-Rab14wt were
infected with C. trachomatis serovar L2 (MOI 5) for 24 h and analyzed by confocal microscopy. The intensity profile showed GFP-Rab14wt (green) on
the inclusion membrane surrounding the Hoescht-labeled bacteria (blue). C) HeLa cells overexpressing GFP-Rab14wt (green) were infected with C.
trachomatis serovar L2 and fixed at indicated p.i. times. Bacterial and eukaryotic DNA was labeled with Hoescht (blue). Insets show a magnification of
the marked area. Bar 10 mm.
doi:10.1371/journal.pone.0014084.g001

C. trachomatis Recruits Rab14
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decorated by GFP-Rab14wt within the limits of the inclusions

close to the bacteria (Video S1). Images obtained by transmission

electron microscopy (TEM) of infected GFP-Rab14wt overex-

pressing cells fixed at 48 h p.i. showed membranous structures

inside chlamydial inclusions (Figure S3). Ongoing experiments are

being conducted to characterize these vesicular structures found

into the inclusion lumen of GFP-Rab14wt overexpressing cells at

late stages of chlamydial infection.

Taken together, these results showed that a functional Rab14

was recruited to the chlamydial inclusion. This recruitment could

be mediated through an interaction with a host or bacterial Rab14

binding molecule located at the chlamydial inclusion membrane.

Rab14 recruitment is bacterial protein synthesis-
dependent but independent of IncA exportation

It has been shown that once inside cells, early chlamydial

protein synthesis is needed for inclusion remodeling to avoid fusion

with lysosomes and for inclusion trafficking to the pericentriolar

region of the host cell [31]. To determine whether Rab14

recruitment to the inclusion also requires bacterial protein

synthesis, HeLa cells overexpressing GFP-Rab14wt were infected

with Chlamydia trachomatis. After the first two hours corresponding

to the uptake period, 200 mg/ml of chloramphenicol was added

for the following 24 h. Then, cells were fixed and analyzed by

confocal microscopy. As shown in Figure 5A upper panels, under

Figure 3. Rab14 recruitment to early chlamydial inclusions. HeLa cells overexpressing GFP, GFP-Rab14wt, GFP-Rab14S25N or GFP-
Rab14DGCGC (green) were infected with C. trachomatis serovar L2 (MOI 5) and fixed at 10 h p.i. Bacterial and eukaryotic DNA was stained with
Hoescht (blue). Insets show a magnification of the selected area of the cell. GFP-Rab14wt was recruited to the chlamydial inclusion membrane,
whereas the negative GDP-bound mutant Rab14S25N and the negative cytosolic mutant Rab14DGCGC were not associated to the inclusion. Confocal
images are representative of three independent experiments. Bar 10 mm.
doi:10.1371/journal.pone.0014084.g003

C. trachomatis Recruits Rab14
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chloramphenicol treatment, Chlamydia-containing vacuoles re-

mained dispersed throughout the host cytosol without association

with GFP-Rab14wt. These results demonstrated that chlamydial

protein synthesis was required for Rab14 recruitment to

chlamydial inclusion. Therefore, Rab14 targeting to the inclusion

is an active mechanism exerted by the bacteria for the remodeling

of their intracellular niche.

An increasing number of studies explore the association of host

Rabs with chlamydial inclusions. Nevertheless, the bacterial

proteins that participate in such interaction remain mostly

unknown. A family of integral inclusion membrane proteins

named Incs is pointed out as the bacterial molecules responsible

for the binding of host Rabs to the inclusion. The CT229, a C.

trachomatis Inc, specifically binds Rab4 [22]; whereas Cpn0585, a

C. pneumoniae inclusion membrane protein, interacts with Rab1,

Rab10, and Rab11 [32]. Another Inc protein, IncA, displays a

SNARE-like motif [33] and is involved in homotypic fusion of

inclusions [34,35]. Recently, it has been shown in an in vitro

Figure 4. Rab14 recruitment to late chlamydial inclusions. HeLa cells were transfected with pEGFP, pEGFP-Rab14wt, pEGFP-Rab14S25N and
pEGFP-Rab14DGCGC (green) and 24 h later were infected with C. trachomatis serovar L2 (MOI 5). Cells were fixed at 48 h p.i. and bacterial DNA was
stained with Hoescht (blue). Inclusion membrane was labeled with polyclonal rabbit anti-IncG antibodies (1:20) followed by goat anti-rabbit Texas
Red-conjugated antibodies (1:200) (red). Note GFP-Rab14wt-labeled vesicular structures inside inclusions (green). Images are representative of five
independent experiments. Bar 10 mm.
doi:10.1371/journal.pone.0014084.g004

C. trachomatis Recruits Rab14
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liposome fusion assay that IncA interferes with the SNARE-

mediated membrane fusion [36]. In addition, Chlamydia trachomatis-

containing inclusions do not fuse with each other when infected

cells were cultivated at 32uC. This observation correlates with

restricted export of IncA [34,35]. To assess whether Rab14 was

recruited to chlamydial inclusion through IncA, infected HeLa

cells overexpressing GFP-Rab14wt were maintained at 32uC
during 24 h. Multiple small non-fused inclusions (some of them

corresponding to individual bacterium-containing vacuoles) were

formed, but still strongly decorated with GFP-Rab14wt (Figure 5A

lower panels). These results showed that the recruitment of Rab14

to the inclusion was independent of the exposition of IncA or

another temperature-sensitive exported Inc to the inclusion

membrane. In addition, Rab14 recruitment was also independent

of the formation of a large unique single inclusion typical of C.

trachomatis-infected cells cultivated at 37uC.

Golgi disruption does not impede Rab14 recruitment
Rab14 has been implicated in the delivery of TGN-derived

vesicles to early endosomes and the plasma membrane [23–25]. In

order to determine whether an intact Golgi apparatus was

required for the localization of Rab14 to the chlamydial inclusion,

cells were treated with Brefeldine A (BFA), a fungal metabolite that

causes the collapse of the Golgi apparatus into the ER. HeLa cells

infected with C.trachomatis for 10 h were incubated with 1 mg/ml

BFA the last 6 h before fixation. Endogenous Rab14 was detected

using specific anti-Rab14 antibodies followed by FITC-labeled

secondary IgG (green). Golgi apparatus was evinced by anti-TGN

46 antibodies followed by the appropriated Cy5-conjugated

secondary antibodies (red). Bacterial and eukaryotic DNA was

labeled with Hoescht (blue). As shown in Figure 5B upper panels,

endogenous Rab14 was recruited to chlamydial inclusions, as

demonstrated by the well-defined rim-like green fluorescence

surrounding each of the inclusions even after Golgi disorganization

by BFA treatment. Similar results were obtained using GFP-

Rab14wt overexpressing cells infected with C. trachomatis and

treated with 1 mg/ml BFA during the last six hours until fixation at

24 h p.i. Golgi apparatus disruption was confirmed by staining

with anti-TGN 46 antibodies. Confocal images showed a clear

association of GFP-Rab14wt to chlamydial inclusions even when

the Golgi apparatus was disrupted (Figure S4 upper panels).

