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Abstract

Background: Inferring Gene Regulatory Networks (GRNs) from time course microarray data suffers from the dimensionality
problem created by the short length of available time series compared to the large number of genes in the network. To
overcome this, data integration from diverse sources is mandatory. Microarray data from different sources and platforms are
publicly available, but integration is not straightforward, due to platform and experimental differences.

Methods: We analyse here different normalisation approaches for microarray data integration, in the context of reverse
engineering of GRN quantitative models. We introduce two preprocessing approaches based on existing normalisation
techniques and provide a comprehensive comparison of normalised datasets.

Conclusions: Results identify a method based on a combination of Loess normalisation and iterative K-means as best for
time series normalisation for this problem.
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Introduction

Identifying biological networks is an important aspect of

Systems Biology, as these give insight on the complex behaviour

of an organism and help find disease markers and treatments,

important precepts to establish for Synthetic Biology [1]. GRNs

are biological networks that describe the regulation of gene

expression, fundamental to most natural processes. Computational

models of GRNs enable in silico simulation and analysis of these

processes. Quantitative models provide more information on the

interactions and dynamics of the system, compared to qualitative

models, but despite considerable attention in the literature [2,3],

they are still restricted in scope. This is due to the limited length of

most sources of time course data, typically used for inference,

which creates an under-determination problem for large GRNs.

One way of overcoming the dimensionality problem, widely

recognized in the literature [4], is data integration. Inferential

algorithms that integrate other types of biological measurements

with microarray data have been reported [5], while integration of

time series from different sources, but on the same platform, has

been shown to aid GRN inference [6]. However, cross-platform

integration of microarray data has been analysed only for

clustering and classification problems, using normalisation tech-

niques to remove platform and batch effects [7,8]. An analysis of

these, in the context of quantitative GRN modelling, introduces

new challenges, as different pre-processing techniques may affect

the data in a negative way. While most methods aim at removing

noise, part of the real signal may be removed as well. This leads to

over-smoothing, resulting in significant loss of information,

especially when multiple consecutive normalisation stages are

involved, as is the case of cross-platform normalisation. In

consequence, correlations between interacting genes may be lost,

or spurious correlations introduced during pre-processing, making

it very difficult for inferential algorithms to uncover the real

structure of the GRN. Given the nature of the data, which are

highly dimensional and describe a complex system, the resulting

datasets are difficult to validate, as differentiation between spurious

and real correlations is hindered by complex interaction patterns.

Additionally, given the quantitative nature of the models, the data

used for inference need to be measuring the same quantity,

whereas diverse pre-processing techniques may result in log ratios,

log values or other transformed quantities, thus hindering the

integration process. In consequence, two joint (single- and dual-

channel) pre-processing approaches based on existing normalisa-

tion techniques are introduced here, to reconcile these quantities,

and a comparison framework is built for assessment of results.

Methods

Data
Normalisation analysis has been performed on four distinct,

publicly available, raw datasets, representing microarray time

series measurements during the Yeast Saccharomyces Cerevisiae cell

cycle. These include three dual-channel, (Spellman [9], PramilaS

[10], PramilaL [11]), and one single-channel dataset, (Hasse [12]).

Each of these analyses two cell cycles, at different time intervals.

The Spellman dataset contains 18 time points sampled every seven

minutes, measured using c-DNA microarrays, while the PramilaS
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dataset contains 13 time points, sampled every 10 minutes on

Amplicon v1.1 microarrays,(c-DNA). The PramilaL dataset contains

25 time points, sampled every 5 minutes on the same Amplicon

platform, and features a dye-swap replicate, which is used in our

experiments as a second time series of the same length. The Hasse

dataset contains 15 time points, sampled with Affymetrix arrays

every 16 minutes, and a replicate that is again used as a separate

time series during inference. This results in six time series

measurements of the cell cycle, sampled at different intervals.

The common genes in these datasets were extracted, resulting in

5337 genes for analysis.

Normalisation techniques
The normalisation performed in this study consists of two

stages. Initially, noise pre-processing was performed, using three

different approaches. On the resulting datasets, three cross-

platform normalisation techniques were applied, resulting in a

total of nine normalised datasets for comparison. Additionally,

the time spans were scaled so that the cell cycle length is the same

across datasets.

The first pre-processing stage aims at noise reduction within

each dataset, to prepare it for cross-platform normalisation.

Several normalisation techniques exist in the literature [13],

especially tailored for single- and dual-channel arrays, where a

channel represents a different sample [13]. However, these

methods usually yield data of different type and scale, i.e. log

ratios for dual-channel and ‘absolute’ expression values for single-

channel, which are difficult to integrate in a qualitative model. In

this context, three different approaches, (one standard and two

integrative), were used for within-dataset normalisation and

compared for each dataset previously described.

