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Abstract

Background: Predator-prey models for virus-host interactions predict that viruses will cause oscillations of microbial host
densities due to an arms race between resistance and virulence. A new form of microbial resistance, CRISPRs (clustered
regularly interspaced short palindromic repeats) are a rapidly evolving, sequence-specific immunity mechanism in which a
short piece of invading viral DNA is inserted into the host’s chromosome, thereby rendering the host resistant to further
infection. Few studies have linked this form of resistance to population dynamics in natural microbial populations.

Methodology/Principal Findings: We examined sequence diversity in 39 strains of the archeaon Sulfolobus islandicus from a
single, isolated hot spring from Kamchatka, Russia to determine the effects of CRISPR immunity on microbial population
dynamics. First, multiple housekeeping genetic markers identify a large clonal group of identical genotypes coexisting with
a diverse set of rare genotypes. Second, the sequence-specific CRISPR spacer arrays split the large group of isolates into two
very different groups and reveal extensive diversity and no evidence for dominance of a single clone within the population.

Conclusions/Significance: The evenness of resistance genotypes found within this population of S. islandicus is indicative of
a lack of strain dominance, in contrast to the prediction for a resistant strain in a simple predator-prey interaction. Based on
evidence for the independent acquisition of resistant sequences, we hypothesize that CRISPR mediated clonal interference
between resistant strains promotes and maintains diversity in this natural population.
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Introduction

Virus-host interactions are a prominent driver of microbial

diversity in natural environments. The simplest models describe

these interactions through predator-prey dynamics which result in

temporal fluctuations in strain dominance similar to ecological

Lotka-Volterra models [1–3]. Without a cost to resistance and in a

homogenous environment, these models predict that populations

exhibit oscillations in host abundance in their arms race with viral

predators [4–8]. Such models have been verified experimentally

with microbial populations in chemostats [7]. Also, using

community genomics of host and virus, Rodriguez-Brito et al.

demonstrated change in the viral populations through time

suggestive of these dynamics [9].

Oscillations of different species’ abundance are theorized to be

damped by fitness trade-offs associated with the physiological costs

of viral resistance, resulting in a stable level of diversity of

coexisting strains within a population at any one time [10]. This is

generalized from the kill-the-winner model, where the winner has

a competitive advantage in resource utilization, but is susceptible

to predation [11]. For example, the theoretical predictions of

Weitz et al. find that host and virus can coexist and diversify in a

homogenous culture with a single resource due to variation in the

trade-offs associated with phage resistance and viral virulence [10].

These dynamics have been demonstrated experimentally in

chemostat cultures of Cellulophaga baltica infected with two virulent

bacteriophages [12]. In this study, Middelboe et al. showed that,

upon infection by phage, the coexisting lineages of Flavobacterium

diversified physiologically and in phage susceptibility to a panel of

phages. In addition, Lennon et al. demonstrated variation in the

cost of resistance that could result in a stable level of diversity

within a population that is higher than would be predicted if

populations were evolving through clonal competition for

resources in the absence of viral predation [13]. It has recently

been suggested that the genetic source of these variable resistance

profiles is phage receptor diversity provided by highly variable,

rapidly evolving regions of microbial genomes (genomic islands)

[6]. Diversity is further promoted as these dynamics occur in

spatially structured populations of hosts and viruses where

coevolutionary dynamics allow diversity to persist on a larger

scale [14]. Viral predation thereby provides the (non-neutral)

mechanism maintaining microbial diversity and provides a

solution to the apparent ‘‘paradox of the plankton’’ where

seemingly redundant organisms coexist [15].

Predictions from theoretical and experimental studies of virus-

host interactions have been challenging to study in wild

populations because establishing linkage between genotype and

resistance phenotype is difficult using culture independent

molecular tools [16]. The recently discovered sequence based

CRISPR (clustered regularly interspaced short palindromic

PLoS ONE | www.plosone.org 1 September 2010 | Volume 5 | Issue 9 | e12988



repeats) system provides the means to examine virus-host

interactions in natural populations using molecular tools.

