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Abstract

The current view of peroxisome inheritance provides for the formation of new peroxisomes by both budding from the
endoplasmic reticulum and autonomous division. Here we investigate peroxisome-cytoskeleton interactions and show by
proteomics, biochemical and immunofluorescence analyses that actin, non-muscle myosin IIA (NMM IIA), RhoA, Rho kinase II
(ROCKII) and Rab8 associate with peroxisomes. Our data provide evidence that (i) RhoA in its inactive state, maintained for
example by C. botulinum toxin exoenzyme C3, dissociates from peroxisomes enabling microtubule-based peroxisomal
movements and (ii) dominant-active RhoA targets to peroxisomes, uncouples the organelles from microtubules and favors
Rho kinase recruitment to peroxisomes. We suggest that ROCKII activates NMM IIA mediating local peroxisomal
constrictions. Although our understanding of peroxisome-cytoskeleton interactions is still incomplete, a picture is emerging
demonstrating alternate RhoA-dependent association of peroxisomes to the microtubular and actin cytoskeleton. Whereas
association of peroxisomes to microtubules clearly serves bidirectional, long-range saltatory movements, peroxisome-acto-
myosin interactions may support biogenetic functions balancing peroxisome size, shape, number, and clustering.
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Introduction

Mammalian peroxisomes associate with the microtubular

cytoskeleton for intracellular transport [1,2]. Three distinct states

of motility were recognized, long-range saltations, oscillations and

arrest. Furthermore, we demonstrated that peroxisome motility is

subject to regulation by extracellular ATP-lysophosphatidic acid

(LPA) receptor co-stimulation. Signaling involves trimeric Gi/Go

protein, PLC, Ca2+ influx, cPKC, MAP kinase and PLA2 and

mediates peroxisomal arrest [3–5]. Via G12/13 the LPA receptor

activates the Rho pathway preventing long-range peroxisomal

motility that seems to be regulated by a complex signaling network

[4,6].

These studies did not show the involvement of the actin

cytoskeleton in the motility of mammalian peroxisomes. However,

plant and yeast peroxisomes associate with the actin cytoskeleton

for saltatory movement and inheritance, respectively. In plant cells

interference with the actin cytoskeleton results in loss of saltatory

movement, aggregation, and complete cessation of peroxisome

motility [7]. In S.cerevisiae peroxisomes are targeted and segregated

to the developing bud by a highly ordered process involving actin

and Myo2p, a class V myosin motor protein [8,9]. Actin-based

movement of mammalian organelles other than peroxisomes has

however been demonstrated [10,11]. Two types of motility are

described. One is based on actin polymerization itself propelling

organelles by an ‘‘actin comet tail’’ toward the cell center. This

type has been described for phagosomes and macropinosomes and

may also be involved in transport between endosomes and

lysosomes [12,13]. The other type of movement depends on

actin-based myosin motors and utilizes myosins of the classes I, II,

V or VI. This myosin-dependent movement has been implicated

in dynamics of the ER, lysosomes, Golgi-derived vesicles, secretory

granules, recycling endosomes and melanosomes [14–16].

Some indirect evidence suggests that mammalian peroxisomes

also associate with the actin cytoskeleton. Drp-1 known to be

involved in mitochondrial fission in an actin cytoskeleton-

dependent manner [17] was shown also to localize to peroxisomes.

Over-expression of a dominant-negative mutant of Drp-1 prevents

peroxisome division in a human hepatoma cell line [18–20].

Generally, members of the dynamin protein family are known
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regulators of vesicle trafficking implicated in constricting and

severing membrane tubules [21].

Ultrastructural studies on peroxisome proliferation in rat liver

suggest a sequential mechanism of membrane tubulation and

constriction prior to fission [22,23]. Thus, a force-generating

system such as the acto-myosin complex is likely to be involved.

Frequently, these processes are regulated by small GTPases known

to support membrane traffic as well as the local organization of

both the microtubular and the actin cytoskeleton [10,24].

Members of the Rho, Rab and Sar1/Arf families are implicated

[24,25] and Rho1p and Arf1 recently shown to associate with

peroxisomes [4,6,22,23,26,27]. Mammalian peroxisomes in pres-

ence of GTP-primed cytosol recruit Arf1 and the COPI coat

subunits and among the proteins specifically enriched with S.

cerevisiae peroxisomes Rho1p was identified by a mass spectromet-

ric screen.

So far our knowledge on the mechanism of peroxisome

proliferation and the role small GTPases and the cytoskeleton

play is rather incomplete. Peroxins, such as Pex11p, Pex25p and

Pex27p are likely to be involved [28–30]. However, factors are still

missing in order to fully understand the process. In the present

study we initiated proteomics analyses to identify components that

recruit onto peroxisomes from the cytosol. We found a significant

number of candidate proteins some of which were further

investigated. Here we report alternate binding of peroxisomes to

microtubules and actin microfilaments dependent on the activa-

tion state of RhoA. Our studies indicate a sequence of events in

which activated RhoA by binding to peroxisomes detaches the

organelles from microtubules. Concomitantly, activated RhoA

may favor peroxisome association with the actin cytoskeleton

possibly by recruiting Rho kinase (ROCKII). Phosphorylation of

myosin light chain induces actin-activated non-muscle myosin IIA

(NMM IIA) ATPase activity enabling force generation.

