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Low Levels of Physical Activity Increase Metabolic
Responsiveness to Cold in a Rat (Rattus fuscipes)

Frank Seebacher*, Elsa J. Glanville

Integrative Physiology Research Group, School of Biological Sciences, The University of Sydney, Sydney, New South Wales, Australia

Abstract

Background: Physical activity modulates expression of metabolic genes and may therefore be a prerequisite for metabolic
responses to environmental stimuli. However, the extent to which exercise interacts with environmental conditions to
modulate metabolism is unresolved. Hence, we tested the hypothesis that even low levels of physical activity are beneficial
by improving metabolic responsiveness to temperatures below the thermal neutral zone, thereby increasing the capacity
for substrate oxidation and energy expenditure.

Methodology/Principal Findings: We used wild rats (Rattus fuscipes) to avoid potential effects of breeding on physiological
phenotypes. Exercise acclimation (for 30 min/day on 5 days/week for 30 days at 60% of maximal performance) at 22°C
increased mRNA concentrations of PGC1a, PPARS, and NRF-1 in skeletal muscle and brown adipose tissue compared to
sedentary animals. Lowering ambient temperature to 12°C caused further increases in relative expression of NRF-1 in
skeletal muscle, and of PPARS of brown adipose tissue. Surprisingly, relative expression of UCP1 increased only when both
exercise and cold stimuli were present. Importantly, in sedentary animals cold acclimation (12°C) alone did not change any
of the above variables. Similarly, cold alone did not increase maximum capacity for substrate oxidation in mitochondria
(cytochrome c oxidase and citrate synthase activities) of either muscle or brown adipose tissue. Animals that exercised
regularly had higher exercise induced metabolic rates in colder environments than sedentary rats, and temperature induced
metabolic scope was greater in exercised rats.

Conclusions/Significance: Physical activity is a necessary prerequisite for the expression of transcriptional regulators that
influence a broad range of physiological functions from energy metabolism to cardiovascular function and nutrient uptake.
A sedentary lifestyle leads to decreased daily energy expenditure because of a lack of direct use of energy and a muted
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metabolic response to ambient temperature, which can be reversed even by low levels of physical activity.
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Introduction

Animal health and reproductive success is largely determined by
a balance between energy intake and expenditure. Too little
chemical energy (adenosine triphosphate, ATP) available to cells
will constrain animal function [1] and too much energy ingested
will lead to obesity and disease [2-4]. Energy is expended to
maintain cellular homeostasis, and on growth and locomotion.
Physical activity is a default condition for most mammals [5] and
the regulatory pathways that control ATP production have
evolved with exercise as a principal selection pressure [6-8].
The mammalian genome may therefore be maladapted to
inactivity to the extent that switching from an active to a
sedentary lifestyle could disrupt metabolic signaling and cause
medical conditions such as obesity, diabetes, and cardiovascular
disease [9-12].