Collectively, these results demonstrate that the recruitment to

chlamydial inclusions of both, endogenous Rab14 and overex-

pressed GFP-Rab14wt is independent of Golgi apparatus integrity.

Chlamydia trachomatis are actively trafficked to the pericentriolar

region of the cell depending on host cytoskeleton [37]. Likewise,

an intact microtubule network is required for Golgi apparatus

integrity and its perinuclear localization [38–40]. It has been

shown that ERC-associated Rab4 and Rab11, as well as Golgi-

localized Rab1, Rab6 and Rab10, remained associated with

chlamydial inclusions after microtubule disruption by nocodazole

treatment [20–22]. To assess if the localization of Rab14

surrounding the inclusion requires intact microtubules, HeLa cells

infected with C. trachomatis were incubated with 20 mm Nocodazole

for 6 h before fixation at 10 h p.i. The absence of an intact

microtubule network in Nocodazole-treated cells was determined

by indirect immunofluorescence using a mouse monoclonal anti-b-

tubulin antibody followed by donkey anti-mouse Cy5-conjugated

secondary antibodies. Endogenous Rab14 distribution was

assessed by using rabbit polyclonal anti-Rab14 antibodies and

the appropriated FITC-labeled secondary antibodies. Bacteria

were evinced by Hoescht DNA staining. Confocal images showed

that endogenous Rab14 association with chlamydial inclusions was

unaffected by treatment with the microtubule-destabilizing drug

Nocodazole as indicated by the distinct rim-like staining pattern

surrounding the chlamydial inclusions (Figure 5B lower panels).

Coincidently, most GFP-Rab14wt remained associated with the

inclusion despite microtubules depolymerization in GFP-Rab14wt

overexpressing cells infected with Chlamydia trachomatis and treated

with 20 mm Nocodazole for 12 h prior fixation at 24 h p.i. (Figure

S4 lower panels). Therefore, both approaches indicated that

Rab14 was trafficked to the inclusion by a mechanism indepen-

dent of microtubules dynamics. Similar results were obtained using

Vinblastine, another microtubule-depolymerizing drug (data not

shown). Since depolymerization of microtubules provokes the

dispersion of Golgi stacks throughout the cytosol, these data also

confirmed that Rab14 recruitment to the inclusion was indepen-

dent of both, Golgi apparatus integrity and an intact cytoskeleton

dynamics.

Rab14 favors inclusion growth and bacteria replication
GFP-Rab14 was not associated to nascent inclusions, suggesting

that this GTPase was not involved in the entry process. To analyze

the role of Rab14 on bacteria internalization, transfected HeLa

cells were infected with C. trachomatis and fixed at 10 h p.i. The

percentage of infected cells was unaffected by the overexpression

of GFP alone, GFP-Rab14wt or both negative mutants GFP-

Rab14S25N or GFP-Rab14DGCGC (Figure 6A). Likewise, the

number of initial inclusions formed was not modified (data not

shown). In contrast, the enlargement of chlamydial inclusions

along time was significantly delayed in the presence of the negative

cytosolic GFP-Rab14DGCGC mutant. This effect was evident at

the mid-stage inclusions assessed by confocal microscopy.

Overexpression of the negative cytosolic mutant GFP-

Rab14DGCGC reduced the chlamydial inclusion size without

affecting the number of inclusions per cell or the bacteria

internalization rate at 24 h p.i. (Figure 6B). These data were in

agreement with the results obtained by measuring inclusion

diameter by TEM (data not shown). However, at later stages of

development, chlamydial inclusions from all cells (GFP, GFP-

Rab14wt, and both negative mutants GFP-Rab14S25N and GFP-

Rab14DGCGC overexpressing cells) reached a similar size

(Figure 6C).

To address the effect of Rab14 on bacterial growth and

replication, infected HeLa cells overexpressing GFP, GFP-

Rab14wt, GFP-Rab14S25N or GFP-Rab14DGCGC were lysed

at 48 h p.i. The infectious particles (EBs) released were titrated on

fresh HeLa cells by counting the Inclusion Forming Units (IFU)

24 h later. The amount of infectious bacteria recovered from

GFP-Rab14S25N or GFP-Rab14DGCGC overexpressing cells

Figure 5. Characterization of Rab14 recruitment. HeLa cells overexpressing GFP-Rab14wt (green) were infected with C. trachomatis serovar L2
(MOI 10) and incubated with: A) 200 mg/ml Chloramphenicol (20 h) (upper panels) or at 32uC (24 h) (lower panels); and B) HeLa cells infected with C.
trachomatis L2 (MOI 10) were incubated with 1 mg/ml Brefeldin A (6 h) (upper panels) or 20 mM Nocodazole (6 h) (lower panels), prior fixation at 10 h
p.i. Bacteria were labeled with Hoescht (blue). Endogenous Rab14 was detected using rabbit polyclonal anti-Rab14 (1:100) followed by goat anti-
rabbit FITC-labeled antibodies (1:200) (green). Mouse monoclonal anti-TGN 46 or mouse monoclonal anti-b-tubulin followed by donkey anti-mouse
Cy5-labeled antibodies (1:700) (red) were used to detect Golgi apparatus or microtubules, respectively. The data are representative of three
independent experiments. Bar 10 mm.
doi:10.1371/journal.pone.0014084.g005

C. trachomatis Recruits Rab14
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was diminished compared to GFP-Rab14wt and GFP overex-

pressing cells (Figure 6D). The IFU assays evinced the adverse

impact of Rab14 negative mutants on bacteria multiplication. In

addition, quantification of bacteria inside inclusions revealed a

reduction in the mean number of bacteria per cell inside both

Rab14 negative mutants overexpressing cells compared to control

cells, assessed by transmission electron microscopy (TEM) at 24 h

p.i. (Figure 6E).