CRISPRs are a microbial system discovered to provide immunity

to viruses in Streptococcus thermophilus [17] and prevent conjugative

transfer of plasmids in Staphylococcus epidermidis [18]. Sequence

specific resistance, conferred by short DNA spacer sequences on

the host chromosome and separated by repeat sequences of similar

length, have been shown to match extracellular elements such as

viruses and plasmids [19–21]. New spacers are incorporated into

the genome at one end of the locus, the leader end, with the other

end of the locus, the trailer end, representing the oldest spacers in

the locus. As with other forms of adaptive immunity, notably that

found in humans and other jawed vertebrates, CRISPRs are

combinatorial and rapidly evolving [17,22–24].

To examine the effects of CRISPR immunity on population

dynamics, Tyson and Banfield reconstructed CRISPR loci from two

different populations of one species of Leptospirilum group II from

acid mine drainage [25]. This study observed that the group of

spacers at the trailer end of the locus was generally in conserved

order (with some spacer loss) in both populations. Spacers at the

middle of the locus were population specific, and towards the leader

end of the locus the spacers became strain specific. This is consistent

with oscillations in clone abundance caused by a selective sweep of a

clone that acquired resistance through a specific spacer sequence,

seen by shared spacers at the trailer end of the locus. In contrast, in a

more complex microbial mat, Heidelberg et al. rarely saw the same

spacer twice, and not necessarily in the same CRISPR spacer

context, and therefore were unable to specifically assess the virus-

host dynamics of the system [26].

In order to understand the ways in which virus-host interactions

mediated by CRISPRs affect population dynamics, it is necessary

to link signatures of resistance among coexisting strains to

genotypic variation within a population. Analysis of natural

population dynamics at a strain-specific level is needed to test

predictions of current models about the way that virus-host

interactions affect population dynamics [27]. We investigate the

diversity present in a single population of S. islandicus from a hot

spring in the Mutnovsky Volcano region of Kamchatka, Russia.

We use multi-locus sequence analysis (MLSA) from a set of core

housekeeping genes present in S. islandicus to determine overall

host diversity and compare this to the diversity identified in

CRISPR spacer sequences from each isolate.

Results

Relationships among strains by MLSA
Figure 1A shows the Maximum Parsimony phylogeny con-

structed from the concatenated MLSA data from 12 variable core

Figure 1. Core gene phylogeny and MLSA allelic profiles compared to CRISPR spacer types. (A) A Maximum Parsimony phylogeny of a
concatenated nucleotide alignment of 12 loci (6684 bp) from 39 S. islandicus isolates from a single hot spring in Mutnovsky. Scale bar represents
eight nucleotide changes. Numbers above branches represent bootstrap support from 1000 replicates. The large group of strains with nearly identical
MLSA sequences at core gene loci is highlighted in blue. (B) The allelic profiles of MLSA loci show the number of SNPs in comparison to strain
M.16.19, and the background color in each cell indicates the allele type for each locus. (C) The three colored summary bars to the right of the allelic
profiles indicate ancestral groupings of each CRISPR locus by shared spacers as in Figure 2. ‘X’ indicates a CRISPR locus is not present and ‘NA’
indicates that a locus could not be sequenced.
doi:10.1371/journal.pone.0012988.g001
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loci (6684 bp in total) among 39 strains of Sulfolobus islandicus from

a single hot spring in the Mutnovsky Volcano region of

Kamchatka, Russia. As shown in Figure 1B, and has been

demonstrated previously [28], this population contains an

epidemic population structure [29] in which one dominant

genotype (blue names in Figure 1A: 49% of clones) coexists with

rare recombinant types containing different combinations of rare

alleles. We previously hypothesized that this dominant clone

results from a clonal expansion of one type possibly due to viral

resistance. Rates of recombination, estimated with 12 new loci

using ClonalFrame [30], are close to previous reports [28] using

five loci with a recombination to mutation ratio (r/m) of 3.8.

Rarefaction curves of the MLSA genotypes (Figure S1A)

demonstrate that when OTUs are binned at 0.01% divergence

(one SNP per 1000 bp), the diversity of S. islandicus in this spring

has been well sampled with the 39 strains described here. Chao1

richness is estimated to be 20 OTUs when each individual is

unique (one OTU at 0.01% divergence) [31].