Aerobic, or oxidative, metabolism is the principal avenue for
ATP production in all animals, and also for heat production in
endotherms. In the cell, mitochondria are the site for oxidative
metabolic pathways. The capacity of mitochondria to oxidise
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substrates derived from food is important for whole animal energy
expenditure [14], but mitochondria are effective in facilitating
whole body energy use only when cells are in a negative energy
balance [15]. Energy is stored in mitochondria as an electro-
chemical proton gradient across an inner membrane in which the
principal metabolic protein complexes are situated. A negative
energy balance is achieved by dissipating the proton gradient
across the inner mitochondrial membrane; this can occur by ATP
use in the cell resulting from physical activity, which will stimulate
an enzyme in the inner mitochondrial membrane (complex V or
FoF1 ATPase) to replenish ATP by phosphorylating ADP using
energy provided by the proton gradient. Additionally, exposure to
cold will stimulate heat production in mitochondria [16] by
causing protons to pass through the inner membrane without ATP
production, which is facilitated by activation of specific uncoupling
proteins (uncoupling protein 1 or UCP1). Both cold exposure and
exercise trigger transcriptional pathways that lead to increased
mitochondrial abundance and oxidative capacity in skeletal
muscle and brown adipose tissue [17-20]. Elevated oxidative
capacity, which may be reflected in the increased activity of
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mitochondrial enzymes such as citrate synthase and cytochrome ¢
oxidase [17], leads to increased substrate oxidation and energy
use. Regulation of mitochondrial metabolism is to a large extent
achieved by a relatively small number of transcription factors and
their coactivators. The transcriptional co-activator peroxisome
proliferator-activated receptor gamma coactivator-1 alpha (PGC-
loy) interacts with nuclear respiratory factors (NRF-1 and NRT-2)
to stimulate mitochondrial biogenesis [17,20-21]. Exercise also
increases fatty acid oxidation in skeletal muscle by inducing
peroxisome proliferator-activated receptor delta (PPARS) expres-
sion, a transcriptional regulator of energy metabolism that plays an
important role in the transcriptional regulation of muscle
metabolism  [8,22-23]. One mechanism by which PPARS
modulates metabolism of skeletal muscle in mice is by causing a
switch from glycolytic, fast muscle fibres to oxidative, slow muscle
fibres, resulting in greater running performance and aerobic
capacity [24]. Interestingly, however, pharmacological stimulation
of PPARS, does not necessarily improve endurance performance
although it does cause an increase in transcription of some genes
important in oxidative metabolism [13]. However, PPARS
stimulation in combination with physical activity induces the
expression of a suite of metabolic genes, improves endurance
performance, and reduces fat content, which indicates that
exercise is a necessary trigger allowing PPARS to interact with
otherwise cryptic target genes [13]. These data suggest that
physical activity may be required to achieve patterns of gene
expression that permit effective regulation of energy balance
[6,8,15]. Additionally, cold stimulates mitochondrial uncoupling
and energy use in brown adipose tissue (BAT) by increasing the
activity and transcription of mitochondrial uncoupling protein 1
(UCPI; [2,25-27]).

In the absence of either cold or activity, metabolic responses will
be muted, which may explain the limited metabolic response of
experimental stimulation of metabolic regulators [13,15]. Al-
though cold exposure and exercise may each stimulate mitochon-
drial flux and capacity, it is not clear whether the two act
independently [6-8,10,12]. Hence, it was our aim to determine
whether cold exposure and physical activity interact to modulate
energy metabolism.

In the context of endothermic metabolism, “cold” may be
defined as an ambient temperature below the thermal neutral zone
when metabolic rates increase above basal rates [2]. In practice,
most endotherms experience environmental temperatures below
their thermal neutral zone most of the time; for example, the
thermal neutral zone of humans is 33-35°C, and that of Rattus
Suscipes is 29-31°C.. Metabolic responses triggered by ambient
temperature therefore constitute a principal avenue of daily energy
expenditure [16]. If, however, metabolic responses to cold are
dependent on a behavioural trigger such as physical activity, the
reduction in daily energy use in sedentary animals would be
twofold, firstly resulting from a lack of direct exercise-related
energy use, and secondly resulting from a muted metabolic
response to cold.

We tested the null-hypothesis that chronic cold and regular low
level exercise act independently to elicit similar metabolic
responses. Hence, an animal that is sedentary and exposed to
cold will have similar metabolic responses as an animal that is
exercised in the warmth. The alternatively hypothesis is that there
is a differential, and possibly an interactive effect of cold exposure
and exercise on metabolic responses. To test these hypotheses, we
exposed rats chronically to different thermal and exercise
conditions in a two-factorial experimental design, and examined
a functional cascade of responses from the expression of regulatory
transcription factors to running performance. Our results show
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that metabolic responses to cold are dependent on low levels of
physical activity, so that the principal avenues of daily energy
expenditure are removed by a sedentary lifestyle.

Results

Gene Expression

In muscle, relative expression of all target genes was significantly
greater in exercised animals (main effect, all F93>55.76,
p<<0.0001; Fig. la). There was significant interaction between
exercise and thermal acclimation for NRF-1 expression
(F1 95 =4.98, p<0.05), which means exercised and warm acclimated
animals had a lower expression than exercised, cold acclimated
animals (Fig. 1a). PGC-la relative expression was lower in warm
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Figure 1. Relative expression of transcription factors and
UCP1. Relative expression (mean = s.e.m) of transcriptional regulators
PGC-1a, NRF-1, and PPARS in skeletal muscle (A) and BAT (B), and UCP1
in BAT (B) from cold exercised (blue bars), warm exercised (red bars),
cold sedentary (blue striped bars) and warm sedentary (red striped bars)
rats. The relative expression of all genes increased with exercise in both
skeletal muscle and BAT. There were significant interactions between
thermal acclimation and exercise for NRF-1 relative expression in
muscle, and for PPARS expression in BAT. UCP1 relative expression did
not increase in response to either cold or exercise alone, but only when
those two stimuli coincided. Significant differences are indicated by
different letters above each column.
doi:10.1371/journal.pone.0013022.9001
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acclimated animals (I} 93=6.42, p<<0.02), but there was no
significant interaction between exercise and thermal acclimation
(F1,03=3.45, p=0.078). Only exercise had a significant effect on
PPARS relative expression (Fj 93=55.26, p<<0.0001), and neither
thermal acclimation nor the interaction were significant
(F1,03=3.12, p=10.092 and F, o3 =0.02, p = 0.97, respectively).