To deeper analyze the effect of host Rab14 GTPase on C.

trachomatis replication, the endogenous protein synthesis was

Figure 6. Rab14 favors inclusion growth and bacteria replication. HeLa cells overexpressing GFP, GFP-Rab14wt or the mutants GFP-
Rab14S25N or GFP-Rab14DGCGC were infected with C. trachomatis L2 at a MOI of 10. A) Percentage of infected cells fixed at 10 h p.i. and quantified
by confocal microscopy. Bacterial DNA was labeled with Hoescht. B) Chlamydial inclusion area from cells overexpressing GFP alone, GFP-Rab14 wt or
both negative mutants GFP-Rab14S25N or GFP-Rab14DGCGC infected with C. trachomatis L2 at a MOI of 5 and fixed 24 h p.i. Inclusion area was
measured by confocal microscopy. Results are expressed as the mean 6 sem. C) Area of inclusions assessed by confocal microscopy. Cells
overexpressing GFP alone, GFP-Rab14 wt or both negative mutants GFP-Rab14S25N or GFP-Rab14DGCGC were infected with C. trachomatis L2 at a
MOI of 5 and fixed 48 h p.i. Results are expressed as the mean 6 sem. In Panels A to C, at least 50 cells of each condition coming from three
independent experiments were analyzed. Results were statistically analyzed by one-way ANOVA and Tukey post-test (*p,0.05). D) Infected HeLa cells
overexpressing GFP, GFP-Rab14wt, GFP-Rab14S25N or GFP-Rab14DGCGC were lysed at 48 h p.i. (MOI of 5). The infectious particles (EBs) released
were titrated on fresh HeLa cells by counting the Inclusion Forming Units (IFU) 24 h later as described in Material and Methods. The graph represents
media 6 sem of three independent experiments performed in duplicates. E) HeLa cells overexpressing GFP, GFP-Rab14wt, GFP-Rab14S25N or GFP-
Rab14DGCGC infected with C. trachomatis for 24 h were fixed and processed for Transmission Electron Microscopy (TEM). Bacteria inside inclusions
were counted in 30 cells of each condition from five independent experiments. Data were statistically analyzed by one-way ANOVA and Tukey post-
test (*p,0.05). F) HeLa cells transfected with negative control siRNA (open bar) or specific siRNA against human RAB14 (black bar) were infected with
C. trachomatis (MOI of 5) at 72 h post transfection. Then, cells were lysed at 48 h p.i. The infectious particles (EBs) released were titrated on fresh HeLa
cells by counting the Inclusion Forming Units (IFU) 24 h later as described in Material and Methods. The graph represents media and range of two
independent experiments performed in duplicates.
doi:10.1371/journal.pone.0014084.g006
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silenced by RNA interference. Briefly, HeLa cells were transfected

with chemically synthesized short interfering RNA (siRNA)

targeted to Rab14 or negative control siRNA. At 72 h post

transfection, cells were infected with C. trachomatis. Then, cells were

lysed at 48 h p.i. and infectious particles were titrated on fresh

HeLa cells by IFUs assays. Silencing of Rab14 substantially

reduced bacterial progeny in comparison to control cells

(Figure 6F). These results further confirmed the requirement of

a functional Rab14 for bacterial development and replication.

Knockdown of Rab14 (more than 70%) was confirmed by western

blot using rabbit polyclonal anti-Rab14 antibodies and goat anti-

rabbit HRP-conjugated IgG (Figure S5). The detrimental impact

on bacterial multiplication observed after Rab14 silencing or after

Rab14 negative mutants overexpression was similar, suggesting a

Rab14-specific effect.

The effect of Rab14 on Chlamydia trachomatis developmental

cycle was assessed by the analysis of inclusions from HeLa cells

overexpressing GFP, GFP-Rab14wt and its negative mutants at

the ultrastructural level by transmission electron microscopy

(TEM). The transfection efficiency of HeLa cells ranged between

85 to 95% with all plasmids used as shown in Figure S6. These

allow us to use transiently transfected cells for TEM and IFU

analysis. Since transfected cells could not be distinguish from un-

transfected ones by TEM, the totality of the cells present on the

grids were considered for ultrastructural analysis and bacterial

quantification. The two chlamydial developmental forms (EBs and

RBs) can be distinguished by TEM: the infectious EBs are smaller

and electron dense, whereas RBs are less electron dense and

larger. Chlamydia-infected cells developed a huge unique inclusion

containing mainly RBs at 24 h p.i. and primarily EBs by 48 h p.i.

Images from GFP-Rab14wt expressing cells revealed a normal

chlamydial developmental cycle compared to GFP control cells. In

contrast, TEM images showed altered bacterial developmental

forms mainly in the negative cytosolic mutant overexpressing cells

(Figure 7A). The presence of markedly enlarged, atypical

chlamydial forms, distinct from both EBs and RBs was observed

inside inclusions from cells overexpressing the negative cytosolic

mutant of Rab14, GFP-Rab14DGCGC. Other aberrant organ-

isms like bacterial ghost inside those cells were also observed

(Figure 7B). The abnormally large bacterial developmental forms

were similar to those generated after penicillin [41] or IFN-c
treatment [42]. Recently, it has been described the presence of

these aberrant bacteria in sphingolipid-depleted cells [14]. A

quantitative analysis of chlamydial developmental forms assessed

by TEM in cells overexpressing GFP, GFP-Rab14wt, GFP-

Rab14S25N and GFP-Rab14DGCGC was performed at 24 h p.i.

and the results were expressed as a percentage of total bacteria. An

increase of morphologically atypical large bacterial forms (LRBs)

and bacterial ghosts (GFs) inside inclusions from GFP-

Rab14DGCGC overexpressing cells was evident (Figure 7C).

Moreover, an early bacterial redifferentiation was suggested by a

slight increase in EBs in cells overexpressing the negative cytosolic

mutant of Rab14. A premature redifferentiation process in

sphingomyelin-deficient cells has been recently reported [14].Tak-

en together, the decrease in bacteria number as well as the

presence of aberrant bacterial forms inside inclusions suggests an

altered chlamydial developmental cycle in cells overexpressing the

negative cytosolic mutant of Rab14 and correlates with the

reduction of infectious progeny in those cells when analyzed by

IFU.

The effect on inclusion size, chlamydial differentiation and yield

of infectious particles implies a role for Rab14 in intracellular

development and growth of Chlamydia trachomatis.

Sphingolipids are transported to the inclusion via Rab14-
positive vesicles

Sphingolipids from the host cell are essential for chlamydial

growth and development. However, the molecular machinery

underlying bacterial lipid acquisition remains elusive. Several

studies have shown that TGN-derived vesicles destined for the

plasma membrane are re-directed to the inclusion [9–12].

Multivesicular bodies constitute another source for sphingolipids

[13–15]. Recently, it has been shown that two Rabs, Rab6 and

Rab11, are important for an efficient sphingolipid transport to the

chlamydial inclusion [21]. Therefore, research focused on whether

Rab14, another Golgi-associated Rab, participates in the transport

of sphingolipid-containing vesicles from the TGN to the inclusion.