The first approach, PMLoess, applies different normalisation

techniques depending on platform type: PMOnly, (available in

the dChip software, [14]) for Affymetrix, and Loess normalisa-

tion, (available in the Limma Bioconductor package, [15]), for

dual-channel data. PMOnly was chosen as a preferred method in

previous studies [16], while Loess normalisation is an established

method for pre-processing dual-channel arrays [13]. The

logarithm of expression levels resulting from dChip was

computed for the Affymetrix dataset, to obtain semantics similar

to log ratios obtained after Loess normalisation for the dual-

channel datasets.

Additional normalisation aims at reconciling use of both log

ratios and log values by applying Loess normalisation to

Affymetrix data and PMOnly normalisation to dual-channel data.

These two methods are, henceforth, refered to as LoessOnly and

PMOnly. LoessOnly applies Loess normalisation [15] to both dual-

and single-channel arrays, by considering the average of the

perfect-match probes to be the red channel, and the mismatch

probes to be the green channel, where red and green correspond

to the two samples compared in dual channel arrays. In dual-

channel datasets (PramilaL, PramilaS and Spellman), the red

channel corresponds to samples taken at the different time points

during the cell cycle, and the green channel to a control sample,

which is the same for all time points. In single-channel data, both

perfect-match and mismatch probes correspond to the same

sample, where the sample values are different at each time point.

However, given that mismatch probes measure unspecific

hybridisation, (genes can hybridise even if their sequence is not

the correct complement of the probe), and that the amount of

sample solution used in each experiment is the same, the mismatch

signals should be close to one another at different time points.

Thus, correspondence applies between the green channel in dual-

channel time series and the mismatch probes in single-channel

series. PMOnly, on the other hand, applies dChip to both types of

data, taking the background-normalised red channel to be a

perfect match probe.

For each dataset resulting from the first pre-processing stage, we

applied cross-platform normalisation techniques, as follows. (i) A

simple standardisation on each dataset, x’~
x{�xx

s
, for data values

x with sample mean �xx and sample standard deviation s was

performed [8]. This was followed by a scaling of values to lie on

the interval [0,1], which restricts the data to the same range. The

scaling was performed by subtracting, from all values, the

minimum expression level over all four datasets (plus a predefined

d), followed by dividing all values by the maximum (plus d). The

restriction to interval (0,1) was necessary as the model used here

(described in Section Evaluation criteria) requires positive expression

values for all genes, and facilitates computation by restricting its

output to the same interval. (ii) ComBat [7], a Bayesian technique

aimed at removing batch effects, and (iii) XPN [8], a cross-

platform normalisation technique based on iterative K-means

clustering, were also applied for cross-platform normalisation

(outlines of the two methods are included in the following

paragraphs). Additionally, scaling onto the interval [0,1], was

performed, as noted. All these techniques aim at standardising

data across platforms, after a preliminary normalisation within each

dataset. The implementations, made available by the authors,

were used for the latter two methods. The final datasets are

identified in this paper by the name of the normalisation

techniques used for each stage: PMLoess methods (PMLoess_St,

PMLoess_ComBat, PMLoess_XPN), PMOnly methods (PM_St,

PM_ComBat, PM_XPN) and LoessOnly methods (Loess_St, Loess_

ComBat, Loess_XPN). The rest of this section briefly describes the

cross-platform normalisation procedures ComBat and XPN.

ComBat [7] is a normalisation method for eliminating batch

effects, which models the gene expression level for gene g in

experiment i and platform j as:

xgij~agzXbgzcigzdigeijg ð1Þ

with ag the overall expression level, X a design matrix for

experiment conditions, bg the vector of regression coefficients for

X, cig and dig the batch effects, and eijg the noise term (normally

distributed with zero mean and sg variance).

The method consists of three steps. (i) The data is standardised

to obtain similar overall mean and variance for genes. This

involves fitting of parameters ag, bg and cig by using a least-

squares approach, estimation of sg, and computation of a

standardised data point as:

zgij~
xgij{âag{X b̂bg

ŝsg

ð2Þ

Further (ii), the batch effect parameters are estimated, using the

assumptions that cig are normally distributed (N(xi,t
2
i )) while d2

ig

follow the InverseGamma(li,hi) distribution. The parameters for

these distributions are estimated using the method of moments.

Finally (iii), the data are adjusted for batch effects:

x�gij~
ŝsg

d̂dig

(zgij{ĉcig)zâagzX b̂bg ð3Þ

A more detailed description of this normalisation approach can be

found in [7].

