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Abstract

Identifying transcription factor (TF) binding sites (TFBSs) is an important step towards understanding transcriptional
regulation. A common approach is to use gaplessly aligned, experimentally supported TFBSs for a particular TF, and
algorithmically search for more occurrences of the same TFBSs. The largest publicly available databases of TF binding
specificities contain models which are represented as position weight matrices (PWM). There are other methods using more
sophisticated representations, but these have more limited databases, or aren’t publicly available. Therefore, this paper
focuses on methods that search using one PWM per TF. An algorithm, MATCHTM, for identifying TFBSs corresponding to a
particular PWM is available, but is not based on a rigorous statistical model of TF binding, making it difficult to interpret or
adjust the parameters and output of the algorithm. Furthermore, there is no public description of the algorithm sufficient to
exactly reproduce it. Another algorithm, MAST, computes a p-value for the presence of a TFBS using true probabilities of
finding each base at each offset from that position. We developed a statistical model, BaSeTraM, for the binding of TFs to
TFBSs, taking into account random variation in the base present at each position within a TFBS. Treating the counts in the
matrices and the sequences of sites as random variables, we combine this TFBS composition model with a background
model to obtain a Bayesian classifier. We implemented our classifier in a package (SBaSeTraM). We tested SBaSeTraM against
a MATCHTM implementation by searching all probes used in an experimental Saccharomyces cerevisiae TF binding dataset,
and comparing our predictions to the data. We found no statistically significant differences in sensitivity between the
algorithms (at fixed selectivity), indicating that SBaSeTraM’s performance is at least comparable to the leading currently
available algorithm. Our software is freely available at: http://wiki.github.com/A1kmm/sbasetram/building-the-tools.
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Introduction

Identifying which transcription factors bind to which promoters

is an important step towards understanding the transcriptional

regulatory code. This identification process can be divided into

two parts: determining the binding specificity of specific

transcription factors, and then identifying TFBSs in a sequence

using the binding specificity information.

There have been a number of papers proposing methods for

one or both parts of the problem. Methods for finding

transcription factors (as motifs which are statistically over-

represented in sequences) can be broadly classified as those based

on phylogenetic footprinting, and those which are not. These

methods have been widely compared [1,2] and reviewed [3]. The

software implementations associated with many of these methods

often also include software to use the motifs to identify TFBSs. For

example, the popular motif finding software MEME [4] is

packaged with the MAST software [5].

The link between determining binding specificity and finding

sites where the transcription factor is likely to bind is the way in

which binding specificity is represented. At present, the largest

databases which are generally available, such as TRANSFAC [6]

and JASPAR [7], represent binding specificity using an ungapped

position weight matrix (PWM) representation. Each entry in an

ungapped PWM, F, is a weight for finding a particular base at a

particular position from the start of the motif. There are several

types of weights possible, but in this paper, we consider weights

given as a raw count. At each aligned position i in the binding

footprint, a frequency is recorded for each base b to give the

matrix entry Fib. Let m denote the total number of aligned

sequences. Not all TFBS sequences are aligned to both ends, and

so for each i,
P

j Fijƒm. Note that in algorithms such as MEME,

the algorithm alternates between finding an alignment, and

determining the PWM, until the algorithm meets a termination

condition and the final PWM is produced.

There are more sophisticated representations for transcription

factor binding specificity, such as the Hidden Markov Model

(HMM) approach used by MAPPER [8]. However, TRANSFAC

and JASPAR collectively include a reasonably large number of

matrices, and these are available to the public (albeit under

commercial terms in the case of TRANSFAC). Other databases

are either smaller in size, or as in the case of MAPPER, binding

models are not available to the public (Voichita D. Marinescu,

personal communication). For this reason, the focus of this paper is
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on methodology which uses only ungapped PWM information to

search for transcription factor binding sites.

Representing transcription factor binding specificities in this

form means that no data is stored on the interaction of binding

specificity between different base positions in the binding sites.