To examine lipid acquisition, HeLa cells overexpressing GFP

alone, GFP-Rab14wt and its negative mutants GFP-Rab14S25N

and GFP-Rab14DGCGC were infected with C. trachomatis for

24 h. Then, cells were labeled for 40 minutes with BODIPY TR

Ceramide and chased for 30 minutes prior fixation. BODIPY TR

Ceramide is a red fluorescent lipid analogue that turns into labeled

sphingolipids in the Golgi apparatus [10]. Confocal images

showed an extensive colocalization between GFP-Rab14wt (green)

and the sphingolipids (red) at the chlamydial membrane inclusion

and at the vesicles found inside the inclusions. In addition, the

Golgi apparatus and the majority of the vesicles distributed

throughout the cytosol carrying sphingolipids were decorated with

GFP-Rab14wt (Figure 8A). However, not all GFP-Rab14 labeled

vesicles transport sphingolipids, as well as, not all vesicles carrying

sphingolipids are decorated by GFP-Rab14. The lipid uptake was

quantified by measuring the red fluorescence intensity (BODIPY

TR-labeled sphingolipids) coincident with the chlamydial inclu-

sions as described in Material and Methods. GFP-Rab14wt

overeexpressing cells showed a significantly increase in the amount

of sphingolipids associated to chlamydial inclusions. In contrast,

cells overexpressing the negative cytosolic mutant GFP-

Rab14DGCGC displayed less red fluorescence intensity associated

with the inclusions compared to GFP-Rab14wt overexpressing

cells (Figure 8B). Collectively, these data showed that sphingolipid

delivery to the maturing chlamydial inclusion was promoted by

Rab14. A three-dimensional reconstruction of GFP-Rab14wt

overexpressing cells (green) infected with C. trachomatis for 24 h

(blue) and labeled with fluorescent sphingolipids (red) showed

intrainclusion vesicular structures full of lipids decorated by Rab14

in intimate association with the bacteria (Video S2). Sphingolipid

uptake was also analyzed in uninfected GFP, GFP-Rab14wt, GFP-

Rab14S25N and GFP-Rab14DGCGC overexpressing HeLa cells

labeled for 40 minutes with BODIPY TR Ceramide and chased

for 30 minutes prior fixation. The red fluorescence intensity

associated to the entire cells was quantified as indicated in

Material and Methods. Overexpression of GFP-Rab14wt in-

creased sphingolipid accumulation whereas the presence of the

Rab14 negative mutants diminished sphingolipids inside cells in

comparison to control GFP overexpressing cells. Fluorescent

sphingolipid accumulation in uninfected cells overexpressing the

diverse Rab14 constructs was less evident than in their infected

counterparts (Figure S7).To avoid differences due to the ability to

accumulate ceramide of host cells, EBs were harvested from GFP,

GFP-Rab14wt, GFP-Rab14S25N or GFP-Rab14DGCGC over-

expressing HeLa cells infected with C. trachomatis for 48 h. During

the last period of incubation, cells were labeled with BODIPY TR

Ceramide for 4 h and chased for an additional 4 h in defatted-

BSA enriched cell culture medium to promote fluorescent

sphingolipid accumulation in EBs. Cells were examined by LSCM

after labeling and back-exchange, and the majority of the

fluorescent lipids remained associated with the chlamydial
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inclusion. After extensive washing to remove unincorporated

lipids, cells were lysed and EBs purified. Sphingolipids were

extracted from harvested EBs as described in Material and

Methods. The fluorescent sphingolipid extracts (SM) were

measured by spectrofluorometry (620 nm emission) and normal-

ized to protein content (Prot) in the corresponding watery phase.

Protein absorbance was measured at 280 nm in a spectropho-

tometer. Fluorescence emission and absorbance of the solvents

were subtracted from the samples measurements. The ratio SM/

Prot was expressed as arbitrary units. The results clearly showed

that EBs purified from infected GFP-Rab14wt overexpressing cells

were enriched in fluorescent sphingolipids, whereas EBs harvested

from infected cells overexpressing both GFP-Rab14 negative

mutants had less associated sphingolipids (Figure 8C). These

results were further confirmed by thin layer chromatography

(TLC). Briefly, EBs were purified from transfected cells labeled

with fluorescent sphingolipids. Finally, lipid extracts from

harvested EBs were resolved by TLC as described in Material

and Methods. A representative TLC plate is shown in Figure 8D.

Fluorescent spots were visualized on air-dried plates upon 550 nm

excitation. Densitometry was performed using a LAS-4000 EPUV

and LAS image reader software (FUJI Life Science, Japan). The

amount of sphingolipids from EBs of infected cells overexpressing

Rab14 negative mutant was substantially decreased compared to

GFP and GFP-Rab14wt overexpressing cells assessed by TLC.

The data collected from confocal microscopy images, fluorometric

measurements and TLC assays showed that sphingolipid accu-

mulation inside EBs required a functional Rab14.

In summary, these results suggested that C. trachomatis actively

exploits host Rab14-mediated vesicle transport to deliver TGN-

derived lipids to the inclusion. Interruption of this trafficking

pathway by overexpression of the negative cytosolic mutant of

Figure 7. Ultrastructural analysis of chlamydial inclusions. A) HeLa cells overexpressing GFP, GFP-Rab14wt, GFP-Rab14S25N and GFP-
Rab14DGCGC infected with C. trachomatis serovar L2 (MOI 5) were fixed at 24 h p.i. and processed for TEM. The arrow head shows an EB (smaller and
electron dense) and the large arrow shows a RB (larger and less electron dense). Bar 2.25 mm. B) GFP-Rab14DGCGC overexpressing cells infected with
C. trachomatis serovar L2 (MOI 5) for 24 h. Left panel shows an inclusion containing enlarged abnormal chlamydial developmental forms. Right panel
shows an inclusion containing membrane structures and ghost bacterial forms. Bar 2.25 mm. C) Pie graphs show the relative proportion of reticulate
bodies (RBs), elementary bodies (EBs) and large aberrant bacteria (ABs) and ghost bacterial forms (GFs) inside inclusions from GFP, GFP-Rab14wt, GFP-
Rab14S25N and GFP-Rab14DGCGC overexpressing cells infected with C. trachomatis serovar L2 (MOI 5) for 24 h analyzed by TEM. At least 20 cells of
each condition from three independent experiments were quantified.
doi:10.1371/journal.pone.0014084.g007
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Figure 8. Sphingolipids are transported to chlamydial inclusions via Rab14-positive vesicles. A) HeLa cells overexpressing GFP, GFP-
Rab14wt, GFP-Rab14S25N or GFP-Rab14DGCGC (green) were infected with C. trachomatis serovar L2 (MOI 5) for 24 h. Before fixation, cells were
incubated 40 minutes with 5 mM BODIPY TR-Ceramide (red) and chased 30 minutes at 37uC. Bacterial DNA was labeled with Hoescht (blue). Inset
shows a magnification of the selected area. Bar 10 mm. B) Quantification of red fluorescence (lipids) associated with chlamydial inclusions from cells
overexpressing GFP, GFP-Rab14wt, GFP-Rab14S25N or GFP-Rab14DGCGC infected for 24 h and labeled as indicated in panel A. The red fluorescence
intensity of 50 cells in each experimental condition from three independent experiments was measured by confocal microscopy as indicated in
Material and Methods. The graph represents media 6 sem. Results were statistically analyzed by one-way ANOVA and Tukey post-test (*p,0.01
versus control GFP overexpressing cells; **p,0.001 versus GFP-Rab14wt overexpressing cells). C) Fluorescent lipids extracted from EBs purified from
transfected cells were measured by spectrofluorometry. Basically, lipid extracts were quantified (530 nm excitation/620 nm emission) and normalized
to protein content in the corresponding watery phase (absorbance at 280 nm) measured by spectrophotometry. Emission and absorbance of
solvents were subtracted from sample lectures. Data were expressed as a ratio: sphingolipids emission to proteins absorbance. The graph represents
media and range of two independent experiments. D) Lipid extracts of equal amounts of EBs harvested from GFP, GFP-Rab14wt, GFP-Rab14 S25N or
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Rab14 impaired lipid uptake resulting in a delayed inclusion

growth, an abnormal chlamydial developmental cycle and an

impaired bacteria replication.