Diversity of sequences from CRISPR loci
S. islandicus from the Mutnovsky population have up to three

CRISPR loci (named C, A1, and A2, see Figure 2A) that encode a

sequence based history of interactions between S. islandicus and

mobile elements such as viruses and plasmids [32]. Figure 2B

shows the leader and trailer end sequences from these three loci

from 37 new strains and two previously sequenced strains from the

M16 hot spring [33]. In total, we sequenced 2374 new CRISPR

spacers, with 756 unique spacer sequences of average length

39 bp. Unlike the MLSA data, the rarefaction curve of the coded

CRISPR spacer arrays (each spacer represents a single character)

shows that the diversity at the CRISPR loci is undersampled with

39 strains from a single hot spring (Figure S1B). Chao1 richness is

estimated to be 10 times that estimated for MLSA if every

difference is considered unique and is very likely a dramatic

underestimation of diversity due to undersampling [31].

Several loci could not be amplified despite development of eight

new primer sequences (Figure S2) because of the diversity of

sequences surrounding loci of closely related strains. In several

cases, failure to amplify loci resulted from the loss of the C locus, as

confirmed by genome sequencing and southern hybridizations

using the repeat sequence from that locus as a probe (data not

shown). At the A1 and A2 loci we were unable to determine

whether sequence divergence or loss of the locus prevented

amplification, because probes with the A sequence bind to both

loci in southern blots. Nevertheless, the presence of these loci in

sequenced isolates that failed to amplify suggests sequence

divergence rather than loss of these loci by members of this

population. These data demonstrate the high level of diversity

within this system that appears not only in the spacer sequences

but in surrounding genes involved in the CRISPR system as well.

In this population of S. islandicus, as has been observed in other

studies, the leader ends of all three CRISPR loci are more variable

than the trailer ends [17,24,25]. Many isolates share the same

spacers as another isolate throughout the locus except for the

leader-most spacers, likely due to the two isolates sharing a

common ancestor at that locus (Figure 2B). As has been

experimentally demonstrated for bacterial species (Streptococcus

sp.), new spacer sequences are added at the leader end in response

to invasion of mobile elements [17]. If CRISPR addition occurs in

Sulfolobus as it does in Streptococcus, the variability observed at the

leader end is likely to have resulted from recent interactions of S.

islandicus with viruses or plasmids and indicates that these loci are

actively acquiring resistance in this population. For several pairs of

isolates, the only remaining evidence of shared spacer sequences in

the same position are the very first conserved spacer at the trailer

end of the locus (indicated in Figure 1C by the dual-color in the

summary bar on the right), demonstrating probable ancestry

followed by divergence. Although there is striking diversity in the

CRISPR spacer arrays among the 39 isolates, every individual is

not unique.

In addition to sequence variation, we also observed variation in

CRISPR loci in the S. islandicus population that results from spacer

loss. Loss is identified by comparing two isolates with the same set

of spacers in the same order on either side of a gap in the spacer

alignment [21,25,34]. S. islandicus isolates show evidence of spacer

loss, both individual and in sets of up to five spacers, with two

being the average size of consecutively lost spacers (as is shown in

Figure 2). We tested whether the variability of spacers at the leader

end of the locus could actually result from loss of spacers at the

leader end. If this were the case, we would expect to see spacers

from the leader end of a locus in one strain match those from the

middle of a locus in another strain. In the subset of fully sequenced

isolates, we were able to search for leader end spacers from other

isolates located internally in the fully sequenced loci and did not

find any matches, indicating that the leader end sequences are

truly unique and result from independent spacer acquisition (data

not shown).

Of the 756 unique spacers, only 50 have significant (E,0.001)

BLAST matches to a database of Sulfolobus genomes, viruses, and

plasmids. The majority (87%) of these match viruses; 22% of total

matches are to viruses integrated into S. islandicus genomes and

51% of total matches are to SSV (Sulfolobus spindle-shaped virus)

sequences, a non-lytic virus that has been isolated from around the

world, with many sequenced isolates. The rest of the matches (less

than 7% each) are to plasmids and other Sulfolobus genomes or

other integrated elements within them. As we have shown

previously, we do not see spacers that match 100% to a portion

of the same genome in which the spacers are located, as is evident

in the fully sequenced subset of isolates from this population [32].

Population structure defined by CRISPR sequences
As shown in Figure 1, the relationships among strains based on

CRISPR sequences are very different from those observed by

MLSA. The summary of CRISPR locus types (Figure 1C) split the

large group of apparently identical MLSA genotypes, hypothe-

sized to represent the epidemic rise in frequency of a single clone,

into two groups of isolates with no recognizable evidence of

ancestry. Furthermore, members of each of these two new groups

of isolates share apparently ancient ancestry with the more

divergent rare types observed through MLSA analysis, as is

evidenced by their sharing spacer sequences at their trailer ends.