Results

Peroxisome-microtubule association
Intracellular movement of peroxisomes along microtubular

tracks is regulated by ATP/LPA receptor co-stimulation and

activation of heterotrimeric G proteins. Signaling by both

receptor co-stimulation and activation of G proteins caused

peroxisomal arrest [2–4]. The first clues for a possible

involvement of RhoA in this regulation came from LPA signaling

that is known to activate RhoA by the trimeric G protein

subfamily member G12/13 [31,32]. Therefore, we first tested C.

botulinum exoenzyme C3 that is known to inactivate Rho proteins

of the RhoA subfamily by ADP ribosylation [33]. A significant

increase in overall peroxisomal movements compared to

untreated cells was observed independent of whether the toxin

was added to the culture medium or expressed by transfection

(Fig. 1A). As shown by the time series, most peroxisomes moved

directionally with frequent changes in direction. Those organelles

that did not saltate were at rest for short periods. Following the

addition of Nocodazole to exoenzyme C3-treated cells, peroxi-

somes oscillated, similarly to what could be observed after

Nocodazole treatment only (not shown). Both resting and

saltating states presupposed association of the organelles to the

microtubular cytoskeleton. The motility state elicited by exoen-

zyme C3 was in sharp contrast to the control state, as the

frequency of peroxisomes moving longer distances was signifi-

cantly increased. On the other hand, transfecting cells with myc-

G14V-RhoA, the constitutively active form of RhoA exhibiting

remarkably reduced intrinsic GTPase activity and unresponsive-

ness to RhoA GTPase-activating protein [34], resulted in random

oscillations of peroxisomes that were indistinguishable from those

observed after Nocodazole treatment (Fig. 1B). This regulatory

effect was specific for RhoA. Dominant–active RhoD did not

influence peroxisomal motility (Fig. 1B).

By electron microscopy peroxisomal constrictions were fre-

quently seen preserving membrane continuities between segregat-

ed compartments (Fig. 2A–C). Both microtubules (Fig. 2B and C)

and microfilament bundles (Fig. 2D–F) were regularly found in

close proximity to the organelles (Fig. 2B and C) and smooth ER

cisternae possibly delivering Ca2+ positioned close to the sites of

constrictions. Taken together, these results suggest that peroxi-

somes contact both microtubules and cytoskeletal filaments.

Activated RhoA may uncouple peroxisomes from microtubules

as typical microtubule-dependent long-range saltations are no

longer observed.

Peroxisome association to myosin and the actin
cytoskeleton

Following incubation of unlabeled rat liver peroxisomes with
35S-labeled rat hepatocyte cytosol, proteins with Mr of about 220,

60 and 40 kDa strikingly co-isolated with peroxisomes (not shown).

These proteins were identified by nano-HPLC/ESI-MS/MS as

non-muscle myosin heavy chain (MyH9) belonging to the class IIA

of conventional myosins, a- and b-tubulin and b-actin, respec-

tively. Additional proteins specifically recruiting from cytosol onto

peroxisome membranes were detected by extended proteomics

analysis. Table 1 lists the proteins identified and related to

organelle dynamics and cytoskeletal functions.

To confirm specific peroxisomal recruitment of these proteins,

an in vitro peroxisome-binding assay was developed. In this assay

peroxisomes were incubated with GMP-PNP-primed cytosol in

presence or absence of an ATP-regenerating system and recovered

after flotation in a discontinuous Nycodenz gradient. Pex11ap, a

peroxisomal membrane marker, floated up in the gradient to

fraction F2 just between F1 (250 mM sucrose) and F3 (45% w/v

Nycodenz) the latter retaining all the non-floating material. Using

antibodies against b-actin and NMM IIA heavy chain, both

myosin and actin were detected in the re-isolated peroxisomes.

Binding of NMM IIA to peroxisomes required ATP and was

observed in the presence of ATP plus GMP-PNP. However, actin

recruitment required both nucleotides; the sole presence of GMP-

PNP did not mediate recruitment of NMM or actin (Fig. 3A). In

control experiments ran in the absence of peroxisomes neither

NMM nor actin did float up (Fig. 3B, D, and F). Cytosol

preparations contain endogenous guanine nucleotides that in

presence of an ATP-regenerating system might become phos-

phorylated to GTP by nucleotide kinases. Therefore, the

nucleotide dependence of NMM IIA and actin recruitment was

investigated in presence of GDPcS, a metabolically inert GDP

analog. These studies clearly demonstrated that binding of NMM

IIA and actin onto peroxisomes requires both ATP and GTP

(Fig. 3C). Replacing the ATP-regenerating system for AMP-PNP,

a non-hydrolyzable ATP analog, prevented NMM IIA association

to peroxisomes suggesting that the association requires hydrolyz-

able ATP (Fig. 3E).

Peroxisomal NMM IIA association was also proved by

immunofluorescence. NMM IIA predominantly appeared as

filamentous structures bearing peroxisomes closely attached like

pearls on a string (Fig. 4A–C and inset in Fig. 4C) rather than

having them distributed at random. Analyzing NMM IIA and

actin filament stainings revealed nearly complete overlap of both

of these structures (Fig. 4D–F). Thus, these immunofluorescence

studies strongly suggest peroxisome acto-myosin associations.