These results strengthen that Rab14 is important for sphingo-

lipid transport from the TGN to the inclusion and, thereby, can

influence the outcome of Chlamydia trachomatis infection.

Discussion

The success of Chlamydia trachomatis development hinges upon

the complex host-pathogen interaction. Increasing evidence points

out that the invading bacteria subvert intracellular traffic to avoid

phagolysosome degradation and to facilitate the delivery of host

nutrients to the growing inclusion [3–5,17,43]. However, the

mechanisms involved in these events are poorly defined. It has

been demonstrated that Chlamydia-containing phagosomes, as soon

as they are formed, dissociate from the classical phagocytic/

lysosomal pathway and rarely interact with endocytic vesicles [6].

Bacteria actively modify the phagosomal membrane by exclusion

or recruitment of selected host proteins. This unique modified

phagosome is termed the inclusion. To date, it has been reported

that several Rabs are specifically recruited to chlamydial

inclusions. Rab4 and Rab11, which are involved in both

endosomal receptor recycling and endosome to TGN transport,

are found associated with chlamydial inclusions. Additionally,

another Golgi-associated GTPases like Rab1, Rab6 and Rab10,

are also recruited to chlamydial inclusion membranes [20–22].

However, the inclusion is devoid of Rab5 and Rab7, typical Rabs

from the endocytic via. The presence of these specific Rabs

determines the intracellular fate of the inclusion [5,17].

Rab14, a GTPase involved in TGN to early endosomes and to

plasma membrane transport, is responsible for the maturation

block of Mycobacterium tuberculosis-containing phagosomes [23–26].

Our results demonstrate that Chlamydia trachomatis serovar L2

actively recruit host Rab14 in a bacterial protein synthesis-

dependent manner but independent of IncA exportation to the

chlamydial inclusion membrane. Moreover, microtubule polymer-

ization and Golgi integrity are not required for Rab14 association

with the chlamydial inclusions. Coincidently, the recruitment of

Rab1, Rab4, Rab6, Rab10 and Rab11 to chlamydial inclusions is

maintained in the absence of microtubules [20]. These data are

also in agreement with the association of Rab6 and its effector

protein BICD1 with the inclusion when the Golgi apparatus is

disrupted by BFA treatment [44]. It is important to note that this is

the first report showing the recruitment of an endogenous Rab

protein to chlamydial inclusions. Furthermore, our results

demonstrate that the association to inclusions of endogenous

Rab14 does not require an intact Golgi apparatus or microtubule

polymerization.

The presence of Rab14 decorating chlamydial inclusions is

evident at 10 h p.i. and increases throughout the entire

developmental cycle. Mid-stage inclusions (24 h p.i.) show a

Rab14-positive rim-like shape surrounding them. At later stages of

chlamydial inclusion development, Rab14 label is associated to

inclusion membrane but also, is mostly associated to membranous

structures within the lumen that resemble intrainclusion vesicles.

This surprising finding is in agreement with the observation of

translocated lipid droplets inside chlamydial inclusions [15,16].

The presence of intrainclusion Rab14-labeled vesicular structures

reinforces the idea of a general translocation mechanism from the

host cell cytoplasm into the inclusion lumen as another strategy for

bacterial nutrient acquisition. More detailed microscopy, including

immunoelectron microscopy, should be performed to unravel the

nature of these vesicle-like structures found inside late stage

inclusions of GFP-Rab14wt overexpressing cells. In addition, our

results show that Rab14 is required for chlamydial inclusion

growth and development, since the presence of its negative

cytosolic mutant delays inclusion enlargement.

Chlamydia trachomatis undergo a common intracellular biphasic

growth cycle, which includes the elementary bodies (EBs), the

infectious forms, and the reticulate bodies (RBs) which are the

replicative forms. Assessed by electron microscopy, at 24 h p.i., the

number of bacteria inside inclusions significantly decreases by

overexpression of Rab14 negative mutants. The presence of

enlarged RBs and bacterial ghosts is found mainly inside cells

overexpressing the negative non-prenylated cytosolic mutant of

Rab14. These abnormal chlamydial developmental forms char-

acterized by their ultra-structural morphological alterations are

likely aberrant bacteria observed in persistent infections [14,45].

These atypical chlamydial developmental forms suggest a

disturbed bacterial maturation process in cells overexpressing the

Rab14 negative cytosolic mutant. Taken together, our results

demonstrate that a functional Rab14 is required for a normal

chlamydial developmental cycle by promoting bacteria differen-

tiation and replication. At 48 h p.i., the effect of Rab14 negative

mutants on Chlamydia trachomatis intracellular fate is even more

evident. The inclusion forming unit analysis clearly shows that

Rab14 promotes bacteria replication and infectivity, since the

amount of infectious particles released from GFP-Rab14wt

overexpressing cells is greater compared to cells overexpressing

both negative mutants of Rab14 or Rab14-depleted cells. The

detrimental impact on bacteria infectivity observed after Rab14

silencing or after Rab14 negative mutants overexpression is

similar, and consequently, these results confirm a role for Rab14

on bacteria replication. However, we cannot exclude the

participation of Rab share effectors that could be sequestered by

over-expressed negative mutants of Rab14. Collectively, these data

support the idea that bacteria replication and development is

favored by the presence of a functional Rab14 at the chlamydial

inclusion.

All Chlamydia species can accomplish their entire lifecycle,

replication and differentiation, within the intracellular inclusion. It

has been demonstrated that host cell lipids are essential for

bacteria subsistence, growth and multiplication. Lipid droplets

translocate to the inclusion lumen and associate with reticular

bodies [15,16]. The late endocytic pathway is implicated in the re-

routing of biosynthetic precursors to the chlamydial inclusion via

multivesicular bodies [13,14]. Furthermore, it has been clearly

demonstrated that chlamydial inclusion intercepts a subset of

TGN-derived vesicles containing sphingolipids and cholesterol

and captures these lipids for bacteria benefit [9–12]. Recently, it

has been shown that Rab6 and Rab11 are required for both

chlamydial-induced Golgi fragmentation and sphingolipid trans-

port to the inclusion [21]. This study shows that TGN-derived

vesicles full of sphingolipids are enriched in Rab14. In addition,

our results show that sphingolipid uptake is increased in uninfected

GFP-Rab14 DGCGC were resolved by thin layer chromatography as indicated in Material and Methods. Line 1 corresponds to sphingolipid extracts of
EBs harvested from GFP, line 2 to GFP-Rab14 wt, line 3 to GFP-Rab14 S25N and line 4 to GFP-Rab14 DGCGC. Fluorescent spots were visualized on air-
dried plates upon 550 nm excitation. Densitometry was performed using a LAS-4000 EPUV luminometer and LAS image reader software (FUJI Life
Science, Japan). A representative TLC plate from two independent experiments is shown.
doi:10.1371/journal.pone.0014084.g008
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GFP-Rab14wt overexpressing cells whereas sphingolipid accumu-

lation inside cells overexpressing the GFP-Rab14 negative mutants

is impaired, confirming a role for Rab14 in sphingolipid transport.