Similar to muscle, relative expression of all target genes increased
with exercise treatment in BAT (main effect, all F,23>15.90,
p<<0.0001; Fig. 1b). UCP1 mRNA levels in BAT did not increase
either in response to cold or to exercise alone, but concentrations of
UCP1 mRNA increased significantly when both cold and exercise
stimuli were present (interaction: F) 93 =9.74, p =0.005; Fig. 1b).
There was also an interaction between thermal acclimation and
exercise in the relative expression of PPARS (F; o5 =4.56, p<<0.05),
and warm acclimated animals had lower expression when exercised
but higher expression when sedentary (Fig. 1b). Contrary to
expectation, cold exposure had no effect on the relative expression
of PGC-1a or NRF-1 (all F} 93<<0.5, p>0.49; Fig. 1b).

PGC-la relative expression was a significant predictor of
PPARS and NRF-1 relative expression in both muscle and BAT,
and also of UCP1I relative expression in BAT (Fig. 2).

Enzyme activities
Cytochrome ¢ oxidase (COX) activity, an indicator of the
maximal capacity of mitochondria for substrate oxidation, was
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significantly higher in skeletal muscle (F; 35 = 6.16, p<<0.02; Fig. 3a)
of exercised rats compared to sedentary rats. Cold acclimation did
not cause an change in COX activity in muscle (F; 35=0.56,
p=0.46). Similarly, COX activity in BAT of exercised rats was
significantly higher than in sedentary rats (I 35=239.86,
p<<0.0001), but there was an interaction between exercise and
thermal acclimation indicating that cold acclimated, exercised rats
had the greatest COX activity (I} 50 =11.16, p<0.002; Fig. 3b).

Citrate synthase (CS) activity is a measure of mitochondrial
abundance. In muscle, its activity was significantly higher in
exercised (I 97 =115.84, p<<0.0001) and warm acclimated rats
(F1,97=6.08, p<<0.03; Fig. 3c). In BAT, only exercise had a
significant effect on CS activity (I} 97 =142.68, p<<0.0001), and
thermal acclimation did not (F; 97 =0.92, p=10.35; Fig. 3d).

We determined lactate dehydrogenase (LDH) activity to assess
whether there is a change in glycolytic, anaerobic ATP production.
LDH activity was significantly higher in muscle of exercised rats
compared to sedentary animals (F1 35 =153.54, p<0.0001) but cold
exposure had no effect (F, 35 =0.061, p=0.81; Fig. 3e). In BAT,
neither exercise (F; 35=2.66, p=0.11) nor thermal acclimation
(F135=1.67, p=0.21) affected LDH activity (Fig. 3f).

Whole animal oxygen consumption
Resting metabolic rate (RMR) increased with decreasing test
temperature in exercised rats, and it was lower in exercised rats
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Figure 2. PGC-1a co-varies with PPARS, NRF-1 and UCP1. There were significant associations between PGC-1a and PPARS (a), NRF-1 (b) and
UCP1 (c) relative expression in BAT, and between PGC-1a. and PPARS (d), NRF-1 (e) in skeletal muscle. Results form regression analyses are shown in

each panel, and the axes are on a logarithmic scale.
doi:10.1371/journal.pone.0013022.g002
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Figure 3. Enzyme activities in skeletal muscle and BAT from
cold and warm acclimated sedentary and exercised rats. Activity
(umol substrate converted gf1 wet tissue; mean * s.e.m) of
cytochrome ¢ oxidase (COX; A and B), citrate synthase (CS; C and D)
and lactate dehydrogenase (LDH; E and F) of cold exercised (blue bars),
warm exercised (red bars), cold sedentary (blue hatched bars) and warm
sedentary (red hatched bars) rat skeletal muscle and brown adipose
tissue (BAT). Exercise had a significant effect on all enzyme activities,
but the effect of cold exposure alone was limited. Letters above each
column indicate significant differences.