Peroxisome Interactions
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RhoA and its effector ROCKII localize to peroxisomes
The GTP dependence of NMM IIA and actin recruitment onto

peroxisomes indicate small GTP-binding protein(s) to be involved.

Using antibodies specific to RhoA, the GTP-dependent recruit-

ment of RhoA to peroxisomes was observed in vitro (Fig. 5). In line

with these biochemical assays, we also demonstrated co-localiza-

tion of peroxisomes and RhoA by transfecting myc-G14VRhoA, a

dominant-active mutant of RhoA, into mouse AT3 hepatoma cells

(Fig. 6). Whereas both wild type and dominant-active RhoA

associated to peroxisomes (Fig. 6A–F), Rho A was not detected on

the organelles upon treatment of cell cultures with exoenzyme C3

(Fig. 6G, H, I). By closer examination of the RhoA topology, it

appeared that activated RhoA concentrated at distinct sites on the

peroxisomal membrane rather than exhibiting a continuous

staining pattern (Fig. 6F and inset). In contrast to the RhoA

staining, catalase, a peroxisomal matrix protein, constantly labeled

the entire organelle. This localization of RhoA to discrete domains

of the peroxisomal membrane is reminiscent to the distribution of

Pex11ap and PMP69 in CHO cells overexpressing N-terminally

myc-tagged Pex11bp [22]. As Pex11bp expression was shown to

cause peroxisome proliferation [19], it is tempting to speculate that

segregation and concentration of distinct proteins within the

peroxisomal membrane and peroxisome proliferation are func-

tionally linked to each other.

Figure 1. Particle-tracking analysis of GFP-SKL-marked peroxisomes in CHO cells. (A) Treatment of cells with C. botulinum toxin
exoenzyme C3 (5 mg/ml, 24 h prior to analysis) known to inactivate RhoA significantly increases the number of peroxisomes moving long distances.
(B) In cells expressing dominant-active V14-RhoA long-range movement is abolished and peroxisomal motility is indistinguishable to that in cells
treated with nocodazole to depolymerize microtubules. Expression of dominant-active V26-RhoD does not show this effect. For clarity reasons the
displacement graph of control peroxisomes expressing empty vector is omitted, as it is virtually identical to the control graph in (A).
doi:10.1371/journal.pone.0013886.g001

Peroxisome Interactions
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A known effector of RhoA signaling is Rho-associated coiled-

coil containing kinase (ROCK). By phosphorylation of myosin

light chain (MLC) Rho kinase induces formation of stress fibers

and focal adhesions [35]. Two Rho kinase isoforms have been

identified, ROCKI and ROCKII. Whereas ROCKI was recently

shown to localize to plasma membrane and centrosomes [36,37],

ROCKII appears to be mainly distributed in the cytoplasm and

translocates to membranes upon activation by GTP-bound RhoA

[38]. Therefore, we focused our attention on ROCKII. Again we

used the proxisomal binding assay and observed a significant 3-4-

fold increase in the amount of ROCKII recruited from cytosol

onto peroxisomes in the presence of ATP plus GMP-PNP (Fig. 7).

Interestingly, isolated peroxisomes without being further incubated

already had bound ROCKII in low concentration (Fig. 7A and C,

lane 6).

We also analyzed peroxisomal attachment of ROCKII by

immunofluorescence. Peroxisomes were labeled by GFP carrying a

C-terminal peroxisomal targeting signal 1 (GFP-SKL) and

endogenous ROCKII was stained using a rabbit polyclonal

antiserum (Fig. 8). According to the known broad cellular

distribution of ROCKII, cellular background staining was high.

Nevertheless, co-localization of ROCKII with the peroxisomal

signal was convincingly evident. Quantitative evaluation of 256

GFP-labeled peroxisomes revealed 66 peroxisomes to co-localize

with the ROCKII signal, i.e. more than 25% co-localizing

structures were recognized.

Rab8 recruits onto peroxisomes
As membrane docking of myosin motors is known to be

controlled by Rab proteins [10,39,40], we next investigated by an

Figure 2. Ultrastructural analysis of peroxisome proliferation in rat liver treated with clofibrate and thyroxin. Peroxisomal
constrictions are frequently seen in peroxisomes (P) of different sizes (black arrows in A and F) as well as in peroxisomes associated to microtubular
tracks (black arrowheads in B) that sometimes localize close to the constrictions (black arrowhead in C). Filament bundles are running along
peroxisomes and close to peroxisomal constrictions (white arrows in D–F) suggesting peroxisome attachment to cytoskeletal filaments. Frequently,
cisternae of smooth endoplasmic reticulum (white arrowheads in A–C) are positioned next to the constrictions. M, mitochondrium. The bars
represent 200 nm in A, B, D–F and 100 nm in C.
doi:10.1371/journal.pone.0013886.g002

Table 1. Cytoskeleton and cytoskeleton-related proteins associated with peroxisomes, identified by nano-HPLC/ESI-MS/MS.