This is a reasonable approximation, as molecular binding models

describing the interactions between transcription factors and DNA

have shown that binding energies are approximately additive

between bases [9] (in other words, interaction of binding specificity

is negligible).

Existing PWM based search methodologies, such as MATCHTM,

have not been justified based on a formal statistical model.

MATCHTM instead computes scores using the formula [10]

Xn

i~1

X
b[fA,C,G,Tg

Fib ln 4Fib

0
@

1
AFiBi

ð1Þ

where n is the length of the matrix, Bi is the base at position i in the

sequence, and Fib is the frequency of base b at position i.

Methods

Overall approach
Let A be a sequence of bases of length at least n (where each base

can be A, G, C, or T). We aim to make a decision about whether

there is an exactly aligned TFBS starting at the beginning of A.

We define a TFBS as a locus that is under evolutionary pressure

so the sequence is one that a particular transcription factor will

bind to. The sequence is used as evidence supporting the

hypothesis that there is a TFBS at a particular locus. For example,

the presence of a sequence exactly identical to the consensus

sequence for the transcription factor is strong evidence for a TFBS.

A sequence which is more distantly similar to the consensus

sequence is weaker evidence for there being a TFBS. This is

because there are an increasing number of possible sequences as

the deviation from the consensus sequence increases, and so the

null hypothesis that similarity to the consensus sequence arose by

chance (as opposed to natural selection) becomes more credible.

Under this definition, a transcription factor either binds to a

TFBS, or it does not; there is no attempt to model the degree of

affinity, only to determine if there is evidence for an underlying

process. Note that evolutionary pressure may select for a moderate

TF-TFBS affinity, but against a stronger affinity. In this case,

evidence for the TFBS is reduced, but may still be enough to

detect the site.

We use two models of putative TFBS sequences. The

foreground model describes the distribution of sequences under

the alternative hypothesis that there is a TFBS at the site. The

background model describes the distribution of sequences under

the null hypothesis that there is no TFBS at the site.

Foreground model
Our foreground model is best introduced in terms of a matrix of

hidden parameters pij which represent the probability that a true

TFBS will contain base j at position i. This parameter should not

be confused with
FijP
k

Fik

, which is merely an estimator of pij . The

true pij is unknown. For this reason, we build a statistical model of

Fij , so we can express the joint distribution of Fij and the TFBS

sequence, under the alternative hypothesis. We refer to the

alternative hypothesis that this model applies as H1.

Our foreground model requires that each base in a TFBS is

independently selected in accordance with the hidden parameters.

In practice, there are two ways in which new TFBSs are likely to

arise. They may arise from convergent evolution, in which case the

TFBS sequence is independent of all other TFBSs. Alternatively,

an existing TFBS could be copied in a duplication event, creating

a paralogous TFBS which is not independent of the original. Over

time, however, mutations to less strongly conserved bases in the

two TFBSs will reduce this dependence. For this reason, the

independence assumption is reasonable except for very recently

duplicated TFBSs.

If Bi is the base at position i into a TFBS, the probability of the

sequence B is

P(BDp)~PipiBi
ð2Þ

We assume, under this same model, that Fi is a random variable

produced by aligning ni independent sequence samples (where

ni~
P

j Fij ), and therefore that

Fij*Binomial(ni,pij) ð3Þ

Hence,

P(Fij~fij Dpij)~
ni

fij

� �
p

fij
ij (1{pij)

ni{fij ð4Þ

where fij is a non-negative integer representing a frequency.

Now,

P(Bi~b\Fib~fibDpib)

~
ni

fib

 !
p

fib
ib (1{pib)ni{fib pib

ð5Þ

P(Bi~bDFib~fib)

~
P(Bi~b\Fib~fib)

P(Fib~fib)

~

Ð 1

0

ni

fib

 !
p

fib
ib (1{pib)ni{fib pibdpib

Ð 1

0

ni

fib

 !
p

fib
ib (1{pib)ni{fib dpib

~
b(fibz2,ni{fibz1)

b(fibz1,ni{fibz1)

ð6Þ

where b(x,y) is the Euler Beta function [11].