doi:10.1371/journal.pone.0013022.g003

compared to sedentary rats at the higher ambient temperature of
22°C (exercise x test temperature interaction: I g9=9,19,
p<0.01; Fig. 4a). Temperature induced metabolic scope (RMR
12°C/22°C) was significantly greater in exercised rats compared
to sedentary rats (I} 95=9.88, p<<0.01) regardless of thermal
acclimation (F) 95=0.001, p=0.98; Fig. 4b). Exercise induced
metabolic rate (EIMR) was significantly higher in cold acclimated
rats compared to warm acclimated rats (F; 30=9.75, p<<0.005).
Importantly, exercise induced metabolic rate increased signifi-
cantly in exercised rats at 12°C but not in sedentary rats (test
temperature X exercise treatment interaction: Iy =36.82,
p<<0.0001; Fig. 4c). Exercise induced metabolic scope (EIMR/
RMR) was significantly greater in cold acclimated (I, o, =9.99,
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Figure 4. Oxygen consumption and metabolic scopes of cold
and warm acclimated sedentary and exercised rats. Resting
(RMR; A) and exercise induced (EIMR; C) metabolic rates (ml
Oz.g”.hr”) in cold exercised (blue bars), warm exercised (red bars),
cold sedentary (blue hatched bars) and warm sedentary (red hatched
bars) rats (mean * s.e.m) measured at different ambient test
temperatures (12°C and 22°C). Resting metabolic rates (A) were lowest
in exercised animals at 22°C, and exercised induced metabolic rates (C)
were highest in cold acclimated exercised rats. Temperature induced
metabolic scope (RMR at 12°C/RMR at 22°C; B) was greatest in exercised
rats, and exercise induced metabolic scope (EIMR/RMR; D) was greatest
in cold acclimated exercised rats at 12°C. Letters above columns
indicate significant differences; please note however that there were
also significant interactions which are difficult to represent graphically.
doi:10.1371/journal.pone.0013022.g004

p<<0.005) and exercised (F} o; = 15.42, p<0.001) rats. Interesting-
ly, at low temperature scope increased in cold acclimated and
exercised rats but not in animals from other treatments (test
temperature x exercise interaction: Iy o, =4.99, p<<0.05; Fig. 4d).

Critical sustained running performance

Critical sustained running performance (U.) varied with
exercise, thermal acclimation and test temperature (three way
interaction: F 3; = 7.98, p<<0.01), but none of the main effects was
significant (all F 3,<2.3, p>0.14; Fig. 5). U, was lower in warm
acclimated rats at 12°C regardless of exercise training, and cold
acclimated, exercise trained rats performed worst at 22°C. There
is no indication that our exercise regime had a training effect that
immproved running performance (i.e. no main effect of exercise

Fy 31 =0.007, p=10.936).
Discussion

Physical activity at temperatures below the thermal neutral zone
1s the typical condition for non-dormant (torpid or asleep) animals.
Here we show that physical activity and cold exposure interact in
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Figure 5. Critical sustained running speed of cold and warm
acclimated sedentary and exercised rats. Critical sustained
running speed (U.) of cold exercised (blue bars), warm exercised
(red bars), cold sedentary (blue hatched bars) and warm sedentary (red
hatched bars) rats at 12°C and 22°C (mean * s.e.m). There was a three-
way interaction between exercise, thermal acclimation, and test
temperature. Cold acclimated animals performed best, and warm
acclimated animal performed worst at 12°C. Cold acclimated and
exercised rats performed worst at 22°C.