Protein gi accession
MW
[kDa] Sequence coverage [%]

Myosin,heavy polypeptide 9, non-muscle [Rattus norvegicus] 149066032 226,2166 6,70

Tubulin, alpha 1A [Rattus norvegicus] 11560133 50,1036 18,60

Tubulin, beta 2a [Rattus norvegicus] 157819845 49,9209 26,10

Tubulin, alpha 4A [Rattus norvegicus] 55741524 49,8924 13,40

Tubulin, alpha 6 [Rattus norvegicus] 58865558 49,8775 36,30

Tubulin, beta 2b [Rattus norvegicus] 110347600 49,8750 22,70

ATRTC actin beta [Rattus norvegicus] 71620 41,7273 40,50

Actin, beta [Rattus norvegicus] 13592133 41,7000 41,00

Cofilin 1 [Rattus norvegicus] 8393101 18,4280 19,60

14-3-3 zeta/delta [Rattus norvegicus] 62990183 27,7366 10,60

doi:10.1371/journal.pone.0013886.t001
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additional proteomics screen the recruitment of small GTPases to

the peroxisomal membrane focusing on membrane-associated

proteins with Mr between 15 and 30 kDa. We detected members

of the Rab family and the Rho family as well as ARF, ARF-related

and SAR1 proteins. To increase the stringency of our analysis, the

Rab proteins were semi-quantitatively profiled based on spectral

counts [41] over the entire Nycodenz density gradient separating

the post-nuclear fraction of a rat liver homogenate. In this

profiling, Rab8a and Rab8b exhibited a gradient distribution

strikingly similar to the peroxisomal matrix and membrane

markers, bifunctional protein and Pex11ap, respectively (Fig. 9).

To further investigate the peroxisomal localization of Rab8,

Rab8a was cloned as 59-GFP fusion construct and dominant-

active (Q67L) and dominant-inactive (T22N) forms were stably

expressed in Huh7 human hepatocellular carcinoma cells. For co-

localization studies, peroxisomes and Golgi were stained with anti-

catalase and anti-GM130 antibodies, respectively. The results of

these experiments are shown in Fig. 10. (i) Rab8a clearly co-

localizes with peroxisomes (Fig. 10A–I) and Golgi cisternae

(Fig. 10J and K). (ii) The total average number of peroxisomes

per cell changed by expressing wild type GFP-Rab8aWT (5467;

n = 115; Fig. 10G–I), dominant-active Rab8aQ67L (3566;

n = 119; Fig. 10A–C) and dominant-inactive Rab8aT22N

(68615; n = 79; Fig. 10D–F). (iii) Applying organelle-based co-

localization (OBCOL) analysis [42], we noted an about tenfold

increase in the number of peroxisomes co-localizing with Rab8a in

cells transfected with dominant-inactive Rab8aT22N compared

with dominant-active Rab8aQ67L (Fig. 10L).

Discussion

RhoA signaling regulates peroxisome motility
Our current view of the multiple signaling pathways regulating

peroxisome microtubule interaction encompasses both activation

of PLA2 via Gi/Go liberating arachidonic acid by ATP and RhoA

via G12/13 by extracellular LPA [3,4,31]. Both signals synergize in

this process and RhoA appears to be a specific and important

intermediate. Most of the activated cytosolic RhoA translocates to

cellular membranes leading to saturation of RhoA binding sites

and terminating microtubule-peroxisome interactions. Peroxisome

oscillations are generated indistinguishable to those following

depolymerization of microtubules [43,44]. On the other hand,

exoenzyme C3 rendering RhoA in its inactive GDP-bound form

strikingly increased the number of long-range microtubule-based

peroxisome saltations. These observations are consistent with the

idea that cycling of RhoA between its GDP- and GTP-bound

states promotes attachment/detachment cycles of peroxisomes

from microtubules. Similar attachment/detachment cycles were

reported to affect the motility of pigment granules, Golgi vesicles,

lysosomes and mitochondria [45,46].

Peroxisome association with the actin cytoskeleton
In previous work evidence has been provided that the actin

cytoskeleton obviously is not involved in supporting peroxisome

motility. However, a regulated short-range motor protein-based

system may be advantageous, as it provides a mechanism tethering

organelles at actin-rich intracellular sites and/or exerting me-

chanical forces [11]. Although the actual mechanism facilitating

peroxisome acto-myosin interaction is not known, binding of

RhoA-GTP to the peroxisomal membrane may trigger this process

possibly by activating NMM IIA. By uncoupling peroxisomes from

microtubules, RhoA-GTP may concomitantly activate ROCKII, a

serine/threonine kinase acting immediately downstream of RhoA.

ROCKII is known to be involved in reorganizing actin structures

preventing actin depolymerization. By phosphorylation of the

myosin-binding subunit of myosin phosphatase and/or the myosin

light chain of myosin II, ROCKII enhances myosin ATPase

Figure 3. ATP- and GTP-dependent binding of NMM IIA heavy
chain and b-actin to isolated rat liver peroxisomes. Organelles
were incubated as indicated and floated up in a Nycodenz gradient.
Three fractions were recovered from top to bottom (F1–F3). Binding is
visualized by immunoblotting (A and C). ATP must be hydrolyzable for
binding (E). Peroxisomes are localized in the gradient by the
peroxisomal marker Pex11ap. Control incubations lacking peroxisomes
do not show floatation of NMM IIA and b-actin (B, D, F) suggesting
peroxisomal membranes to be required for binding.
doi:10.1371/journal.pone.0013886.g003

Peroxisome Interactions
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activity [47,48]. Moreover, ROCKII contains a well-defined

pleckstrin homology domain binding to PtdIns(4,5)P2 the synthesis

of which in the peroxisomal membrane was recently reported [49].