Note that we assume that P(pib)~1 (i.e. without any samples

from fib, we know nothing about pib). This is the same as the

Beta(1,1) distribution, from the conjugate prior family to the

Binomial distribution.

This gives us the ability to compute the probability of a given

sequence under the alternative hypothesis:

P(BDF)~Pl
i~0

b(fiBi
z2,ni{fiBi

z1)

b(fiBi
z1,ni{fiBi

z1)
ð7Þ
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Background model
We used a simple first-order Markov chain model, with one

parameter for each base, qb, describing the probability that the

base b occurs at a particular point in the sequence. In addition, we

introduce one parameter, tb1b2
for each pair of bases (b1,b2),

describing the conditional probability of finding base b2 at a point

in the sequence, given that b1 was present one base-pair earlier in

the sequence. We refer to the null hypothesis that this model

applies as H0.

We will assume that the foreground and background model are

complementary. This is an approximation, because sequences

might have higher order interactions not explained by either the

foreground or background models. Making a simplifying assump-

tion here is unavoidable because of the high complexity of these

higher order interactions. For example, polypeptide coding

sequences are considered background, and the distribution of

the sequence of bases is determined by the effect of the polypeptide

sequence on evolutionary fitness; something which would require

more knowledge about biological function than is available, and is

too complex to include in the background model.

However, the model nevertheless provides a principled

approach for correcting for the length of the sequence, and for

differences in the frequency of bases or pairs of bases. Hence,

P(BDH0)~qB1
Pn

i~2tBi{1Bi
ð8Þ

Recall that Bi is the ith nucleotide in the sequence being tested

for a motif occurrence.

Combining the models
In order to combine the foreground and background models,

we start with Bayes’ theorem:

P(H1DB)~
P(BDH1)P(H1)

P(B)
ð9Þ

We assume the foreground and background models are

complementary, so

P(B\H1)zP(B\H0)~P(B\(H0|H1))~P(B) ð10Þ

P(B)~P(BDH1)P(H1)zP(BDH0)P(H0) ð11Þ

Due to complementarity,

P(H0)~1{P(H1) ð12Þ

This leaves the prior probability P(H1) as the only remaining

unknown. This should be an estimate of the rate of occurrence of

the TFBS in the genome (or other set of sequences being

searched). As this is not known, we make a plausible assumption

about P(H1), and later discuss the sensitivity of the accuracy of the

method to this parameter.

We note that this combination of foreground and background

models is able to represent a number of features to the extent that

the information is present in the raw counts matrix. For example,

gaps in the sequence correspond to regions in which the

foreground is indistinguishable from the background, in which

the value of pib is identical to the probability of finding the base in

the background. Similarly, palindromes can be represented merely

by the incorporation of the palindromic pattern into p. For this

reason, there is no need for any special steps to be taken to allow

BaSeTraM to find gapped or palindromic TFBS.

Comparison with other work
Our model shares some similarities with the model used in a

previous study [12]. However, we have taken a different approach

at a number of points, as we discuss below. The most notable

benefit of our approach compared to the Bayesian approach

presented in the paper is that the approach of Lähdesmäki et al.

requires a computationally expensive Markov Chain Monte Carlo

(MCMC) procedure, while we can efficiently compute the

posterior probability for a given motif being at a given position.

One major difference between the two approaches is that

Lähdesmäki et al. aims to identify the posterior probability of

alignments of one or more motifs in a given promoter region,

while BaSeTraM computes the probability that a single motif is

found at a given site, and uses this to annotate a sequence with

probable sites. Another difference is that BaSeTraM does not take

into account uncertainty in the background probabilities (and

instead focuses entirely on the uncertainties in frequencies in the

foreground model). This approximation can be justified by the

large quantity of data available to build the background model (as

opposed to the foreground models), and the correspondingly low

estimator variance. Using this simpler background model allows

BaSeTraM to efficiently use a context-dependent background

model.