Cross-Platform Normalisation
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XPN [8] is a cross-platform normalisation procedure based on

the assumption that subsets of genes have the same pattern in

subsets of experiments. The expression level for a gene g in sample

s and platform p is considered to be a block mean, AGSp, which is the

same for a subset of samples (S) and genes (G), and common across

platforms (p), transformed by a scaling and a shifting factor, i.e. bgp

and cgp, specific to each gene (g) and platform (p), and a noise term

egsp, (specific to each gene, sample and platform):

xgsp~AGSpbgpzcgpzsgpegsp ð4Þ

In order to find G and S, i.e. the groups of genes and samples

where the block mean values apply, K-means clustering is applied

separately on sample and gene patterns obtained by combining the

datasets to be normalised. Based on cluster assignment, the model

described in Equation 4 is fitted to the data, using a maximum

likelihood method. Normalised expression values are computed

based on the model obtained:

x�gsp~ÂAGSb̂bgzĉcgzŝsg

xgsp{ÂAGSpb̂bgp{ĉcgp

ŝsgp

ð5Þ

where AGS, bg, cg and sg are weighted averages of parameters

AGSp, bgp, cgp and sgp, obtained for each platform. The procedure

is iterated 30 times to obtain 30 normalised values, corresponding

to different cluster assignments, and final expression values are

computed as the average of the values obtained in each run. More

details on this normalisation procedure can be found in the

original paper, [8].

Evaluation criteria
Evaluation of the normalisation methods applied has been

carried out using four different criteria. Firstly, (i) variability

between replicates has been computed, as the average over all

genes of the rMSE (squared root of Mean Squared Error) between

replicate expression values, normalised by the average gene

expression level for each gene, (Equation 6).

var~
1

N

XN

i~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

PT
j~1 (xij1

{xij2
)2

q
xi

ð6Þ

Here, xijk
represents the expression level of gene i in experiment j

and replicate k, N is the total number of genes and T is the total

number of experiments. The datasets used contain a dye-swap

replicate for one dual-channel dataset (PramilaL), (where the same

two samples are hybridised in two consecutive experiments, but

the dyes used for each sample are swapped) and one technical

replicate for the single-channel (Hasse) dataset (the same sample is

used in two consecutive experiments). This allows for a

comparison on both replicate types. Ideally, after normalisation,

replicates should be approximately the same, so the distance

between them is a criterion widely used for validation of

normalisation techniques, e.g. [16].

Secondly, (ii) wavelet analysis was used to compare the

normalisation techniques used. Wavelets [17] are a mathematical

tool for time-scale signal analysis: at large scale, low frequencies

present in the signal can be readily extracted, while small scale

analysis detects high frequency components. In signal decompo-

sition in general, high frequencies correspond to noise, while low

frequencies correspond to the signal itself [17]; this also applies to

time series gene expression measurements. Here, we have used

discrete wavelet decomposition to obtain wavelet coefficients for

gene signals at different scales, (also known as levels). This type of

decomposition uses a set of functions, called wavelets, which are

generated by contracting and dilating a base function, i.e. the

mother wavelet, in discrete steps [17]:

Yj,k(t)~
1ffiffiffiffi
sj
p Y(

t

sj
{kt) ð7Þ

Here, Yj,k is the wavelet obtained from Y, the mother wavelet, by

using s, a fixed scaling step, which is usually 2, and t, a translation

factor, usually 1. This results in a discrete sampling of the time-

scale space. The resulting wavelets are used to represent the signal

as a discrete superposition:

f (t)~
X
j,k

wj,kYj,k(t) ð8Þ

where w(j,k) represent the wavelet transform coefficients, which

describe components of the signal, corresponding to scale window

j and time window k. In practice, to obtain these coefficients, an

iterative approach is used, which builds coefficients for the upper

half of the frequency spectrum (considering s~2 and t~1), filters

these frequencies out and repeats the process for the lower half,

after sub-sampling the signal by 2. This results in different levels for

coefficients, with low levels corresponding to small scale i.e. high

frequencies, and high levels to high scale i.e. low frequencies.

Having 2k time points in the data, 2k{1 level 1 coefficients are

computed, for short time windows (total time divided by number

of coefficients), 2k{2 level 2, for double-sized time windows, while

the last level, k, contains just 2 coefficients, for large time windows.

Each of these coefficients indicates the amplitude of the current

frequency spectrum present in the signal in the current time

window. This results in high time resolution and low frequency

resolution at small scale and high frequency resolution and low

time resolution at large scale.

Here, we have used Daubechies mother wavelets for analysis

[17]. The signals corresponding to gene expression time series

were re-sampled to obtain 32 time points and, after decomposi-

tion, 32 wavelet coefficients on 5 levels (scales). Level 1 coefficients

describe the amplitude of the highest frequencies in the signal,

while level 5 corresponds to the lowest frequencies. The average

absolute value of the high frequency coefficients, corresponding to

9 genes known to be involved in the cell cycle, (from Kegg

database [18]), was computed, as these components are a good

indication of the magnitude of noise in the data. Also, wavelet

coefficients for gene signals from different datasets were compared

at different scales (by computing RSS -Residual Sum of Squares-

values), in order to assess which normalisation techniques bring

the data closer together. All computations were performed using

the Matlab toolbox WaveLab [19].