Moreover, Rab14 markedly promotes sphingolipid delivery from

the TGN to the chlamydial inclusion in infected cells. In contrast,

overexpression of the negative cytosolic mutant of Rab14

significantly impairs sphingolipid uptake by chlamydial inclusions

quantified by confocal microscopy. EBs harvested from infected

cells overexpressing both negative mutants, GFP-Rab14S25N and

GFP-Rab14DGCGC, accumulate less sphingolipids compared to

EBs purified from GFP-Rab14wt or GFP control cells assessed by

spectrofluorometry and TLC. Taken together, these data assign a

role for Rab14 in sphingolipid transport from the TGN to the

inclusion, and consequently, in favouring EBs sphingolipid

capture. Recently, it has been shown that host cell sphingolipids

are required for inclusion integrity, a normal bacterial develop-

mental cycle and reactivation of persistent infections [14].

Moreover, aberrant bacterial forms are present in sphingomy-

elin-deficient cells. In agreement, our results show a delayed

inclusion enlargement, an impaired bacteria replication and the

generation of abnormal bacterial forms in infected cells with

reduced sphingolipid acquisition due to the overexpression of the

negative mutants of Rab14. Taken together, these results indicate

that Rab14, by promoting sphingolipid transport, could contribute

to inclusion growth and bacteria development. These and previous

data suggest that more than one Rab contributes to lipid transport

from the Golgi apparatus to the inclusion and thereby, affects the

intracellular development of these bacteria. Thus, Chlamydia

trachomatis might manipulate functionally redundant intracellular

trafficking pathways to ensure their survival and replication.

However, the unexpected finding of Rab14-labeled vesicular

structures in the lumen of the late stage inclusions has not been

reported for another Rab.

In summary, our results suggest a role for Rab14 in inclusion

enlargement, sphingolipid transport, chlamydial developmental

cycle and bacterial replication. These data could contribute to

better delineate the complex molecular machinery used by the

bacteria for the acquisition of both energy and nutrients from host

cells, and provide insights into bacterial manipulation of vesicular

trafficking. This knowledge could help in the development of novel

anti-chlamydial therapies. Nevertheless, further experiments

should be performed to reveal the chlamydial protein involved

in Rab14 recruitment to the inclusion and to elucidate at a deeper

level the molecular machinery used by these bacteria to

manipulate host cell intracellular trafficking.

Materials and Methods

Cells and bacteria
HeLa 229 cells (ABAC, Bs.As., Argentina) were grown in

infection medium (IM): D-MEM high glucose (GIBCO-BRL, Bs.

As., Argentina) supplemented with 10% fetal bovine serum (FBS)

(Internegocios SA, Bs. As., Argentina), 0.3 mg/ml L-glutamine

(ICN Biomedicals Inc, Ohaio, USA) and 1.55 mg/ml glucose

(Biopack, Bs.As., Argentina). Chlamydia trachomatis serovar L2

(gently given and typified by Unidad de Estudios de Chlamydias,

FFyB, UBA, Bs. As., Argentina) were used. For bacterial

propagation, HeLa cells were infected at a multiplicity of infection

(MOI) of 20 and incubated at 37uC in an atmosphere of 5% CO2

and 95% humidified air for 48 h. Then, infected cells were lysed

with glass beads and EBs were purified by centrifugation as

previously described [46]. The purified EBs were suspended in

0.2 M sucrose-5% FBS-0.02 M phosphate buffer (pH = 7.2) and

titrated by determination of inclusion forming units (IFU).

Plasmids and antibodies
The full length human Rab14 cDNA was purchased at the

UMR cDNA Resource Center (University of Missouri, USA) and

subcloned into the vector pEGFP-C1. The plasmids pEGFP-

Rab14S25N and pEGFP-Rab14DGCGC were generously pro-

vided by Dr. Alfred Nordheim, University of Tuebingen

(Tuebingen, Germany). The cDNA of Rab11, a generous gift

from Dr. David Sabatini, New York University (New York, USA),

was subcloned into the vector pEGFP-C1 as previously reported

[47]. The antibodies used in this study were rabbit polyclonal anti-

RAB14, mouse monoclonal anti-TGN 46 and mouse monoclonal

anti-actin (Abcam, Cambridge, USA), mouse monoclonal anti-b
tubulin (Sigma, Bs. As., Argentina), goat anti-mouse HRP-

conjugated IgG and goat anti-rabbit HRP-conjugated IgG,

donkey anti-rabbit Cy5-labeled IgG, donkey anti-mouse Cy5-

conjugated IgG, goat anti-rabbit Texas Red-labeled IgG and goat

anti-rabbit FITC-labeled IgG (Jackson Inmunoresearch Labora-

tories, West Grove, PA, USA and Invitrogen, Bs. As. Argentina).

Rabbit polyclonal anti-IncG antibodies were generously provided

by Dr. Ted Hackstadt, Laboratory of Intracellular Parasites,

National Institute of Allergy and Infectious disease (Rocky

Mountain Laboratories, Montana, USA).

Cell transfection and infection
HeLa 229 cells were grown on 12-mm-diameter glass coverslips

in 24-well plates (ETC Internacional, Bs.As., Argentina) until 70%

confluence. Cells were washed once with serum-free D-MEM

(GIBCO-BRL Bs. As., Argentina) and transfected with Lipofecta-

mine 2000 (Invitrogen, Bs. As., Argentina) using 0.5 ml per 1 mg of

DNA per well according to the manufacturer’s protocol. Under

these conditions, transfected cells ranged between 85% and 95%.

Twenty-four hours post-transfection, cells were infected with C.

trachomatis serovar L2 at a MOI of 5. HeLa cells with bacteria were

centrifuged for 10 minutes at 30uC at 1000 rpm and then

maintained for two and a half hour at 37uC. After that, cells were

washed three times with phosphate-buffered saline (PBS) to

eliminate non-internalized bacteria, and finally, cells were

incubated in the presence of infection medium (D-MEM without

antibiotics) at 37uC in an atmosphere of 5% CO2 and 95%

humidified air for the indicated times (post-infection period).

Reagents and treatments
20 mM Nocodazole (Noc) (Calbiochem, San Diego, CA),

200 mg/ml chloramphenicol (Chlor) (Rontag, Bs. As., Argentina)

or 1 mg/ml Brefeldin A (BFA) (Merck, Bs. As., Argentina) were

added to infected cells at the indicated post-infection times (p.i.).