As with the MLSA, Figure 1C shows rare recombinant

combinations of CRISPR alleles indicating that recombination is

also occurring among these loci.

Figure 3 shows the difference in population structure within a

hot spring based on MLSA and CRISPR sequences. The MLSA

core genotype category shows a population structure in which

there are a few dominant types, indicating some evidence of

selective sweeps in the history of the population. However,

contrary to data from metagenomic analyses of microbial diversity,

even at their most conserved (trailer end), the CRISPR sequences

show evidence for a diversity of coexisting genotypes. Although

there are several groups of strains with multiple representatives,

CRISPR sequences show no evidence of a selective sweep as

would have been predicted based on MLSA data and on

theoretical predictions about the rise in frequency of strains

resistant to viral infection [3].

Population CRISPR Diversity
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Independent acquisition of CRISPR spacers
We compared CRISPR spacer sequences to one another to test

for evidence of independent acquisition of spacers to the same

virus by different coexisting strains. There are 41 pairs of spacers

that match one another at least 88% over a length of at least 17 nt

that are not related to one another ancestrally, i.e. in the same

context in the locus (spacers that match other spacers are indicated

in Figure 2 by dots and are listed in Table S1). Most of these are

not identical spacers, but rather are offset (37 out of 41 pairs) as is

shown in Figure 4. The incomplete overlap of each spacer, in

addition to its unique position in the spacer array, indicates that it

represents an independent acquisition of a spacer from nearly the

same location in the same virus or plasmid. One pair of

consecutive spacers match, between two strains, 100% in sequence

over 100% of the length in a different leader end context (M.16.27

C-15 and C-16 and M.16.38 C-15 and C-16, Figure 2). Because it

is unlikely that two consecutive spacers that match exactly between

two strains were independently acquired by each strain, we have

excluded these from our analysis of independent acquisition.

18 (44%) of the independently acquired matching spacer pairs

are located on the leader ends of loci in both strains, which

indicates that both spacers were recent acquisitions of an element

that was present in the spring at that time. Pairs with both trailer

end spacers make up 27% of the matches and mixed leader and

trailer matches make up the remaining 29%. We did not observe a

locus preference for spacers as has been suggested previously [35].

Of the 41 pairs of independently acquired spacers that match one

another, only one pair is from strains that have similar CRISPR

spacer arrays. The rest are between divergent strains with very

different CRISPR arrays.

Matches between independently acquired spacers from isolates

with different CRISPR arrays demonstrates that isolates share a

common viral pool from which they are independently infected.

When spacers are compared to Sulfolobus viruses, plasmids, and S.

islandicus genomes, there are two viruses (SSV) that are matched

100% by different spacers from different isolates. One virus has

two spacers that match it while the other has three spacers. Just

like the overlapping spacer matches, the spacers that match the

same virus represent independent acquisitions, by different

isolates, of the same virus. It is unlikely that the high frequency

of spacer matches is due to a particular, rare sequence on the

genome that is especially effective in resistance because we and

others have shown that spacers are derived from throughout viral

genomes [22,32,36], corresponding only to a short protospacer-

associated motif (PAM), shown to be a dinucleotide sequence in

Sulfolobus [35]. Therefore, the number of matches between spacers

results from a combination of the selective force of virus-host

interactions and/or the possibly low complexity of the viral

community.

Discussion

Our results show a significant amount of diversity in a

population of S. islandicus from a single hot spring. This diversity

Figure 3. Genotype rank abundance graph of concatenated
core and CRISPR end sequences. A genotype rank abundance
graph with strains grouped by MLSA core genotypes (black) and CRISPR
spacers (grey, by ancestral groupings, as in Figure 1). Groups were
ranked by the number of isolates in each and plotted from largest (left)
to smallest (right).
doi:10.1371/journal.pone.0012988.g003

Figure 4. Examples of signatures of independent spacer
acquisitions. (A) Spacer pair number 5 from Table S1 shows an
example of an offset match with no single nucleotide polymorphisms
(SNPs). (B) Spacer pair number 18 from Table S1 shows an example of a
match of different length spacers. (C) Spacer pair number 31 from Table
S1 shows an example of an offset spacer match with two SNPs.
* indicates a shared base between the two spacers. All matches are
listed in Table S1.
doi:10.1371/journal.pone.0012988.g004