Thirdly, (iii) a correlation analysis was performed to test

whether correlations vary between normalisation techniques, as

well as to determine whether genes known to interact are

correlated after normalisation. This is important for GRN model

inference, as interacting genes will have correlated expression

levels across time [20]. Normalisation may remove useful

correlations, along with noise, or may introduce spurious

correlations in the data [21]. The Pearson correlation coefficient

[22] was computed between all gene pairs and, given the high

dimensionality of the obtained correlation matrix, three aggrega-

tion criteria were used for analysis. Additionally, correlations

between known interacting genes were calculated.

Cross-Platform Normalisation
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The first aggregated criterion used was the number of gene pairs

with absolute correlation larger than 0.9, which was compared across

normalised datasets, to determine how each normalisation technique

affects high correlations. Secondly, the average of absolute

correlations for each gene i was computed as shown in Equation 9.

avgi~
1

n

X
j=i

Drij D ð9Þ

where rij represents the Pearson coefficient between genes i and j

while n is the number of gene pairs. These values give a measure of

how the gene relates to the rest of the system. Thirdly, the correlation

variability between microarray datasets (Spellman, Hasse, PramilaL,

PramilaS) within each normalised dataset was computed, for each

gene pair. Ideally, the same pair of genes should have similar

correlation across microarray datasets, but, due to platform

differences and normalisation, these can vary. The correlations

common to the different datasets are most reliable, while others are

more likely to be spurious, i.e. introduced by the platform or

normalisation technique, (although some differences may appear due

to the removal of useful correlations by the normalisation process in

part of the datasets). In this work, the correlation differences between

microarray datasets was computed as indicated in Equation 10:

varij~
1ffiffiffi
6
p

X
a,b

(ra
ij{rb

ij)
2

" #1
2

ð10Þ

where a,b[S,Pl,Ps,H and a=b, rd
ij represents the Pearson

coefficient between genes i and j in dataset d, with d having values

S (Spellman), Pl (PramilaL), Ps (PramilaS) and H (Hasse). This

results in a matrix, for each normalisation technique, referred to as

correlation variability matrix in the rest of this paper, which shows how

correlations between pairs of genes differ from one microarray dataset

Figure 1. Variability between replicates in 9 datasets obtained by different normalisation techniques. The graphs show average rMSE/
mean (Equation 6) values for dye-swap (dual-channel arrays, PramilaL dataset) and technical replicates (single-channel arrays, Hasse dataset).
doi:10.1371/journal.pone.0013822.g001

Figure 2. Magnitude of high frequencies. Graph shows average absolute value of wavelet coefficients for levels 1 and 2, corresponding to
highest frequencies in the data, i.e. noise. Averages are computed over all four datasets.
doi:10.1371/journal.pone.0013822.g002

Cross-Platform Normalisation
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Figure 3. Dissimilarity between gene signals in different datasets. Graphs show average RSS between wavelet coefficients corresponding to
nine genes in the four datasets, at different scales(levels). Level 1 corresponds to highest frequencies, i.e. noise, while level 4 and 5 to lowest
frequencies, i.e. the real signal.
doi:10.1371/journal.pone.0013822.g003

Cross-Platform Normalisation
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to another. This can be viewed as an indicator of the amount of

spurious correlation in each normalised dataset. Here, we use the

average of the values in the correlation variability matrix to quantify

this, because of similar high dimensionality of these matrices.

A different method of identifying spurious correlations would be

to analyse partial correlation coefficients in the data, i.e. the

correlation seen after removing effects from other genes, as

opposed to zero-order coefficients such as Pearson, which consider

the correlation in isolation. However, this is difficult to assess here,

as the pattern of covariance is very complex, with many gene pairs

having high zero-order correlation and known existence of circuits

in the causality networks, hence our use of the correlation

variability matrix, described above, as a (weaker) criterion.

The fourth evaluation criterion used was (iv) the capability of

single gene models to translate between datasets. For this, models

were built from each dataset individually, and then were applied to

simulate the same genes in the other three datasets. An inferential

algorithm, based on evolutionary computation, [23], was used to

build S-System models of regulation for two genes (CLN1, CLN2)

in a 9-gene network, (chosen from the Kegg database to be loosely

connected to the rest of the cell cycle GRN). S-Systems [24] are

systems of differential equations based on the power-law

formalism, and have been previously used for GRN modelling

[3,25]:

dxi

dt
~ai P

n

j~1
x

gij
j {bi P

n

j~1
x

hij
j ð11Þ

Here, xi denotes the expression level of gene i; thus, the first and

second terms represent the synthesis and degradation of mRNA,

which are influenced in a positive or negative way by the genes in

the network. The rate constants, ai and bi, represent basal

synthesis and degradation rate, respectively, while gij and hij , the

kinetic orders, indicate the strength of influence of gene j on

Figure 4. Correlation matrices for Hasse dataset (single-channel), for each normalisation technique. Enlarged areas, labelled (a), (b), (c),
(d), (e) are provided for better visualisation. Images show that XPN cross-platform normalisation decreases high correlations compared to ComBat
and Standardisation ((a) vs. (b) and (c) vs. (d)) while Standardisation and ComBat yield same correlation values. Also, PM methods display a higher
number of strong correlations ((a) vs. (d) and (e)). These effects are studied further in text by providing values for aggregated criteria from the
correlation matrices.
doi:10.1371/journal.pone.0013822.g004