doi:10.1371/journal.pone.0013022.9005

their effects on metabolism. Cold alone has no effect on
transcriptional regulators and causes only a limited increase in
mitochondrial enzyme activities. Coordination and quantitative
adjustment of metabolic pathways depends on induction or
repression of transcription of a small number of transcription
factors and their coactivators [17], of which PGC-la plays an
overarching regulatory role [19]. Modulation of PGC-1a leads to
a large number of downstream effects that include cardiovascular
function and angiogenesis [28,29], substrate utilisation and
switching, including insulin sensitivity, glucose transport, and
gluconeogenesis [30,31], and muscle fibre differentiation [32].
Hence, our finding that routine physical activity is a necessary
prerequisite for increases in PGC-low expression in response to a
second stimulus — cold in our case — has implications that extend
beyond adjustments of metabolic rate. This role of exercise is
emphasised by the fact that two principal targets of PGC-la,
NRF-1 and PPARS, show similar expression patterns as PGC-1a
in response to physical activity and cold, and that there is a
significant correlation between PGC-la relative expression and
that of the other transcriptional regulators as well as UCP1. PGC-
lo facilitates the interaction between NRF-1 and the mitochon-
drial transcription factor Tfam, which regulates mitochondrial
DNA replication and transcription [17]. PPARS plays a critical
role in the transcriptional regulation of muscle metabolism and
mitochondrial fatty acid catabolism [13,23,33]. Hence, at least in
R. fuscipes, it appears that physical activity is a necessary
prerequisite  for increases in mitochondrial abundance and
oxidative metabolism. Changes in the expression of transcriptional
regulators are reflected in the increased activity of rate limiting
enzymes of the tricarboxylic acid cycle and electron transport
chain, as well as of glycolysis.

Cold can stimulate mitochondrial metabolism and abundance via
the sympathetic nervous system, and adrenergic receptors on the
cell surface can stimulate PGC-la transcription via cAMP and
CREB signalling [19]. Similalry, excess caloric food intake is sensed
by the brain, which will mediate an increase in energy expenditure
via adrenergic receptors [34]. The similar sympathetic pathways
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that induce energy expenditure in response to cold and caloric
intake suggest that the latter response may also depend on a
minimum of physical activity, although this suggestion must be
verified experimentally. Exposure to temperatures below the
thermal neutral zone effectively increases energy expenditure
[16,35] that could counteract obesity. However, we show that such
a response will be ineffective in the absence of regular physical
activity, and that the temperature induced metabolic scope is
significantly reduced in sedentary animals.

PGC-1a also regulates non-shivering thermogenesis in brown
adipose tissue [20,27] by inducing the expression of uncoupling
protein 1 (UCPI). UCP-1 facilitates non-shivering thermogenesis in
BAT by uncoupling electron transport in the inner mitochondrial
membrane from oxidative phosphorylation [2,27]. Interestingly,
UCP-1 relative gene expression increased only in animals that
exercised regularly. Hence, any BAT mediated increase in energy
expenditure also relies on regular physical activity. As a corollary,
adaptive thermogenesis in sedentary individuals living in more
extreme environments may also be limited because of reduced
UCP-1 expression, and because of the decreased mitochondrial
capacity and abundance. The differences between treatment groups
were pronounced even in our experimental environments that were
relatively benign, and which did not compromise thermoregulation
[36]. We did not aim to push animals to their physiological limits as
is often done when testing thermogenic capacity of mammals;
rather, our data have important implication for day-to-day (routine)
energy expenditure. Animals including humans live mostly below
their thermal neutral zone, so that ambient temperature will act as a
stimulator for metabolic activity and energy expenditure most of the
time. For example, the thermal neutral zone of R. fuscipes in 29
31°C (Glanville, unpublished data), which the animals almost never
experience in the wild [37]. Similarly, the thermal neutral zone of
humans is 33-35°C [38], which is rarely experienced except maybe
at low latitudes. We show that although decreasing ambient
temperature can potentially trigger energy expenditure, the
responsiveness to ambient temperature changes is blunted in the
absence of regular exercise. Hence, exercise is beneficial by directly
causing expenditure of energy, and by enabling ambient temper-
ature induced energy expenditure. One caveat to this conclusion is
that sedentary animals had a higher metabolic rate at rest and at
warm ambient temperatures (22°C) than exercised rats. However,
with physical activity and a decrease in ambient temperatures
metabolic rates increased above all other conditions, which confirms
our hypothesis that physical activity and cold have an interactive
effect on metabolic rate and energy expenditure. This conclusion is
further confirmed by the fact that rats from the cold and exercise
treatment had significantly greater food intake compared to all
other treatments without, however, changing their body mass (36).