In addition, Lähdesmäki et al. used a different derivation, by

representing all foreground model frequencies at each position

using a four-way multinomial distribution across all bases. In this

paper we instead use a binomial distribution, where one Bernoulli

outcome is that a base at position i used to build the PWM row Fi

matches the base Bi, and the other is that it does not. In other

words, we build a model of the motif matrix specific to B, while

Lähdesmäki et al. builds a general model. As discussed in the

Implementation section, our formulation allows us to find a

computationally efficient closed form solution (dependent on pre-

computed values of the b function) for the posterior probability.

Implementation
We developed an implementation, SBaSeTraM, of the Bayesian

search method, BaSeTraM, described above. We also implement-

ed the method described in [10], and refer to the implementation

as GMATIM. As the implementation of MATCHTM provided by

the authors of that paper is closed source, GMATIM may differ

from the BioBase MATCHTM implementation. For example,

that paper stated that ‘‘the core of each matrix is defined as the

first five most conserved consecutive positions of a matrix’’.

However, we have been unable to determine how the level of

conservation of each group of 5 consecutive positions is measured

and compared. To resolve this issue, we implemented GMATIM

to simply find the 5 most conserved positions, where conservation

at position i is measured as maxbfib.

In addition, we have created a wrapper, called WrapMAST,

around the stand-alone MAST [5] binary, which we built from the

MEME 4.4.0 source code (downloaded from http://meme.sdsc.

edu/ on the 2nd of July, 2010). WrapMAST converts matrices

from TRANSFAC into the form produced by MEME. This

involves converting the matrix of frequencies to a matrix of log-

odds L. We have used the same formula used in the MEME

software (using a background proportion of 0.25 for each base):

Transcriptional Motif Search
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Lij~ log2 (4p̂pijz10{200) ð13Þ

p̂pij~
FijP
k Fik

ð14Þ

The addition of 10{200 is used (as in MEME) in ensure that Lij

has a real value even when p̂pij~0. For each PWM, WrapMAST

invokes MAST in hit list mode to search all probes. It then parses

the output from MAST and outputs them in the same format used

by SBaSeTraM (but with the p-value from MAST used in place of

the posterior probability from SBaSeTraM).

SBaSeTraM, GMATIM, and WrapMAST are written in

Haskell, and we have aimed to make the source code of each

program a succinct and readable description of the corresponding

algorithm. SBaSeTraM, WrapMAST, and GMATIM provide a

similar command line interface (and share common code), so as to

simplify the design of analyses which compare the algorithms.

Due to the possibility of numerical underflow from very small

probabilities, our SBaSeTraM and GMATIM implementations

make use of log probabilities (base e).

It is necessary for SBaSeTraM to compute the posterior

probability, P(H1DB), at every position in the sequence being

searched, for every TFBS matrix (with the exception that there is

no search for TFBS matrices of length l in a sequence of length n

at starting positions iwn{l). For this reason, it is important that

the posterior probability can be computed efficiently.

The b function has no closed form, and needs to be calculated

numerically. To avoid expensive computations in our inner loop,

for each matrix, we pre-compute vib~ ln
b(fibz2,ni{fibz1)

b(fibz1,ni{fibz1)
for

each i and b. We also pre-compute all partial sums of the series

0z
PN

i~1 ln tBi{1Bi
, where N is the length of the sequence B. Let

si be the ith entry in the series, so,

s1~0 ð15Þ

s2~ ln tB1B2
ð16Þ

s3~ ln tB1B2
z ln tB2B3

ð17Þ

and so on. This means that:

ln P(Bi\:::\Bizl{1DH0,Bi
)~ ln qBi

zsizl{1{si ð18Þ

ln P(Bi\:::\Bizl{1DH1,Bi
)~
Xizl{1

j~i
vj{iz1,Bj

ð19Þ

Note that equation 18 is a log-transformed equivalent of equation 8,

and similarly, equation 19 is a log-transformed equivalent of equation 7.

ln P(H1,Bi
jBi\:::\Bizl{1)

~ ln P(Bi\:::\Bizl{1jH1,Bi
)z ln P(H1){

logsumexp( ln P(Bi\ . . .\Bizl{1jH1,Bi
)z ln P(H1),

ln P(Bi\ . . .\Bizl{1jH0,Bi
)z ln P(H0)),

ð20Þ

where logsumexp(x,y) is a function which computes ln (exzey)
while avoiding numerical underflow for large magnitude negative

values of x and y, by computing az ln (ex{azey{a) for

a~ max (x,y).