Myosin might also act in cargo protein assembly at donor

membranes, as recently suggested for the biogenesis of melanosomes

[50,51]. Scaffolding of melanosome proteins requires coat and adaptor

proteins in addition to myosin. Similar processes may also occur in the

peroxisomal system where different to catalase N-myc-tagged Pex11bp

[22] and dominant-active RhoA (Fig. 6) both strikingly non-

homogenously localize to peroxisomes. Interaction of Pex11bp and

RhoA in the peroxisomal membrane and its possible downstream

effects on peroxisome biogenesis remain to be established.

Peroxisomal localization of Rab8
Two Rab8 isotypes have been described, Rab8a and Rab8b. They

show distinct tissue distributions. Whereas endogenous Rab8a is

predominantly expressed in lung, kidney, skeletal muscle and liver,

Rab8b is mainly found in testis, spleen, brain, and heart [52]. The

high sequence identity of 83% of both genes might explain why

exogenous expression of both isotypes in Huh7 cells show the same

subcellular localization and develop rather similar phenotypes. In liver

Rab8a might be the predominantly expressed endogenous isotype.

So far Rab8 has been implicated in a variety of functions

including constitutive biosynthetic trafficking from the trans-Golgi

network and the recycling endosome [53,54], sorting of apical

membrane proteins [55], constitutive and regulated melanosome

traffic [56] and regulated ACTH secretion by interacting with

TRIP8b [57]. TRIP8b belongs to the tetratricopeptide domain

proteins with homology to the peroxisomal targeting signal 1 (PTS1)

receptor protein Pex5p known to be involved in peroxisomal matrix

protein import [58–60]. In vesicle and organelle motility Rab

GTPases were implicated in the association of actin motors with the

corresponding organellar membranes. Examples are Rab27a and its

associated protein MyRIP that mediate melanosome transport by

cellular activation of MyoVa and MyoVIIa [61] and Rab11a

involved in endosome recycling by linking the endocytic vesicles via

Rab11FIP2 to myosin Vb [62] as well as Rab8-activated optineurin

recruiting MyoVI [63]. There are still other examples of direct and

indirect motor protein effectors of Rab GTPases [54] elucidating

multiple ways by which these proteins assure correct transport and

vesicle/motor protein interaction.

Conclusion
Our finding of NMM IIA recruiting onto peroxisomes might be

interpreted as actin-dependent intracellular peroxisome transport.

However, previous studies addressing this topic did not reveal

actin-dependent peroxisome motility [1,4]. Rather we believe that

Figure 4. Localization of peroxisomes to acto-myosin complexes in wild type CHO cells. Most peroxisomes visualized by the membrane
marker PMP69 (red) are found attached to NMM IIA-associated acto-myosin filaments (A–C). In many cases a number of peroxisomes is aligned along
single filaments (see inset) suggesting that peroxisome distribution within the cell is not at random but may be determined by the organelle9s
association to acto-myosin filaments (D–F). Images are reproduced from single z-layers. The bar represents 10 mm.
doi:10.1371/journal.pone.0013886.g004

Figure 5. GTP-dependent recruitment of RhoA onto isolated
rat liver peroxisomes. No recruitment is seen in the presence of ATP
alone (A) and no RhoA is floating up, if peroxisomes are omitted from
the incubations (B). Note that without membranes more RhoA
precipitates during incubation escaping analysis.
doi:10.1371/journal.pone.0013886.g005

Peroxisome Interactions
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peroxisomal NMM IIA might locally act in force generation and/

or contractile function similar as for example observed in

cytokinesis and contractile ring formation [64,65]. The GTP

dependence of this recruitment suggested the involvement of a

GTPase. So far several small GTPases were related to peroxisome

biogenesis and function. Among these are Rho1p [27], Arf1 and

Arf3 in S. cerevisiae [26] and mammalian RhoA, Arf1 and Rab8b

[4,26,57,58]. In addition, various Rho-GTPases have been

implicated in intracellular vesicle trafficking. These include

Cdc42 that inhibits recruitment of the microtubular motor dynein

to COP I-coated Golgi vesicles [66] and RhoA and Rac affecting

both clathrin-dependent [67] and clathrin-independent [68]

endocytosis. The latter process was recently reported to involve

Arf family GTPases that might be linked to the Rho family via

GIT proteins, Arfaptins or ARAPs [69]. Interestingly, mammalian

peroxisomes were shown to bind Arf1 and the COP I coat, and in

S.cerevisiae oleate-induced peroxisome proliferation depends on

Arf1 and is strikingly stimulated by deleting Arf3 the ortholog of

mammalian Arf6 [26].

In this context the role of Rab8 recruitment to peroxisomes is

less clear. Overlap of the Rab8 function with that of Arf6 was

reported to occur in the formation of cell protrusions, a process

powered by actin polymerization [70,71]. As both dominant-active

and -inactive Rab8 co-localize with peroxisomes and the

dominant-inactive form goes along with an increase in peroxisome

number, Rab8 seems to occupy a key position on the peroxisomal

membrane regulating proliferation.