Both of our acclimation treatments were below the thermal
neutral zone of the species, which mean that rats even in our warm
(22°C) treatment may have had increased metabolic capacities
compared to minimum levels at temperatures within the thermal
neutral zone. Nonetheless, the muted response of sedentary rats to
a further decrease in acclimation temperatures from 22°C to 12°C
1s extraordinary, both with respect to the implications discussed
above and with respect to the consensus in the literature that cold
stimulates metabolic responses, particularly in BAT (19, 27). Our
acclimation and test temperatures were purposely moderate, and
cold-induced metabolic responses in the laboratory are commonly
observed at much lower ambient temperatures (<5°C; e.g. 19).
More extreme cold exposure will stimulate uncoupling proteins
and BAT oxidative capacity in the absence of physical activity (26,
27). Responses of BAT to very low temperatures alone are
adaptive for animals that have to cope with extreme cold, and it
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suggests that there may be a threshold of activation below which
exercise becomes relatively unimportant for BAT activation. This
latter suggestion is speculative, but provides the basis for an
interesting and feasible hypothesis to test.

There was no training effect on locomotor performance as a
result of the exercise regime we imposed on the animals. Hence,
metabolic responses to exercise do not require intensive exercise or
training regimes that lead to increased locomotor performance.
Thermal acclimation had a greater effect on locomotor perfor-
mance than exercise, which is in contrast to the metabolic
responses we report and indicates that running at this level is not
constrained by metabolic capacity.

Conclusions

Regular physical activity not only increases energy expenditure
directly, but also modulates gene expression patterns of metabolic
regulators. Gene expression patterns induced by a sedentary
lifestyle result in metabolic patterns that are the precursors of
metabolic diseases prevalent among humans [6,8,39-40]. For
example, decreased PGCla expression results in increased insulin
resistance, predisposing an animal to obesity and type 2 diabetes
[15]. Impaired glucose and fatty acid metabolism due to decreased
PPARS expression also increases the risk of obesity and type 2
diabetes [24,39-40]. The deletion of PPARS results in increased
fat accumulation in the heart and decreased survival in mouse
models [41]. Additionally, decreased concentrations of glucose
transporter 4 (GLUT4) as a result of reduced NRF-1 expression in
sedentary animals leads to a fall in glucose transport which
predisposes individuals to type 2 diabetes [21,42].

When combined with cold exposure, exercise promotes uncou-
pling of oxidative phosphorylation by increasing the expression of
UCP1 in BAT. Increased expression of UCPI increases the
proportion of energy derived from fatty acid oxidation that is
released as heat, rather than being deposited as white adipose tissue;
this provides an important avenue by which exercise facilitates
increased energy expenditure and counteracts obesity [43]. Obesity,
although complicated by social and cultural influences, is due to an
excess of energy intake over energy expenditure [4]. In mouse
models, over-expression of UCP]1 results in obesity resistance [44—
45] while ablation of UCP1 induces obesity [46]. Brown adipose
tissue therefore plays an important role in the energy balance of the
whole organism including adult humans [47,48], but we show that
exercise 1S a necessary condition for this role to be realised. A
practical implication of our results is that research on metabolism
using sedentary animals is likely to produce results that are limited in
their generality, and which cannot be transferred to more
ecologically relevant contexts.

Materials and Methods

Ethics Statement

All experimental procedures were approved by the University of
Sydney Animal Ethics Committee (permit 1.04/12-2006/3/4512)
and the NSW National Parks and Wildlife Services (Scientific
License S12186).

Experimental animals and acclimation treatments

We used a wild rodent, the bush rat Rattus fuscipes, as a model to
avoid potential problems from inbreeding and thereby altered
exercise responses in laboratory strains. Bush rats were trapped
near Sydney, Australia (33°42'41"S, 151°13'58"E) and kept
individually in plastic cages (350 x220x220 mm). We used only
adult animals, and excluded any pregnant females; all experimen-
tal groups had a even sex ratio. Rats were fed ad libitum on a
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mixture of commercial rodent mix and diced apples. Median body
mass of experimental animals was 115.0 g and body mass did not
change significantly during the acclimation treatments in any
experimental group. For more information on food intake and
body mass of the animals please see [36].