We compute the vector q and the matrix t once, across all

nucleotide sequences to be processed, by counting the number of

occurrences of each base and sequence of the two bases,

respectively, and dividing by the pooled total number of

occurrences.

For each site, we compute the log-posterior probability and test

it against a cut-off (as discussed below) to decide whether the TFBS

occurs at that site. We search for sites, both on the sequences

provided, and on the reverse complement of those sequences.

We retrieved the online supplement for [13] at http://fraenkel.

mit.edu/Harbison/release_v24/. This data describes which of

6725 probes each of 182 different transcription factors bound to in

a series of chromatin immunoprecipitation microarray (ChIP-chip)

experiments. These probes were between 47 and 2764 base pairs

long, with 95% between 92 and 1317 base pairs, 50% between

227 and 647 base pairs, and a median length of 359 base pairs. We

also downloaded all TRANSFAC Saccharomyces Module matri-

ces (TSM; [6]), as of 2009-06-16, from http://tsm.bioinf.med.

uni-goettingen.de/.

Where a matrix used estimated rather than raw counts, as

indicated by the occurrence of a decimal point in the ‘frequency’

matrix, that matrix was excluded (as we have assumed that raw

counts will be used).

We filtered the set of probes, based on the experimental data, to

only include those to which a transcription factor bound (for which

we had a corresponding PWM). This left 1259 probes.

We then used each method to search the entire set of probes for

TFBSs corresponding to each matrix, across all positions in the

probe. Where the method detected the occurrence of a TFBS for a

particular TF at any position in a probe, a positive result for that

TF-probe combination was recorded. If no TFBSs were found at

any position for a given TF a negative result was recorded. These

results were then compared against the ‘gold standard’ experi-

mental data. Only TFs which had corresponding matrices in

TSM, and were also in the experimental results, were included.

We classified each included TF-probe pair into 4 categories:

N True Positive (TP) - positive prediction, and experimental

determination of TF-probe interaction;

N False Positive (FP) - positive prediction, but no experimental

determination of TF-probe interaction;

N True Negative (TN) - negative prediction, and no experimen-

tal determination of TF-probe interaction;

N False Negative (FN) - negative prediction, but experimental

determination of TF-probe interaction.

In this paper we have used 0:001 as an approximation of the

prior probability, because this value is credible as a frequency of

occurrences. To determine the sensitivity of this parameter, we

tested values that were one order of magnitude higher, and one

and two orders of magnitude lower. The posterior probabilities

obtained from doing this are increased or decreased, respectively,

but once this is taken into account when selecting cut-offs, there is

very little difference in the results within this range of prior

probability parameters.

Results and Discussion

There were 38 different transcription factors in TRANSFAC

Saccharomyces Module, of which 32 were made up of raw counts.

Transcriptional Motif Search
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Of these, 16 were also found in the ChIP-chip dataset. These were

tested against the 1259 different probes in the chromatin

immunoprecipitation experiment. This gives 20144 different TF-

probe pairs where we can classify whether the TF binds to the

probe, and then check the classification. These results are shown in

Figure 1.

We generated a ROC curve (Figure 1) for SBaSeTraM, by

varying the posterior probability cut-off, and hence the trade-off

between sensitivity and selectivity.