Figure 2. Summary of the CRISPR spacers end sequences in 39 S. islandicus strains. (A) A schematic of the CRISPR region of reference
genome M.16.27 [33]. Rectangles represent each CRISPR repeat-spacer locus. Core and CRISPR associated (cas) genes are indicated by grey and blue
arrows respectively. A red arrow indicates a transposon insertion. The reference genome M.16.27’s CRISPR loci are named on the CRISPRdb website
[50] as NC_012632_1 (C), NC_012632_1 (A1), and NC_012632_1 (A2). The reference genome M.16.4’s CRISPR loci are named NC_012726_1 (A1) and
NC_012726_1 (A2). (B) The color-coded CRISPR spacer arrays from left to right are the C locus, the A1 locus, and the A2 locus, as in (A). The S.
islandicus strains are listed from top to bottom in the same order as in Figure 1. Each box represents a CRISPR spacer, with the spacer positions
numbered at the top of the column. The leader end spacers are oriented on the left of each locus while the trailer end spacers are oriented on the
right of each locus. Identical spacers in the same spacer context are vertically aligned and given the same color in the column of boxes. White boxes
represent missing data and a line through a white box indicates a gap. N in boxes represents independent acquisitions of the same virus or plasmid
and D represents spacers that match a different part of the same virus.
doi:10.1371/journal.pone.0012988.g002

Population CRISPR Diversity

PLoS ONE | www.plosone.org 5 September 2010 | Volume 5 | Issue 9 | e12988



is underestimated by MLSA sequences, but is revealed by

CRISPR spacers present in these strains. Relationships described

by MLSA are quite different from those observed using CRISPR

locus sequences supporting the rapid evolution of CRISPR

sequences relative to the rest of the genome. In addition, the

population structure revealed by the individual-level of resolution

provided by CRISPRs shows no evidence of a selective sweep or

an epidemic structure in which one set of sequences is at high

abundance relative to the rest of the population. Without a

dominant clone, this snapshot of diversity within a single

population is unlikely to follow a simple predator-prey model in

which there are oscillations in strain abundance dependent upon

resistance.

This is in contrast to the metagenome study of the clonal

Leptospirillum sp, in which evidence of selective sweeps were

identified in shared spacer sequences at the trailer end of the

repeat spacer region of the locus as well as surrounding genes [25].

Explanations for the diversity and lack of strain dominance

observed in the CRISPR loci in the Sulfolobus population include:

1) the addition of spacers in the bacterial population are slower,

leaving time for a selective sweep to occur, 2) viruses in the

Leptospirillum population are more virulent, causing a stronger

selection, 3) the two studies have observed dynamics at different

times during oscillations within populations, 4) there are

differences in the number of interactions between strains in the

highly structured biofilm and well mixed hot spring environments,

and 5) there is a difference in recombination frequency between

Leptospirillum and Sulfolobus that preserves the diversity of both

genotype and CRISPR arrays in the S. islandicus population. In

addition, in the metagenome study, as opposed to this study of

isolates, it is difficult to link individual spacers within a CRISPR

array and to link these arrays to very similar specific genotypes.

Spatial substructure would physically isolate hosts and/or virus

populations from one another, allowing aggregate diversity to

persist [37]. The demonstration that S. islandicus isolates from this

pool are recombining suggests that they are not completely

isolated from one another [28]. Also, independently acquired

CRISPR spacer matches to the same mobile element indicate that

individuals in this population share a pool of viruses and plasmids.

Together, these data suggest that spatial structure within a single

pool is not promoting the diversity in the CRISPR sequences we

observe.

Theoretical and experimental studies have demonstrated that

diversity of coexisting strains can arise in a population due to

tradeoffs and variation in resistance phenotypes, and their costs

are often associated with the efficiency of nutrient uptake

[1,13,38]. Although the cost of CRISPR immunity has not been

explicitly tested, it is unlikely that there is variation in the cost

associated with spacer-specific resistance, because expression of

the entire CRISPR locus occurs constitutively regardless of a

match to an invading element [35]. Therefore, in the absence of

an infecting virus, the cost of maintaining the CRISPR system is

unlikely to be virus specific, and the cost of using the CRISPR

system is not expected to vary across all members of the population

that maintain similar numbers of CRISPR arrays [11]. Without

variation in the cost of resistance, these models for the

maintenance of diversity are also difficult to apply to this

population.