Materials and Methods

Reagents and antibodies
ATP and creatine kinase were from Roche Applied Science

(Mannheim), creatine phosphate and exoenzyme C3 from

Calbiochem (Frankfurt). Polyclonal rabbit anti-non-muscle myosin

IIA and anti-ROCKII were obtained from Sigma (Munich).

Monoclonal mouse anti-RhoA (26C4) was from Santa-Cruz

Biotechnologies (San Diego) and the monoclonal mouse antibody

raised against the c-myc epitope (clone 9E10) from Invitrogen

(Karlsruhe). Polyclonal antibodies recognizing peroxisomal pro-

teins were raised in rabbits and were previously described [72].

The expression vector for dominant-active RhoA (pEXV-myc-

G14VRhoA) was a gift from Dr. Alan Hall (MRC Laboratory for

Molecular Cell Biology, University College, London). Exoenzyme

C3 (Sigma, Munich) was added to the cell culture medium at a

concentration of 5 mg/ml 24 h prior to analysis. The GFP-Rab8a

and GFP-Rab8b constructs were previously described [70]. The

vector coding for EGFP-PTS1 was obtained from Clontech

(Heidelberg). Other chemicals were from Sigma (Munich).

Particle-tracking analysis
Time-lapse fluorescence microscopy using a cooled ccd camera

was carried out exactly as described [3,4]. Briefly, time series

consisted of 30 pictures taken every 16.560.5 s including the 1–2 s

time of exposure automatically adjusted according to the

fluorescence intensity. Peroxisomal motility was analyzed by

animation of the entire time series using the KHOROS software

package [73,74]. Major events of organelle motility were

statistically evaluated by subtraction of two consecutive images

using the PMIS software (Photometrics, Tucson, AZ, USA) and

counting the number of peroxisomes either at rest or in the

saltatory or oscillating state. Only the distance covered by the

organelles during the time of two consecutive images (16.560.5 s)

was taken as a measure to determine the number of saltating

peroxisomes. Saltations were recognized as being separated by a

distance greater than the maximum amplitude of oscillation that

was determined in a separate set of experiments and at most

corresponded to peroxisomes appearing attached in the overlay of

Figure 6. Co-localization of RhoA and peroxisomes in AT3 mouse hepatoma cells. Endogenous (A, C) and transfected dominant-active
myc-G14V-RhoA (D, F, red) co-localize to peroxisomes (C, F) visualized by the peroxisomal matrix protein catalase (B, E, green). At higher
magnification (inset in F) a patchy distribution of RhoA on peroxisomes becomes apparent. Inactivation of RhoA by C. botulinum exoenzyme C3
abolishes RhoA localization to peroxisomes (G–I). Images were reproduced from single z-layers. The bars represent 10 mm.
doi:10.1371/journal.pone.0013886.g006
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two subsequent time frames [3]. Statistics were based on counting

100 peroxisomes from 4 to 10 cells of 3–7 independent

experiments. The displacement histogram was obtained by

analyzing complete time series using particle-tracking velocimetry

as described [75,76]. On the x-axis length of translations

determined at 0.1 pixel distances was plotted versus frequency

(y-axis) in percentage of total organelle counts.

Peroxisome protein-binding assay
Highly purified peroxisomes were isolated by a combination of

rate zonal and Nycodenz equilibrium density gradient centrifuga-

tion as previously described [77]. They were obtained in a

concentration of 2.5–3.5 mg/ml and stored in small aliquots at

280uC prior to use. Rat liver cytosol was prepared by

centrifugation of a rat liver homogenate in buffer H (50 mM

Hepes/KOH, pH 7.55, 165 mM KAc, 2 mM MgAc2, 1 mM

dithiothreitol) supplemented with protease inhibitors (1 mM

leupeptin, 10 mM antipain, 100 mM phenylmethylsulfonyl fluo-

ride) [26]. After a final centrifugation at 180,0006 g for 90 min

(TFT 55.38 rotor, Kontron Instruments, Hanau), the resulting

supernatant was concentrated about 10-fold in a MINITAN ultra

concentration unit (molecular weight cut-off 10,000; Millipore,

Eschborn). The cytosol obtained usually had a final concentration

of 45–50 mg/ml. It was stored in aliquots at 280uCuntil use.

Thawed cytosol (5 mg/ml) was cleared by centrifugation

(20,0006 g for 20 min at 4uC) and primed by incubation for

30 min at 37uC with either guanosin 59-(b,-imido)triphosphate

(GMP-PNP, 100 mM), or guanosin 59-(b-thio)diphosphate (GDPcS,

100 mM) or buffer (50 mM HEPES/KOH, pH 7.5). Following

centrifugation (200,0006 g for 10 min at room temperature) an

ATP-regenerating system consisting of 2 mM ATP, 20 mM

creatine phosphate, 250 mg/ml creatine kinase in 50 mM

HEPES/KOH, pH 7.5 was added. Peroxisomes were freed from

Nycodenz by centrifugation and the pelleted peroxisomes (100 mg

of protein) resuspended in the cleared cytosol and incubated at 37uC
for 30 min. Some incubations contained ATP (2 mM) or AMP-

PNP (100 mM) or buffer instead of the ATP-regenerating system.