The point on the ROC curve generated using the parameters

from [10] with GMATIM appears slightly below the ROC curve for

BaSeTraM (GMATIM has 71.61% true positive rate for a 53.27%

false positive rate). We found a posterior cutoff that generates a FPR

close to this (with a posterior probability cut-off of 0.407, BaSeTraM

achieved a 72.07% TPR at a FPR of 53.25%). At this point, we

tested for a significant difference in the proportion of predictions

which were correct; that is,
TPzTN

TPzTNzFPzFN
. We performed a

comparison of these two binomial proportions, using the prop.test

function in R [14], and obtained a one-sided p-value of 0.4603 (i.e.

not significant to a 95% confidence level).

SBaSeTraM outperforms MAST when used through Wrap-

MAST. It is worth noting that MAST is not typically used with

TRANSFAC PWMs, and usually, multiple PWMs are used for

each TF, and so the results cannot be used to make inferences

about how well MAST performs together with MEME. The

results do, however, illustrate the benefit of methods which take

into account uncertainty in the foreground model.

We also carried out an analysis to see whether any particular TFs

were making a large contribution to the overall prediction accuracy

at this point. Figure 2 shows the differences between the two

methods in the ROC space for each TF PWM. For each

transcription factor, we have plotted an arrow from the point in

the ROC space corresponding to the results for SBaSeTraM, to the

point corresponding to the results from GMATIM. Some of the

predictions are quite different; for example, for ADR1, SBaSeTraM

found no occurrences, while GMATIM made numerous predic-

tions, resulting in a true positive rate of 91.3% and a false positive

rate of 96.0% (putting the accuracy for that particular TF below the

line of no-discrimination). There was only one TF, GAL4, for which

SBaSeTraM fell below the line of no-discrimination (which

GMATIM predicted with a 17.4% true positive rate and a 0.8%

false positive rate), and three TFs for which GMATIM fell below the

line of no-discrimination (all of which were above or on the line of

no-discrimination for SBaSeTraM). Unlike for SBaSeTraM,

GMATIM predictions for HSF1, ROX1, and STE12 had true

and false positive rates approaching 100%.

We also analysed the spread of true and false positive rates for

each method. Figure 3 shows box-and-whisker plots for the true

Figure 1. A receiver operating characteristics (ROC) curve
comparing SBaSeTraM, GMATIM, and MAST. For SBaSeTraM, the
posterior cut-off was varied to obtain a series of points. For MAST, the
p-value cutoff was varied. For GMATIM, the parameters listed in the
MATCHTM paper were used to generate the point on the curve.
doi:10.1371/journal.pone.0013897.g001

Figure 2. Comparing SBaSeTraM to GMATIM predictions for each transcription factor. The results are shown with the overall False
Positive Rate for SBaSeTraM matched at that obtained from GMATIM with the parameters in the MATCHTM paper, namely 53.3%. Arrows run from
the point obtained using SBaSeTraM to the point obtained using GMATIM.
doi:10.1371/journal.pone.0013897.g002

Transcriptional Motif Search
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and false positive rates for SBaSeTraM and GMATIM. Notably,

there is a much greater distance between the upper and lower

quartiles in both the true and false positive rates for GMATIM

than there is for SBaSeTraM. This demonstrates that the

BaSeTraM algorithm is more consistently controlling the trade-

off between sensitivity and selectivity for each individual TF.

In addition, we used the bisection method to find a separate

posterior probability cutoff for each of the 16 TFs that gave the

SBaSeTraM method a FPR (for that TF) close to the FPR

obtained with GMATIM. We allowed the method to terminate

when a cutoff was found that brought the L1 distance of the two

FPRs within 0:001%, when an increase in cutoff resulted in an

increased FPR (or a decrease in the cutoff resulted in a decrease in

the FPR), or when no improvement in FPR was achieved after 4

iterations of the algorithm. The latter two conditions are necessary

because there are a finite number of probes (1259), and there is no

guarantee that there will be a cutoff which brings the SBaSeTraM

FPR within 0:001% of the GMATIM FPR. In practice, for 8 of

the 16 TFs, the difference between the final FPRs for the two

methods was less than 0:001%, for 11 it was within 0:25%, and for

13 was within 0:5%. For HAC1, the final SBaSeTraM FPR was

0:966% higher than the GMATIM one, for XBP1 the GMATIM

FPR was 1:158% higher, and for HAP1, the final SBaSeTraM

FPR was 2:012% higher.