Then, cells were fixed in 3% p-formaldehyde (PFA) in PBS for

15 min. As mounting medium 0.1 mg/ml Hoescht/Mowiol

(Calbiochem and Molecular Probes, USA, respectively) was used.

Fluorescent labeling and Confocal microscopy
HeLa cells were seeded on coverslips in 24 well plates and

infected with C. trachomatis according to the assay. For lipid

transport experiments, cells were labeled with 5 mM BODIPY TR

Ceramide-BSA complex in DMEM (Molecular Probes, USA) for

40 minutes, then the extracellular fluorescent probe was

eliminated by extensive washing with cold PBS, and finally, cells

were incubated at 37uC for 30 minutes before fixation in 0,03%

defatted BSA enriched cell culture medium. Cells from the

different experimental conditions were equally and simultaneously

processed. Confocal images were captured using the same

parameters setting: equal optical magnification (606) and

electronic zoom (26), identical laser potency (5%), identical
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photodetector gain (HV 480 V), identical scanning speed (12 ms/

pixel). The fixation of the parameters described above determined

exposure and acquisition times that were identical for all

experimental groups. Then, fluorescence intensity of each channel

(green, blue, red and far red) was measured using the FV10-ASW

1.7 Software (Olympus, USA). For lipid uptake quantification,

fluorescence intensities of labeled lipid (635 nm laser) were

determined by defining regions of interest (ROI) coincident with

chlamydial inclusions (405 nm laser) by confocal microscopy and

were expressed as arbitrary units (a.u.). Images were acquired at

512 by 512 pixels. The size of inclusions was determined as pixel

area assessed by confocal microscopy. The sphingolipid fluores-

cence intensity was normalized to inclusion area. In uninfected

cells, the area of the whole cell was used.

To detect endogenous Rab14 or bacterial IncG, infected cells

were fixed in 3% PFA and permeabilized for 20 min with 0.2%

saponin/BSA in PBS, then incubated for 1 h with the corre-

sponding primary antibody followed by incubation with a

fluorescent-labeled secondary antibody. A similar procedure was

used for Golgi apparatus and microtubules staining. Samples were

mounted in Hoescht/Mowiol. An Olympus FV-1000 spectral

confocal unit mounted on an IX-25 Olympus inverted microscope

was used. Confocal images were acquired and analyzed with the

FV10-ASW 1.7 Software (Olympus America, Inc., Melville, NY)

and then processed using Adobe Photoshop CS3 (Adobe Systems,

Inc., San Jose, CA, USA). Adobe Ilustrator CS3, MacBiophotonic

Image J and CamStudio softwares were used to perform figures

and videos.

Transmission electron microscopy (TEM)
HeLa cells were grown in T-25 ml flasks and infected with C.

trachomatis L2 at a MOI of 5 for 24 h. Infected monolayers were

fixed with 2% glutaraldehyde/PBS for one hour at 37uC. The cells

were removed with 1% gelatin/PBS, gently centrifuged and

washed tree times with PBS. After that, cells were incubated with

Osmium tetroxide/Potassium ferricyanide/PBS (1:1:1) for 90 min.

Samples were dehydrated using an increasing acetone series and

embedded in Spurr’s resin (Ted Pella Inc, USA). Thin sections

were cut with an ultramicrotome (Leica ultracut R, Austria) and

stained with 1% uranyl acetate and Reynold’s lead citrate (Ted

Pella Inc, USA) before they were observed with a Zeiss 900

electron microscope (Zeiss, Germany). Images were processed

using Adobe Photoshop CS3 (Adobe Systems, Inc., San Jose, CA,

USA).

Inclusion Forming Units (IFU) measurement
Transfected cells, Rab14-depleted and control cells were

infected with C. trachomatis L2 for 48 h, lysed with glass beads

and titrated on fresh HeLa cells. First, cell lysate was centrifuged

for 10 min at 500 g to remove debris and progressive dilutions

were inoculated onto fresh HeLa cells seeded on a 96 well plate.

After 24 h, the number of inclusions formed by chlamydial

progeny was assessed by microscopical analysis and expressed as

inclusion forming units (IFU) per ml. IFU was normalized to

protein determined using the Bradford method.

Rab14 silencing and western blot
HeLa cells were seeded onto six well tissue culture plates and

24 h later were transfected with 30 ng of All Stars negative control

siRNA or 30 ng of a mix of Predesigned siRNA directed against

human RAB14 using HiPerFect transfection reagent (Qiagen,

Berlin, Germany) and Opti-MEM (Invitrogen, Bs. As., Argentina)

according to siRNA transfection protocol at the Qiagen web page

(http://www.qiagen.com/transfectionprotocols/default.aspx). At

72 h post transfection, cells were infected with C. trachomatis.

Two days later, the amount of infectious particles was measured

by IFUs. To confirm the decrease of Rab14 protein, cell lysates

obtained at 72 h post siRNAs transfection were resolved by SDS-

PAGE. Separated proteins were transferred to nitrocellulose

membranes and then detected using rabbit polyclonal anti-

Rab14 (1:800) followed by goat anti-rabbit HRP-conjugated

antibodies (1:5000). Protein loading was controlled with mouse

monoclonal anti-actin (1:1000) and goat anti-mouse HRP-labeled

antibodies (1:5000). Amersham ECL PlusTM was used to evince

HRP activity (GE Healthcare Life Sciences, Bs.As., Argentina).

Extraction and quantification of EBs-derived lipids
Transfected cells (T-25 flasks at 80% confluence) were infected

with C. trachomatis L2 for 48 h. Cells were lysed and EBs were

purified as previously described [46]. Prior to EBs harvesting, cells

were labeled with 2 mM BODIPY TR Ceramide-BSA complex in

DMEM (Molecular Probes, USA) for 4 h, then the extracellular

fluorescent probe was eliminated by extensive washing with cold

PBS, and finally, cells were incubated at 37uC for 4 h in defatted

BSA-enriched medium before EBs harvesting. Lipids from purified

EBs were extracted by Bligh and Dyer chloroform:methanol

extraction and dried under a stream of Nitrogen [12]. The samples

were resuspended in 1:1 chloroform:methanol and fluorescent

lipids were quantified by spectrofluorometry (530 nm excitation/

620 nm emission, Packard FluoroCountTM Microplate Fluorom-

eter, USA). Increasing dilutions of BODIPY TR Ceramide were

used to generate a curve and fluorescence emission of the solvents

was subtracted from sample lectures. Results were normalized to

protein content in the corresponding watery phase. Proteins were

quantified by their absorbance at 280 nm in a spectrophotometer

(Jenway, Genova). Results were expressed as a ratio: lipids

emission to proteins absorbance.