After a 14 day habituation period, rats were randomly allocated
to either a cold (12°C) or a warm (22°C) acclimation treatment
with a constant photoperiod of 12L:12D in all treatments;
acclimation treatments lasted for 30 days. The rationale for our
treatments was to expose animals to conditions naturally and
routinely experienced rather than testing physiological limits
under extreme conditions. Hence, acclimation temperatures were
based on mean winter and summer temperatures naturally
experienced by the population from which the rats were sampled
[37]. Please note, however, that even the “warm” experimental
conditions are below the thermal neutral zone of the animals.
Within each thermal acclimation group, rats were allocated to
either a sedentary (n=10 cold and n=10 warm) or an exercise
(n=8 cold and n =8 warm) treatment. We took especial care to
minimise handling of the animals, and to treat all experimental
animals the same during the acclimation period to minimise any
potential confounding effects of handling.

Rats in the exercise treatments were run in a wheel on five days
per week throughout the acclimation period. In each exercise
session, bush rats were placed individually into an enclosed,
motorised running wheel for 30 minutes at 60% of the running
speed that resulted in exercise induced metabolic rate as
determined in preliminary studies (according to methods described
in Locomotor performance below). Bush rats were euthanased by
an overdose of sodium pentabarbitone (120 mg kg™ ' i. p.) on a
day following an exercise day, but the animals were not exercised
on the day of euthanasia.

Gene expression

Skeletal muscle and BAT samples were collected at the time of
cuthanasia and immediately stored in RNAlater (Ambion, USA) at
—20°C. RNA extraction and reverse transcription were conducted
according to published protocols [49]. Quantitative RT-PCR was
performed on an Applied Biosystems 7500 qRT-PCR machine
(Applied Biosystems, Foster City, USA). Commercial gene
expression assays for Rattus norvegicus (I'agMan, Applied Biosystems)
were used for analyses of PPARS, PGC-la and NRF-1 mRNA
concentrations according to the manufacturer’s instructions.

Primers were designed from sequences obtained from GenBank
for Rattus norvegicus uncoupling-protein 1 [GenBank: NM012682;
forward: gactcggatcctggaacgtc; reverse: gcataggagcccagcatagg|
and nuclear 285 RNA [GenBank: V01270; forward: gcctcac-
gatccttctgace; reverse: aacccagctcacgtteecta]. For these genes we
used real-time PCR reactions with SYBR green that contained 1 x
SensiMixPlus  SYBR (Quantace, United Kingdom), 4.5 mM
MgCLy, 600 nM primer and 50 ng cDNA. The cycle consisted
of 95°C: for 7 min, 40 cycles of 95°C for 15 s and 66°C for 1 min;
95°Ci for 15 s; 60°C for 1 min, and 95°C for 15 s. We performed
melt curve analysis to ensure that only a single PCR product was
amplified, and all assays were run in duplicate. Relative gene
expression of the target gene was calculated according to [50] with
the nuclear ribosomal 28S RNA gene as reference gene and the
grand mean of all treatments as control; in the text we refer to
‘relative expression’ in the sense of [50].

Enzyme activities

Skeletal muscle (vastis lateralis) and BAT were collected at the
time of euthanasia and were transferred into liquid nitrogen
immediately after collection and stored at —80°C for later analysis
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of lactate dehydrogenase (LDH), cytochrome c oxidase (COX) and
citrate synthase (CS) activities. Enzyme activities were determined
according to published protocols [51] at 37°C [36].