Cross-Platform Normalisation
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synthesis and degradation of gene i, respectively. Positive values of

gij indicate activation of gene i by gene j, while negative values

indicate repression. For the purpose of this paper, the decoupled

version is used, where model parameters for each gene are inferred

separately [23], as opposed to determining parameter values for

the whole system at once. Even though outcomes may be

influenced by the inferential technique, the error between these

simulations and the real signal seen in the test datasets is still a very

good indication of how close the datasets are and, consequently, of

how the normalisation technique performs. Due to the stochastic

nature of evolutionary algorithms, 20 runs were performed for

each inference task, and rMSE values, normalised by the mean

expression values (rMse/Mean), were averaged across these.

Additionally, models have been inferred from combining two

datasets, and testing on a third, to analyse how the data fit changes

compared to using each training dataset individually. This

demonstrates that data integration can improve inference, and

enables analysis of the effect of each normalisation technique. The

same error measure, i.e. rMSE/Mean, has been used to evaluate

the difference between simulated and experimental data.

Results and Discussion

Variability analysis
Figure 1 indicates that PMOnly methods display increased

variability in both dye-swap (dual-channel) and technical replicates

(single-channel). LoessOnly methods, (established technique for

dual-channel arrays), exhibit low fluctuation even in single-

channel technical replicates, indicating that, although not

developed for this type of data originally, they perform well with

respect to the variability criterion. Also, ComBat and XPN give

increased variability between replicates compared to standardisa-

tion in some cases, showing that cross-platform normalisation

comes with a cost in terms of replicates.

Figure 5. Correlation matrices for PramilaL dataset (dual-channel), for each normalisation technique. Enlarged areas, labelled (a), (b), (c),
(d), (e) are provided for better visualisation. Behaviour similar to that for the Hasse dataset can be observed, with decreased amount of high
correlation for XPN cross-platform normalisation, and with high correlations for PMOnly methods. However, differences are smaller than for the Hasse
dataset, indicating that single-channel data is more sensitive to the normalisation approach taken.
doi:10.1371/journal.pone.0013822.g005

Cross-Platform Normalisation
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Wavelet analysis
A first analysis, based on wavelet decomposition, measures the

amplitude of high frequencies in the different normalised datasets.

High amplitudes indicate stronger noise compared to low

amplitudes. Figure 2 shows average absolute values for wavelet

coefficients for the highest frequencies in the data, over all four

datasets. Results show that PMOnly methods display the largest

fluctuations, while PMLoess methods give the smallest. This was

expected to some extent, as the latter methods apply normalisation

techniques especially tailored for each type of data. Again,

LoessOnly methods display good behaviour, very close to

PMLoess. However, in LoessOnly, ComBat and XPN seem to

increase variability, in contrast to PMOnly and PMLoess, where

variability decreases. This is in agreement with the replicate

variability analysis (Section Variability analysis), and shows, again,

that cross platform normalisation may come with a cost from the

variability viewpoint.

A second application of wavelet decomposition, for assessment

of pre-processing methods, compares coefficients, at different

scales, for signals describing expression levels for the same gene

occurring in different datasets. Here, nine genes known to be

involved in the cell cycle, (analysed as a GRN also in Section Model

translation), are compared across the four datasets, and results are

summarised in Figure 3. This shows that for levels 1,2 and 3,

(corresponding to higher frequencies), PMOnly methods show the

largest differences between gene signals, for most genes analysed,

while LoessOnly and PMLoess are comparable. This is probably

due to the high variability in PMOnly data (when analysing high

frequencies only), noted earlier in this section. However, more

relevant is the behaviour seen for levels 4 and 5, which contain

coefficients that describe the real signal, as these differences

indicate how different the core gene expression levels are. As

Figure 3 shows, cross-platform normalisation methods bring the

data significantly closer together, compared to simple standard-

isation. The behaviour at levels 4 and 5 is also reflected at previous

levels, although differences are smaller.

Correlation analysis
In order to provide an overall view of the correlation

distribution in the normalised datasets, Figures 4 and 5 display

heatmaps of the pairwise correlation matrices, for datasets Hasse

(single-channel) and PramilaL (dual-channel). These indicate that

Loess and XPN methods decrease pair-wise correlations compared

to PM and Standardisation approaches, with much larger

differences seen in the single-channel (Hasse) dataset. Due to the

large dimensionality of these heatmaps, two aggregated criteria

Table 1. Summary of variability and aggregated correlation values for different within- and cross-platform normalisation.