We propose that CRISPR diversity may be maintained within

this S. islandicus population due to clonal interference among

individuals that have independently acquired resistance to viruses

in their CRISPR loci. Different clones, each with a different

CRISPR spacer to the same virus, compete with one another and

therefore prevent a sweep that would purge all diversity from the

environment [39]. Diversity is maintained in microbial popula-

tions because rapid, independent acquisition of resistance by

different genotypic backgrounds prevents periodic selective sweeps

of resistant types. The evolution of the CRISPR locus through

spacer addition is rapid enough that multiple strains within the

same population can easily acquire the same resistance to a

dominant virus. Each uniquely acquired CRISPR spacer is present

in the population at a different frequency due to the timing at

which the resistance was originally gained [40].

This is conceptually similar to the theoretical model described

by Rodriguez-Valera et al. in which diversity is maintained due to

the rapid evolution of virus receptors in genomic islands [6],

however it provides a mechanism for the rapid generation of

variation that directly results from virus infection (CRISPR spacer

acquisition) and is therefore dependent on viral density. Also,

addition of new CRISPR spacers provides a mechanism of

resistance where there is little potential for variation in cost of

resistance. Finally, using CRISPR spacers to assess population

dynamics allows direct linkage between viruses and resistance

profiles which does not rely on inferring the importance or

expression of cell surface proteins. It should be noted however,

that our focus on MLSA of shared core gene markers and

CRISPR sequences prohibits assessment of variation in other

resistance mechanisms in S. islandicus that may play an additional

role in the maintenance of diversity within this population.

The rapid acquisition of independent CRISPR spacers

consistent with our model has been shown by Barrangou et al.

in laboratory infections of Streptococcus sp. In that study, when the

host is challenged by one virus, multiple resistant hosts are found,

each with different spacers that give immunity to the same virus

[17]. Therefore, when differing immunities to the same virus are

present in a population, one virus would not be able to cause a

sweep of a single resistant genotype in the population that would

result in a loss of diversity. Our data shows that independently

acquired CRISPR spacers match one another and presumably the

same virus, supporting the idea that resistance to the same virus

occurs independently in different strains in the same population.

Since most of these spacer to spacer matches are between strains

that are not related by CRISPR spacer arrays, CRISPR spacers,

far from promoting sweeps that remove diversity, actually promote

diversification among strains within a population.

Our proposal that diversity is maintained through clonal

interference among independently acquired CRISPR variants

depends upon there being a fitness advantage to resistance and

consequent cost of viral infection. However, both lytic and non-

lytic viruses infect Sulfolobus species [41,42]. Therefore, in order to

understand how microbial diversity is shaped by CRISPR

immunity, it will be important to consider the diverse array of

virus-host interactions when developing future models.

Methods

Strain isolation and DNA extraction
Sulfolobus islandicus strains from hot spring M16, located in the

Mutnovsky Volcano region of Kamchatka, Russia were isolated and

DNA was extracted as in Whitaker et al. [43]. Two S. islandicus

strains were previously isolated and sequenced [33]. Thirty-seven

additional isolates from the M16 pool, previously described as hot

spring B, were isolated, thirty-one of which were used in the

previous study [28]. All strains went through three additional

rounds of colony purification on solid media to ensure purity. Seven

slightly different methods of isolation were used on these strains (see

Table S2), however ANOVA does not find any significant difference

in MLSA types from each type of isolation (p = 0.13).

Population CRISPR Diversity
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MLSA
MLSA loci and primer sequences are listed in Table S3. Loci

were selected from S. islandicus core genes [33] to be evenly

distributed around the genome and to maximize SNPs in the

Mutnovsky genomes. All loci were amplified by PCR in 28 ul

reactions with 6 uL 5x Green GoTaq Reaction Buffer (Promega),

2 uL 25 mM MgCl2, 0.14 uL 0.2 mM dNTP, 0.5 uL of each

10 uM primer, and 0.14 uL 5 u/uL GoTaq DNA Polymerase

(Promega). PCR conditions for all loci were as follows: 94uC for

5 min, 30 cycles of 94uC 30 sec, annealing temperature (Table S3)

75 sec, 72uC 90 sec 30 sec, and a final incubation at 72uC for

5 min. PCR products were sequenced with the forward primer at

the Core DNA Sequencing Laboratory (Roy J. Carver Biotech-

nology Center, University of Illinois at Urbana-Champaign).