After incubation, organelles were left on ice for 30 min to

depolymerize microtubules prior to flotation in a Nycodenz density

gradient. To this end, incubated organelles were brought to 45%

(w/v) Nycodenz by the addition of 70% (w/v) Nycodenz and

overlayed by a layer of 40% (w/v) Nycodenz in sucrose buffer

(250 mM sucrose in 10 mM glycylglycine, pH 7.4) followed by a

layer of sucrose buffer. Total gradient volume was 600 ml.

Centrifugation was carried out at 150,0006g in the SW55II, rotor

(Beckman, Krefeld) for 3 h at 4uC. Three fractions indicated as F1,

F2 and F3 were collected from top to bottom.

Proteins from reisolated peroxisomes were separated by SDS-

PAGE using pre-cast Tris-Tricine 10–20% gradient gels (Anamed,

Bad Ems) and subsequently transferred onto PVDF-membranes

(Pall, Bad Kreuznach) for 2 hours at 400 mA. Proteins were

visualized by enhanced chemiluminescence.
35S-labeled cytosol was isolated from metabolically labelled

primary rat hepatocytes grown in DMEM/Hanks’F12 (1:1)

containing 10% FCS, penicillin/streptomycin, 1% L-glutamine,

Figure 7. Recruitment of ROCKII onto isolated rat liver
peroxisomes. Isolated organelles already have bound small amounts
of ROCKII (lane 6 in A). In the presence of ATP and particularly ATP plus
GMP-PNP this amount is increased about 2-fold and 5-fold, respectively
(lanes 1 and 3 in C). Localization of peroxisomes in the gradient
following floatation is indicated by the peroxisomal membrane marker
PMP69 (A). Omitting peroxisomes from the incubations abolishes
ROCKII floatation (B).
doi:10.1371/journal.pone.0013886.g007

Figure 8. Peroxisomal localization of ROCKII in Huh7 cells. Peroxisomes and ROCKII are visualized by transfecting the cells with GFP-SKL (A,
green) and using a ROCKII-specific antibody (B, red), respectively. Merged images (C) show co-localizing structures of which some are indicated by
white arrows. Images were assembled from z-projections. The bar represents 10 mm.
doi:10.1371/journal.pone.0013886.g008
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0.5 mM insulin, 1 mM dexamethasone and 1 mM triiodothyronine

over night at 37uC and 5% CO2. For radioactive labelling, cells

were incubated for 3 h in methionine/cysteine-free DMEM

supplemented with 10 mM HEPES/NaOH, pH 7.4, 10%

dialysed FCS, penicillin/streptomycin, 1% L-glutamine, 0.5 mM

insulin, 1 mM dexamethasone and 1 mM triiodotyronine in the

presence of 37.5 mCi/ml of 35S-methionine/cysteine (.1000 Ci/

mmol, GE-Healthcare, Braunschweig). Cells were homogenized

on ice in buffer H and the post-nuclear supernatant was

centrifuged at 100,0006g in the TLA45 rotor (Beckman, Krefeld)

for 1.5 hours at 4uC. Specific activity of the obtained 35S-labeled

cytosol was 45 mCi/mg of protein.

Autoradiography
Peroxisomes were incubated as described above using metabol-

ically labelled rat liver cytosol in the presence of 2 mM ATP,

100 mM GTPcS and phosphatase inhibitor cocktail 2 (Sigma-

Aldrich). Peroxisomes were separated from the bulk of cytosol by

Nycodenz-density gradient flotation through a layer of 43% (w/v)

Nycodenz and the peroxisomal proteins subjected to SDS-PAGE.

To visualize 35S-labelled proteins, gels were dried on Whatman

3 MM paper and exposed to X-ray films (BioMax MR Scientific

Imaging, Berlin).

Proteomics analyses of peroxisomes and peroxisomal
membranes

Proteins of the reisolated peroxisomes visualized by autoradi-

ography or by SDS-PAGE were identified by nano-HPLC/ESI-

MS/MS [78]. Tryptic peptide samples were analyzed on a Dionex

LC Packings HPLC system (Dionex LC Packings, Idstein) directly

coupled to a Bruker Daltronics HCT plus ion trap instrument

equipped with nanoelectrospray ion source (Bruker, Bremen) and

Figure 9. Peroxisomal localization of Rab8 by protein correlation profiling. The post-nuclear fraction of a rat liver homogenate was
separated by Nycodenz density gradient centrifugation and the relative abundance of Rab8 (A) and peroxisomal matrix (bifunctional enzyme) and
membrane (Pex11ap) marker protein (B)-specific peptides (spectral counts) determined by nano-HPLC/ESI-MS-MS. Peptides specific for Rab8a and
Rab8b were exclusively found in fractions 3 and 4 identified as peroxisomal fractions by the marker proteins.
doi:10.1371/journal.pone.0013886.g009
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distal coated SilicaTips (New Objective, Wobern, MA, USA). For

profiling of proteins associated with peroxisomal membranes,

Nycodenz gradient fractions number 1 to 10 were individually

treated with NaCO3, pH 11.5. The resulting membrane pellets

were then subjected to SDS-PAGE and proteins stained by

colloidal Coomassie Brilliant Blue G-250. For analysis of the low-

molecular weight (,30 kDa) region the gel was equally cut into

three slices and proteins were digested in-gel with trypsin and

further subjected to proteomics analysis as described [78]. Briefly,

nano-HPLC/ESI-MS/MS analyses were performed on a 7-Tesla

Finnigan LTQ-FT (Thermo Electron, Bremen) instrument

equipped with a nanoelectrospray ion source. Samples were

analyzed in a data-dependent mode fragmenting the three most

intense ions in the linear ion trap by low-energy CID and

accurately performing in parallel mass measurements in the

FTICR cell.