Cross-platform Within-platform

Standardi-sation ComBat XPN PMOnly Loess Only PMLoess

SC DC SC DC SC DC SC DC SC DC SC DC

Variability between
replicates

q with
PML; Q with
PM & L

q with
PM & PML;
Q with L

q with
PM & L; Q
with PML

q with
L; Q with
PM & PML

q with
PM & L; Q
with PML

Q q q Q Q Q Q

Amplitude of noise
frequencies

q with PM & PML;
Q with L

q with L; Q with
PM & PML

q with L; Q
with PM & PML

q Q Q

Number of highly
correlated genes

q q q q Q Q q q in PL &
PS; Q in S

Q Q q q in S; Q
in PS & PL

Average absolute
correlation

q q q q Q Q q Q Q q q q

SC and DC identify results for single- and dual-channel datasets; PL, PS and S represent the three dual-channel datasets (PramilaL, PramilaS and Spellman), while PM,
PML, L stand for PMOnly, PMLoess and LoessOnly, respectively. Arrows indicate whether variability and correlations are increased (q) or decreased (Q) relative to the
other normalisation procedures in the same category (cross- or within-platform).
doi:10.1371/journal.pone.0013822.t001

Figure 6. Number of highly correlated gene pairs in each dataset, for each normalisation technique (in logarithmic scale). The
correlation threshold used was 0.9.
doi:10.1371/journal.pone.0013822.g006

Cross-Platform Normalisation
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have been used for further analysis. Table 1 summarises overall

values obtained for different cross- and within-platform normal-

isation, including the variability criteria used in previous sections,

to support the discussion on correlations.

Firstly, the number of highly correlated gene pairs has been

studied in each dataset. The correlation threshold used was 0.9,

and Figure 6 shows the number of gene pairs with absolute

correlation larger than this, for each normalised dataset. Results

show a very large difference on the log scale between

normalisation techniques used. PMOnly methods display a large

number of highly correlated gene pairs in the Hasse dataset and

in two of the three dual-channel datasets (PramilaS and

PramilaL), while LoessOnly methods eliminate a large part of

these correlations, especially in the Hasse dataset. The question

here is whether this high number of correlations is an artefact of

the PMOnly normalisation method, or whether Loess methods

do, in fact, substantially decrease correlations. A second

important observation is that ComBat and Standardisation

display the same correlation values, while, in comparison, XPN

causes significant decrease in the number of high correlations for

all datasets.

Secondly, the average of absolute correlations for a subset of

nine genes was computed, with results for gene SWI4, (which is a

known transcription factor involved in cell cycle regulation), shown

in Figure 7. For the dual-channel datasets, (Spellman, PramilaL,

PramilaS), LoessOnly methods show large average correlation, in

contrast to the low number of highly correlated pairs, noted for the

same methods (previous paragraph). This suggests that, for dual-

channel data, large correlations are only slightly decreased by

LoessOnly methods, whereas, (given the large variability for

PMOnly), the larger number of highly correlated genes may be an

artefact of the PMOnly normalisation technique. For the single-

channel dataset Hasse), however, the average correlation is

decreased by Loess normalisation, and, considering the significant

drop in highly correlated gene pairs, it can be concluded that,

although PMOnly normalisation may lead to spurious correlations

in the Hasse dataset, Loess normalisation may also decrease

correlations for these data, so a further analysis for quantifying

spurious correlation has been performed.

Correlation variability matrix. In order to assess the

amount of spurious correlation for each normalisation technique,

the correlation variability matrix (Equation 10) was computed for each

Figure 7. Average correlation for gene SWI4. This shows an aggregated measure of correlation of this gene with all other genes in the network,
for each normalisation technique. Note that ComBat cross-platform normalisation does not affect correlations, while XPN decreases the average
values.
doi:10.1371/journal.pone.0013822.g007

Figure 8. Average of correlation variability matrix. The correlation variability matrix measures correlation differences between datasets, as
defined in Equation 10. Plotted here is the average of values in matrices for different normalisation procedures. Note that LoessOnly methods display
lowest differences, indicating less presence of spurious correlation, and better agreement between datasets. XPN normalisation also decreases
differences, compared to standardisation. Thus Loess_XPN exhibits fewest differences, closely followed by PM_XPN.
doi:10.1371/journal.pone.0013822.g008
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normalisation procedure, and averages over all gene pairs (i.e. all

elements in these matrices), are shown in Figure 8. ComBat does

not affect correlations, compared to standardisation for cross-

platform normalisation, so the corresponding datasets, (i.e.