Sequences were deposited in GenBank, and accession numbers

(HQ123504-HQ123546) are listed in Table S4. Nucleotide

sequences for the MLSA markers were automatically aligned with

T-coffee [44] and manually inspected with MacClade [45]. The

phylogeny was inferred using a concatenated (all loci) alignments

under Maximum Parsimony with PAUP* 4.0b10 [46]. Heuristic

search was performed by 10 random addition sequence replicates.

Non-parametric bootstrapping [47] was conducted with 1000

replicates of 10 random addition sequence replicates. Unique

alleles were assigned to sequences that contain one or more

nucleotide polymorphisms from the dominant allele. Recombina-

tion to mutation ratio (r/m) was estimated using a model of

coalescence with gene conversion implemented in the Clonal

Frame software V.1.1 [30]. r/m values were taken from the

convergence values of two runs of 250000 iterations each with a

burnin chain of 100000 iterations.

CRISPR PCR Amplification
Primers to amplify the CRISPR loci were designed by genomic

comparison of the CRISPR region of strains of S. islandicus from

the Mutnovsky Volcano region of Kamchatka, Russia [32] and

recently sequenced genomes (unpublished data). These primers

are AB1f (59TCCCGGGTTTAGTAGGGAGT GAAA), AB1r

(59CCATACGGCTTCCCTAGATTTAGATT), A1.2r (59CAT-

CAACAGTTAGCGGAAGTGAGG), A1.2f (59GGGAGGTA-

GGGTGTTGTCCTAAA), ABrU (59TCCCACCCTCATGCT-

GGAATTCTT), and 16.43.AB1r (59GGAATGGGAATTGCT-

GAAATAGCG) to amplify the AB1 locus. Primers AB2f (5

CTAGTTGCTTCCATTAAGTCGCTC), AB2r (59TCCCGG-

GTTTAGTAGGGAGTGAAA), A2.2f (59TGCCTTGTCTCA-

TTAATGCGCGG), and A2.2r (59GGGAGGTAGGGTGTTG-

TCCTAAA) were designed to amplify the AB2 locus. CDr

(59CGGTCACATGAGGAGTAAAGGA), CDf (59CGTCCCA-

TCACTTGCTTTGAGCAT), CDf3 (59TTGAATGAGGCT-

TACCGGAAGGGA), and CDr3 (59TTAGGCCCAGAAGG-

GAACCATCAA) were designed to amplify the CD locus.

All loci were amplified by PCR in 20 ul reactions with 4 ul

5x Phusion HF Buffer, 200 uM dNTP, 0.5 uM primer, and

0.02 U/ul Phusion DNA Polymerase (Finnzymes). PCR condi-

tions for all loci were as follows: 98uC for 30 sec, 30 cycles of 98uC
30 sec, annealing temperature (depending on primer set) 10 sec,

72uC 2 min 30 sec, and a final incubation at 72uC for 5 min. The

various primer sets amplified at the following annealing temper-

atures: AB1f/AB1r at 57uC, AB1f/16.43.AB1r at 57.5uC, AB1f/

ABrU at 64uC, A1.2f/A1.2r at 59.2uC, AB2f/AB2r at 53–57uC,

A2.2f/A2.2r at 58.5uC, CDf/CDr at 51–57uC, CDf3/CDr at

55uC, and CDf3/CDr3 at 54uC. PCR products were sequenced

with both forward and reverse primers at the Core DNA

Sequencing Laboratory (Roy J. Carver Biotechnology Center,

University of Illinois at Urbana-Champaign). Sequences were

deposited in GenBank, and accession numbers (HQ198372-

HQ198558) are listed in Table S5.

CRISPR spacer identification and comparison
CRISPR PCR products were sequenced as with MLSA

amplicons and manually trimmed and checked for sequencing

errors using Sequencher 4.9 (Gene Codes, Ann Arbor, MI, USA).