For peptide and protein identification, MS/MS datasets were

generally correlated with the rat International Protein Index (IPI;

www.ebi.ac.uk) database using the MASCOT algorithm. Proteins

were identified based on at least one unique peptide and a false

positive rate below 5%. To semi-quantitatively follow proteins of

interest across the density gradient fractions, the respective spectral

counts were calculated [41] and plotted against the number of

gradient fractions in order to generate protein profiles.

Transfection and immunofluorescence
CHO-K1 and Huh7 cells were grown in DMEM containing

10% FCS, penicillin/streptomycin and 1% L-glutamine, whereas

AT3F mouse hepatoma cells were maintained in DMEM/Hanks

F12 (1:1) supplemented with 10% FCS, penicillin/streptomycin,

1% L-glutamine, 0.5 mM insulin, 1 mM dexamethasone, 1 mM

triiodotyronine at 37uC and 5% CO2. Cells stably expressing

EGFP—SKL were prepared as previously described [3,4].

Transient expression of myc-G14V-RhoA, a dominant-active

mutant of RhoA [79] was achieved by transfection using the

Nucleofector II device (Lonza, Basel) and an optimized protocol

for mouse hepatocytes. For exoenzyme C3 treatment, the toxin

(5 mg/ml) either was added to the medium two days prior to

analysis or was expressed as a myc-tagged protein by transfection

[48]. Transfection of GFP-Rab8a and GFP-Rab8b in Huh7 cells

Figure 10. Intracellular localization of Rab8a. Huh7 cells were stably transfected with dominant-active (GFP-Rab8aQ67L; A and J), dominant-
inactive (GFP-Rab8aT22N; D and K) and wild type Rab8a (GFP-Rab8aWT; G) constructs. Peroxisomes were visualized by using primary anti-catalase (B,
E and H) and Golgi cisternae were stained with primary anti-GM130 (J and K). Alexa FLUOR-labeled secondary antibodies were used for staining.
Images were assembled from z-projections. The bar represents 10 mm. The quantitative evaluation of peroxisomes co-localizing with Rab8a
following transfection of wild type and mutant Rab8a is shown in (L). n = number of cells evaluated.
doi:10.1371/journal.pone.0013886.g010
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was done using calcium phosphate. Cells were selected with

400 mg/l Geneticin for stable transfection and subsequently

maintained in medium containing 250 mg/l Geneticin. For

immunofluorescence, cells were grown on glass cover slips, fixed

in 3% PFA and permeabilized with 1% TX-100 for 5 min at room

temperature. After blocking with 10% BSA, cells were incubated

with primary antibody for 1 h at 37uC followed by the appropriate

FITC-, TRITC- or Alexa FLUOR-labeled secondary antibody

(Invitrogen, Karlsruhe). Cover slips were mounted using Mowiol/

p-phenylendiamine 10:1 in 0.1 M Tris/HCl, pH 8.7 (Sigma,

Munich) or VectaShield hard set mounting medium (Vector

Laboratories). Microscopy was carried out using the confocal

laser-scanning microscope LSM Meta 510 (Zeiss, Jena) or an Axio

Oberserver SD confocal microscope (Zeiss, Göttingen).

Colocalization analysis
Prior to quantification of co-localizing structures, image stacks

were filtered using the Gauss filter implemented in the image

aquisition software (Axiovision 4.8, Zeiss, Göttingen) to remove

noise. Stacks were subsequently exported as 8-bit greyscale images

in tif-format and the analysis was performed using ImageJ (http://

rsb.info.nih.gov/ij/) and the OBCOL plugin [42]. The OBCOL

plugin represents an automated pipeline for structure segmenta-

tion/aggregation into 3D organelles and subsequent statistical

evaluation. OBCOL parameters were set to default of the

OBCOL pipeline, a Pearson coefficient of $0,5 indicated co-

localization. For counting the total number of organelles, the

’’nucleus counter‘‘ plugin of ImageJ was used.

Electron microscopy
To generate peroxisome proliferating conditions, rats weighing

about 150 g were treated with clofibrate (0.5% in the diet) and

daily s.c. injections of 100 mg T4 for five consecutive days.

Following anesthesia rats were fixed by transcardial perfusion with

2.5% glutaraldehyde in 0.1 M Na-cacodylate buffer, pH 7.6

containing 2% polyvinylpyrrolidone and 0.05% CaCl2. Micro-

slicer liver sections (60–80 mm thick) were incubated in alkaline

diaminobenzidine (pH 10.0) for 30 min. Samples were postfixed

by cacodylate-buffered 1% osmium tetroxide for 1 h and stained

en bloc in 1% uranyl acetate for 30 min. After dehydration in

graded ethanol samples were embedded in Epon. Ultrathin

sections were stained with lead citrate and analyzed using a Zeiss

EM 906E [80].
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