Using the same methodology used on the entire dataset (as

discussed above), we tested for a statistically significant difference

in proportion of predictions which were correct for each

transcription factor, between GMATIM and SBaSeTraM (with

the posterior probability cutoffs discussed in the previous

paragraph). We obtained only one result where the p-value was

less than 0:05, for GCN4 (p = 0.00886). For this TF, the FPR for

both methods was 4:288%, the TPR for SBaSeTraM was

38:037%, while it was 9:816% for GMATIM. When we applied

the Holm-Bonferroni procedure for multiple comparisons [15],

none of the TF-by-TF results were significant to a 5% familywise

error rate (FWER).

Conclusions
We have developed a Bayesian classifier for identifying TFBSs,

which performs comparably to an existing algorithm, but which

has a more principled statistical explanation, so that the trade-off

between sensitivity and selectivity can be trivially adjusted, and the

method can be altered to use different background models.

It is clear that the two methods are very similar in overall

performance, and there is insufficient data in TSM to tell the two

apart. The 95% confidence interval for the difference of the

proportion correctly classified above runs from SBaSeTraM being

1.03% better, to GMATIM being 0.93% better. We therefore

conclude that until there is more evidence that one method is

better, from a performance standpoint, the two methods can be

used interchangeably.

However, the fact that the statistical interpretation of BaSe-

TraM has been explained in rigorous terms, combined with the

ease with which the posterior probability cut-off can be adjusted

(as opposed to needing to adjust two separate parameters and re-

run the analysis) makes the use of BaSeTraM preferable for many

applications.

We note that despite the similarity in accuracy, the predictions

made are not all the same; only 62.8% of all predictions of

transcription factor binding made by SBaSeTraM with this

posterior probability cut-off were also made by GMATIM.

The BaSeTraM statistical model includes a background model

to be used. While a relatively uninformative background model is

useful with the synthetic probes used in ChIP-chip analyses, using

a different background model is likely to be important on genomic

scale data, where there are localised variations in base frequencies.

When dealing with genomic scale data, it is also important that

computation is reasonably efficient. It is also preferable that this

computation can occur on modest hardware, so it is usable by

groups without access to high-performance computing infrastruc-

ture.

In order to achieve these goals, we also developed a C++
implementation of BaSeTraM, called CBaSeTraM, which we

optimised for the AMD64 architecture. We used Callgrind [16] to

identify places where cache misses were occurring. We then used a

customised allocator to ensure that all data which is needed in the

inner loop (which is executed for each matrix for each alignment

for each position) does not result in any cache misses, due to it

being present in one cache page. As reading the level 1 and 2

caches are approximately 10 and 300 times faster than RAM,

respectively, this leads to significant speed-ups. In this tool, we also

implemented a sliding window determination of background

model parameters qb and tb1b2
. Our implementation supports two

distinct sliding windows; the intention is that one window is much

larger than the other. The final estimate of each qb and tb1b2
is the

geometric mean of the two estimates. By default, the small window

is 501 BP wide, and the large window is 2001 BP wide. Both

windows are centred on the same base, which is used as the first

position when testing for TFBSs. In addition, CBaSeTraM can use

MPI [17] to search multiple sequences in parallel.

GMATIM, SBaSeTraM, and CBaSeTraM, as well as the

programs used to test the methods, are Free/Open Source

software. Instructions for building these programs are included as

an online supplement.
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Figure 3. Box and whisker plot showing the spread of true and
false positive rates for SBaSeTraM and GMATIM. The results are
shown with the overall False Positive Rate for SBaSeTraM matched at
that obtained from GMATIM with the parameters in the MATCHTM
paper, namely 53.3%.
doi:10.1371/journal.pone.0013897.g003
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