Whole animal oxygen consumption

Standard flow through respirometry was used to measure whole
animal rates of oxygen consumption at 12°C and 22°C [52]. Rats
rested at the test temperature in the metabolic chambers
(100x80x120 mm) for 2 h before measurements of resting oxygen
consumption; animals were observed with a remote camera during
measurements. Oxygen consumption was measured with a gas
analyzer (ML206, ADInstruments) connected to a computerised
recording system (PowerLab; ADInstruments). Resting metabolic
rate of all rats was measured at each temperature in a random
order. Design, calibration and use of the system followed published
protocol with room air (20.95% Oy) and pure Ny (0% Oy) used for
calibration of the gas analyser [52]. Carbon dioxide was scrubbed
from the air using granules of Baralyme before entering the
chamber and from subsampled gas prior to analysis. Water was
absorbed from the air before entering the chamber with Drierite
and after the chamber using a drying tube (MLA0343, ADInstru-
ments). Air was pumped through the chamber at a rate of 600—
700 mL.min~'. Gas sampling rates were set at 100 mL.min" !,
and flow rates were measured with a flowhead (MLTIO0L,
ADInstruments) connected to a spirometer (ML141, ADInstru-
ments) and the PowerLab system (ADInstruments). When oxygen
consumption had plateaued, generally after 2 hours, resting
metabolic rate was determined as the mean of the five lowest
consecutive oxygen consumption measurements. Mass specific
oxygen consumption (mL. Oy, hr™". g ') was calculated using the
standard equation Vo=V, (I'/09-F.09)/(1-F.O9) where V, is
the inlet air flow rate (mLh™"), F,O, is the inlet fractional O,
content (0.2095) and F.O, is the excurrent fractional O, content
[52]. Measurements were made in a temperature controlled room
(£0.5°C), and the temperature within the chamber was measured
with a calibrated thermocouple connected to a PowerLab
(ADInstruments). The animals were post-absorptive and in their
resting phase during the measurements. For all oxygen consump-
tion measurements, reference samples were taken before and
following the trials. Exercise induced metabolic scope was
calculated by dividing exercise induced metabolic rate (see
Locomotor performance below) by resting metabolic rate.
Temperature induced metabolic scope was calculated by dividing
resting metabolic rate at 12°C by resting metabolic rate at 22°C.

Locomotor performance

Critical sustained running speed (U,,;) was measured at 12°C
and 22°C in ramped speed trials in a motorised running wheel
fixed within a Perspex metabolic chamber (220x120x240 mm),
which also allowed measurements of oxygen consumption (see
oxygen consumption above). Wheel speed was controlled by a
motor regulated with a DC power supply (MP3090; Powertech,
Osborne Park, WA, Australia) and rotations were counted with a
cyclometer calibrated to the circumference of the running wheel.
The settings on the power supply were calibrated for wheel
rotations (km.h™') so that running speed could be controlled by
adjusting the DC power input. The running wheel was placed in a
temperature-controlled room and the temperature within the
wheel was monitored with a calibrated thermocouple connected to
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a computerised recording system (Powerlab, AD Instruments,
Sydney, Australia).

Ciritical sustained running speed was determined as U = Ut
[t/ 8)Uj], where Uy is the greatest running speed maintained for a
whole time interval, # is time spent at the final speed, & is the time
mterval between speed increments and U; is the speed increment
[53]. Pilot studies were performed to determine ¢ (1505s), U
(0.25 km.h™") and initial running speed (0.75 km.h ™). Animals
were placed individually in the wheel and allowed to habituate at the
test temperature for 2 h. All but one rat in the warm-exercised
treatment ran in the wheel. Animals were run until fatigued, which
was defined as the time when animals could no longer maintain
position in the wheel. Each rat was run at 12°C and at 22°C in
random order, with a minimum of 24 h between runs.

Oxygen consumption was measured during the running trials to
give exercise induced metabolic rate at 12°C and 22°C. Oxygen
consumption was measured using the same set-up as described
above for resting metabolic rate. However, for measurements of
exercise induced metabolic rate the flow rate was increased to
1400 mL.min~". Exercise induced metabolic rate was calculated
as the highest instantanecous VO, averaged over 1 min intervals
[54].

Statistical analysis

We analysed relative expression of target genes [50], enzyme
activities, and temperature induced metabolic scope by 2-way
analyses of variance (ANOVA), with thermal acclimation and
exercise as independent, fixed factors. Resting and exercise
induced metabolic rate and scope, and sustained running speed
were analysed by 3-way ANOVA with thermal acclimation and
exercise as independent, fixed factors, and ambient test temper-
ature at which trials were performed as repeated measure. We
used Levene’s test to test for homogeneity of variances, and data
were log transformed in case of heteroscedacity.

To explore relationships between PGC-1a and its target genes,
we performed regression analyses between PGOC-lo relative
expression and that of PPARS, NRF1, and UCPI across all
treatments. All data are expressed as means + s.e.m. and the level
of significance was o =0.05.

We used the truncated-product method [55] to assess the effect
of multiple hypotheses testing on the validity of p values. Briefly,
the truncated-product method considers the distribution of p
values from multiple hypothesis tests to provide a table-wide p
value for the overall hypothesis that significant results in the set
were truly significant rather than due to chance. Multiple
comparisons did not bias the statistical results presented here

(p<0.001).
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