PM_ComBat, Loess_ComBat and PMLoess_ComBat), are not

included in the analysis. Results show that Loess methods display

smaller averages compared to PM, while XPN is lower still,

indicating less spurious correlation. In conclusion, Loess_XPN

exhibits the best behaviour, from the variable correlation point of

view, as coefficients are in good agreement across microarray

datasets. This performance is closely followed by that of

PM_XPN. This similar behaviour indicates that the effect of

cross-platform normalisation on the correlation differences is

larger than the effect of within dataset normalisation, which is to

be expected. Given the use of the correlation variability matrix as

a criterion for analysing spurious correlation, it can be argued that

agreement between datasets may be due just to systematic bias in

the normalisation procedure. Although this can not be ruled out,

correlation agreement is still required for data integration, so it

may be concluded that methods that display large correlation

variability perform less well. For a further study of quality of

correlation, a small number of genes known to interact are

analysed in the rest of this section.

Analysis of genes known to interact. In the context of

GRN modelling, it is very important that interactions between

genes correspond to correlations seen in the data. To analyse this,

Figure 9. Correlation between genes known to interact. The first three pairs of gene are positively interacting, and the positive correlation
values correctly indicate the interaction type, in all datasets. The fourth and fifth gene pairs, on the other hand, should display negative correlations,
as they are repressor/target pairs. However, while for the dual-channel datasets this relationship is confirmed by negative correlations, in the Hasse
dataset it is only visible with PM_XPN and LoessOnly methods, with Loess_XPN displaying largest absolute value. This indicates that Loess_XPN
enhances correlations in this case.
doi:10.1371/journal.pone.0013822.g009
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we have chosen a set of 5 gene pairs, which are known to interact

in reality ([18]). These include pairs (a) CLN1/2 of genes working

together as a complex, (i.e. co-regulated), (b) SWI4/CLN1 and (c)

SWI4/CLN2, where SWI4, in a protein complex, is known to

activate genes CLN1/2, and the pairs (d) FAR1/CLN1 and (e)

FAR1/CLN2, where FAR1 represses the formation of CLN1/2.

Ideally, for (a), (b), (c), a high positive correlation should be seen in

the data, while for (d) and (e), a high negative correlation should be

present. Figure 9 shows correlations for each dataset, and each

normalisation technique.

For the first three datasets, (Spellman, PramilaL, Pramilas -

dual-channel), Loess normalisation displays better behaviour, with

PM-only methods giving significant decrease in correlations

between genes known to interact. It is important to note that the

correlation values do correctly indicate the nature of these

interactions, with positive values for (a), (b), (c), and negative for

(d) and (e). However, correlations between CLN1/2 are higher

than those corresponding to activation/repression pairs, which can

be explained by the regulatory time delay, which represents the

time elapsed between the expression of the regulator and that of

the regulated gene, causing a shift in the expression signal of the

target, compared to the regulator, and, consequently, decreasing

correlation values between the corresponding time series. For the

Hasse dataset, on the other hand, the negative correlation between

FAR1/CLN1/2 is not present, except after Loess normalisation,

and, even then, absolute values are very small. This supports the

Figure 10. Average rMSE/Mean on all datasets for 20 S-System models for gene CLN2. Models were inferred from datasets Spellman,
PramilaL and Hasse, separately, (identified by graph titles), and then tested on the rest of the datasets (horizontal axis). Graphs show that cross-
platform normalisation, other than standardisation, decreases fitting errors for the test datasets.
doi:10.1371/journal.pone.0013822.g010
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hypothesis that PMOnly methods introduce spurious correlations

into the data, probably due to the high variability, (discussed in

Sections Variability analysis and Wavelet analysis). For the other gene

pairs, positive correlations are decreased using Loess, (Hasse

dataset), but agreement with values obtained for dual-channel

datasets (i.e. PramilaL, PramilaS and Spellman) remains good.

It is very important to note, when analysing gene pairs known to

interact, that, although overall average correlations are smaller, as

noted earlier, XPN does not decrease correlations in all cases;

some increases are observed, compared to other methods. This,

combined with the low correlation variability shown previously,

indicates that XPN reduces spurious high correlations, as opposed

to ‘useful’ ones, which it conserves or even amplifies, even in

datasets such as Hasse, (Figure 9), where other techniques fail to do

so.

Model translation
Applying models, built from one dataset, to others, can indicate

whether pre-processing improves agreement between datasets, i.e.

which genes are involved and co-regulated in the measured

process. To assess this, we have computed the average rMSE/

Mean between simulations of 20 S-System models for each dataset

and the real expression values. Models were obtained though

evolutionary optimisation, which is a stochastic process, so

multiple runs were performed for a robust analysis of results.

rMSE/Mean values are displayed in Figure 10, for gene CLN2

models inferred from Spellman, PramilaL and Hasse datasets.