Thin layer chromatography of lipids extracts from EBs
Lipids extracts obtained as indicated above were resolved by

thin layer chromatography (TLC). Briefly, lipids from equal

amounts of purified EBs were extracted by Bligh and Dyer

chloroform:methanol extraction and dried under a stream of

Nitrogen [12]. Samples were resuspended in chloroform/metha-

nol/HCl (100:100:1, v/v) and resolved on TLC plates using 1-

butanol/methanol/acetic acid/water (8:2:1:2, v/v) as solvent

system. Fluorescent spots were visualized on air-dried plates upon

550 nm excitation. Densitometry was performed using a LAS-

4000 EPUV luminometer and LAS image reader software (FUJI

Life Science, Japan).

Supporting Information

Figure S1 Confocal analysis of a chlamydial inclusion. HeLa

cells overexpressing GFP-Rab14wt (green) infected with C.

trachomatis serovar L2 (MOI 10) were analyzed by confocal

microscopy at 24 p.i. Bacterial DNA was labeled with Hoescht

(blue). A) Images show different z-optical planes through the

center of the inclusion revealing a fine punctuate pattern of GFP-

Rab14 surrounding the chlamydial inclusion. B) Different y

sections of the 3-D reconstruction of the z-optical planes showed in

panel A.

Found at: doi:10.1371/journal.pone.0014084.s001 (0.60 MB TIF)

Figure S2 Intracellular localization of GFP-Rab14 and its

mutants. HeLa cells were transfected with pEGFP-Rab14wt,

pEGFP-Rab14S25N (a GDP-bound mutant) and pEGFP-Rab14

DGCGC (a mutant with its prenylation site deleted). GFP-

Rab14wt was found at early endosomes and TGN, GFP-
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Rab14S25N was retained at the Golgi apparatus whereas GFP-

Rab14 DGCGC was mostly cytosolic. Bar 10 mm.

Found at: doi:10.1371/journal.pone.0014084.s002 (0.22 MB TIF)

Figure S3 Transmission electron microscopy of intrainclusion

structures. GFP-Rab14wt overexpressing cells infected with C.

trachomatis L2 (MOI of 5) were fixed at 48 h p.i. and processed for

electron microscopy as indicated in Material and Methods. A

magnification of an image shows vesicular membranous structures

(arrows) and lipid droplets (asterisk) inside chlamydial inclusions

close to bacterial organisms. Bar 1 mm.

Found at: doi:10.1371/journal.pone.0014084.s003 (0.79 MB TIF)

Figure S4 GFP-Rab14 distribution in BFA and Nocodazole

treated cells. HeLa cells overexpressing GFP, GFP-Rab14 wt,

GFP-Rab14 S25N, or GFP-Rab14 DGCGC were infected with C.

trachomatis L2 (MOI 10) and treated with 1 mg/ml Brefeldin A (6 h)

(upper panels) or 20 mM Nocodazole (12 h) (lower panels), prior

fixation at 24 h p.i. Bacteria were labeled with Hoescht (blue).

Mouse monoclonal anti-TGN 46 or mouse monoclonal anti-b-

tubulin followed by donkey anti-mouse Cy5-labeled antibodies

(1:700) (red) were used to detect Golgi apparatus or microtubules,

respectively. The data are representative of at least three

independent experiments. Bar 10 mm.

Found at: doi:10.1371/journal.pone.0014084.s004 (1.53 MB TIF)

Figure S5 Knockdown of Rab14. HeLa cells were transfected

with negative control siRNA or a mix of pre-designed siRNAs

against human RAB14 following manufacturer’s protocol. At 72 h

post transfection, cells were lysed and proteins were separated by

SDS-PAGE. Proteins were transferred to nitrocellulose mem-

branes following by immunoblot with rabbit polyclonal anti-

Rab14 antibodies (1:800) and goat anti-rabbit HRP-conjugated

antibodies (1:5000). Protein loading was controlled with mouse

monoclonal anti-actin (1:1000) and goat anti-mouse HRP-labeled

antibodies (1:5000). Amersham ECL was used to evince HRP

activity.

Found at: doi:10.1371/journal.pone.0014084.s005 (0.74 MB TIF)

Figure S6 Efficiency of transfection of HeLa cells. Cells were

transfected with pEGFP, pEGFP-Rab14wt, pEGFP-Rab14S25N,

or pEGFP-Rab14DGCGC as described in Material and Methods.

The efficiency of transfection ranged between 85 to 95% with the

different plasmids. Confocal images captured at low magnification

(60x) show transfected cells in the green channel (GFP-tagged

proteins) and the totality of the cells by DIC. Cells observed in

both channels were quantified in 10 images from each condition to

assess the percentage of GFP-overexpressing cells. DNA was

stained with Hoescht (blue).

Found at: doi:10.1371/journal.pone.0014084.s006 (5.01 MB TIF)

Figure S7 Lipid uptake in uninfected cells. HeLa cells

overexpressing GFP, GFP-Rab14wt, GFP-Rab14S25N or GFP-

Rab14DGCGC were labeled with 5mM BODIPY TR Ceramide-

BSA complex in DMEM (Molecular Probes, USA) for 40 minutes.

Then the extracellular fluorescent probe was eliminated by

extensive washing with cold PBS, and finally, cells were incubated

at 37uC for 30 minutes before fixation in 0,03 % defatted BSA

enriched cell culture medium. Sphingolipid accumulation inside

cells was quantified as indicated in Material and Methods.

Fluorescence intensities of labeled sphingolipids were normalized

to the area of whole cells. The graph represents media 6 sem.

Results were statistically analyzed by one-way ANOVA and

Tukey post-test (*p,0.01 and **p,0.001 versus control GFP

overexpressing cells).

Found at: doi:10.1371/journal.pone.0014084.s007 (0.10 MB TIF)

Video S1 A three-dimensional reconstruction of an infected cell.

HeLa cells overexpressing GFP-Rab14wt (green) infected for 48 h

with C. trachomatis serovar L2 (MOI 5) were reconstructed from

consecutive z-sections assessed by confocal microscopy. Inclusion

membrane was delimited by labeling with rabbit polyclonal anti-

IncG antibodies followed by goat anti-rabbit Texas Red-

conjugated IgG (red). Hoescht stained bacterial DNA (blue). Note

intrainclusion vesicular structures labeled with GFP-Rab14wt in

close contact with the bacteria.

Found at: doi:10.1371/journal.pone.0014084.s008 (5.79 MB AVI)

Video S2 Rab14-labeled vesicular structures carry sphingolipids

to the inclusion. HeLa cells overexpressing GFP-Rab14wt (green)

were infected for 24 h with C. trachomatis serovar L2 (MOI 5).

Then, cells were labeled for 40 minutes with BODIPY TR

Ceramide (red) and chased for 30 minutes prior fixation. Hoescht

stained bacterial DNA (blue). Image was reconstructed from

consecutive z-sections assessed by confocal microscopy. Note

intrainclusion vesicular structures labeled with Rab14wt (green)

full of sphingolipids (red) in close contact with bacteria (blue).

Found at: doi:10.1371/journal.pone.0014084.s009 (1.85 MB AVI)
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