These show that, in general, cross-platform normalisation, (as

opposed to simple standardisation), significantly decreases error on

all test datasets, making it a very important step in data integration

for GRN modelling. Also, it is important to note that PMOnly and

LoessOnly methods display behaviour comparable to combined

PMLoess methods, indicating that these normalisation approaches

are also suitable for time series model inference. Similar results

were obtained for gene CLN1, but are not shown here.

Combining datasets. In order to test how data integration

improves model inference with different normalisation techniques,

a second analysis was performed. This involved inferring models

for the same gene (CLN2) from datasets PramilaL and Hasse

together and testing these on the Spellman dataset. The resulting

error, (averaged over 20 runs), has been compared to that

obtained by models inferred from PramilaL and Hasse

individually, with results displayed in Figure 11, as rMSE/Mean

values. This shows that, for most normalisation techniques,

increasing the number of datasets incorporated in model

inference decreases the error when this model is subsequently

applied to the test dataset. The exceptions are PMLoess_St and

PMLoess_XPN, where the error for the models inferred, from the

PramilaL dataset alone, is smaller than that found when the Hasse

data are also included in the training set. This is not too surprising

since, in these cases, within dataset normalisation is different for

dual-channel (PramilaL and Spellman) and single-channel (Hasse)

data, resulting in log-ratios for the former and log-values for the

latter. Consequently, model performance, tested on the Spellman

dataset, is decreased by including the Hasse dataset in the training

set. In PMLoess_ComBat, the increase in error when using two

datasets is not visible, even though this method also uses different

within dataset normalisation for single- and dual-channel data.

This may indicate that the cross-platform normalisation employed

(i.e. ComBat) is better able to eliminate platform differences, in this

case. The decrease in error on the test dataset for PMOnly and

LoessOnly methods, when using two training datasets as opposed

to one only, indicates that the integrative within dataset

normalisation procedures introduced here (PMOnly and

LoessOnly) do aid combined data inference, by reconciling

different quantities, resulting from typical Loess and PMOnly

normalisation.

Based on lowest error obtained for model inference, (using two

datasets as opposed to one), Loess_XPN performs best, providing

strong indication of its suitability as a normalisation method for

data integration in GRN modelling.

Conclusions
Three pre-processing approaches (LoessOnly, PMOnly and

LoessPM) have been applied to integrated raw microarray data

from 3 different platforms. This has included application of

techniques developed for dual-channel, (Loess [15]), on single-

channel data and vice-versa, (PMOnly [14]). Following initial

Figure 11. Average rMSE/Mean on the Spellman dataset for gene CLN2. Twenty inference runs have been performed with datasets Hasse,
PramilaL and Hasse+PramilaL combined, and average errors, tested on the Spellman dataset, displayed for each normalisation technique. These show
that, for PMOnly and LoessOnly methods, behaviour on the test dataset improves when using combined data, regardless of the cross-platform
normalisation technique used, while for PMLoess methods this happens only for ComBat cross-platform normalisation. This is a good indication that
these within dataset normalisation methods improve integrated data inference. Loess_XPN displays lowest rMSE values, suggesting that this is a
suitable normalisation method for cross-platform data integration.
doi:10.1371/journal.pone.0013822.g011

Cross-Platform Normalisation

PLoS ONE | www.plosone.org 12 November 2010 | Volume 5 | Issue 11 | e13822



within-sample pre-processing, three cross-platform normalisation

techniques, (Standardisation, ComBat [7] and XPN [8]), were

applied, resulting in 9 normalised datasets. These have been

compared for four criteria, relevant for data integration in the

context of GRN quantitative modelling: variability between

replicates, wavelet coefficient analysis, simple gene-gene correla-

tions and GRN differential equation model translation between

datasets.

From the variability viewpoint, LoessOnly methods performed

better than PMOnly, although combined PMLoess methods

exhibited best performance overall. Wavelet analysis and model

translation indicated that a second normalisation stage, (cross-

platform), as opposed to simple standardisation, is required in

order to align the datasets for the same inferential process.

However, variance is increased for experimental replicates by

cross-platform processing. Additionally, combining datasets was

shown to increase performance on a test dataset, especially when

using integrated-within dataset normalisation, with best data fit

obtained by Loess_XPN. Analysis of correlation between genes

showed that Loess methods decrease high values, although

patterns between genes that are known to interact are preserved.

XPN also reduces some highly correlated gene values, but, in

many cases, correlations between genes known to interact are

amplified, even for those gene pairs for which other methods failed

to obtain the correct correlation sign. This suggests that it is a fairly

sensitive probe for determining true interaction patterns in the

data.

In conclusion, results indicate that Loess_XPN was found to be

best for normalisation of time-series data for quantitative model

inference, as variability is acceptably low, datasets are well aligned,

correlations between interacting genes are enhanced and models,

obtained from combined datasets, perform better on test data than

models inferred from one dataset only. The method permits

integrated pre-processing across platforms, facilitating model

inference from heterogeneous datasets.
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