Individual spacers were removed from the sequences by manually

extracting the sequence between the repeats sequences: A repeat is

GATAATCTACTATAGAATTGAAAG and C repeat is GAT-

TAATCCTAAAAGGAATTGAAAG. Spacers were grouped

according to the ends of the loci they came from, and BLASTn

[48] with E,0.001 was used to find 100% spacer matches. Strains

were grouped within each locus as being ancestrally related if

spacers in the array matched each other in the same spacer

context (multiple identical spacer matches in a row, allowing for

some spacer loss). The results are interpreted manually and shown

in Figure 2 by colored boxes and vertically aligned ancestrally

identical spacers. Spacers were compared to one another for non-

ancestral matches in Sequencher 4.9. Assembly parameters of

88% minimum match with 17 nt minimum overlap were used to

define unique spacers and resulting contigs were spacer-spacer

matches. This allows a maximum of 4 SNPs per pair.

Spacers were compared to a database of Sulfolobus genome,

virus, and plasmid sequences. This database included all Sulfolobus

genome, virus, and plasmid sequences found on the Sulfolobus

Database (http://dac.molbio.ku.dk/dbs/Sulfolobus/cbin/muta-

gen.pl –01/01/10), plus the Sulfolobus islandicus genomes of

L.S.2.15, L.D.8.5, M.14.25, M.16.4, M.16.27, Y.G.57.14,

Y.N.15.51 [33], and U.3.28 (http://www.jgi.doe.gov). Spacers

were blasted against this database using BLASTn with parameters

r = 1, q = 21, G = 24 and significant matches were E,0.001.

Rarefaction
Rarefaction curves were constructed using Mothur [49] with

default parameters. The MLSA rarefaction curve was constructed

with the same concatenated nucleotide alignment used for

phylogeny, while the CRISPR rarefaction curve was constructed

based on the colored representation of the CRISPR loci spacer

arrays. Spacers in each vertical position were given a letter code to

represent the color, so that identical spacers in each column had

the same code, which differed from the code given to different

spacers in that column.

Supporting Information

Figure S1 Rarefaction curves of MLSA and CRISPR sequenc-

es. Rarefaction curves of (A) the concatenated nucleotide

alignment of 12 MLSA loci and (B) the concatenated coded

CRISPR spacer arrays from 39 S. islandicus isolates from a single

hot spring. The number of isolates (X-axis) is plotted against the

number of OTUs (Y-axis) determined by the level of divergence

for each line (for A, unique, distance ,.0049, and distance of 0.01

and for B, unique, distance of 0.05, and distance of 0.5).

Found at: doi:10.1371/journal.pone.0012988.s001 (0.62 MB TIF)

Figure S2 Primer design and implementation. Primer design

schematic (A) and table of primer sets and temperatures used for

each strain at each CRISPR locus (B). In (A), primers are shown

by their position on the reference genome M.16.27, with the head

of the arrow matching the 59 end of the primer. Arrows above the

schematic indicate the approximate location of primers on

M.16.27 while arrows below the schematic indicate primers

designed on other fully sequenced genomes or PCR products that

do not match sequence in M.16.27. In (B), the primer pair used for

Population CRISPR Diversity
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each locus is listed, with annealing temperature used if multiple

temperatures are used for that primer pair. ‘X’ and ‘NA’ as in

Figure 1. Sequenced refers to those strains that were fully

sequenced and CRISPR spacer sequences were determined

without PCR.

Found at: doi:10.1371/journal.pone.0012988.s002 (0.57 MB TIF)

Table S1 Pairs of independently acquired spacers match the

same virus or plasmid. Each spacer pair is numbered and spacer

names are given as an isolate number followed by a locus position

number as in Figure 2. In the case of a spacer being ancestrally

identical to other spacers, the first (top) spacer from Figure 2 is

listed here, though all spacers have a N in Figure 2. * indicates

spacer pair from isolates with similar CRISPR arrays.

Found at: doi:10.1371/journal.pone.0012988.s003 (0.30 MB TIF)

Table S2 Isolation methods for S. islandicus isolates. Isolates are

listed with their isolation method. There are seven different

isolation methods that yielded colonies: DT (dextrin and tryptone)

spread plate as described in [43]; DT overlay plate containing DT

media plus an overlay of 0.002% Gelrite (Sigma), 0.002% K2SO4,

and 0.002% L-glutamic acid; DTS spread plate containing

standard DT media plus an overlay of 0.006% Gelrite and

0.002% colloidal sulfur; DTS overlay plate containing DTS plus

additional overlay described above. 1:50 indicates a 1:50 dilution

of sample prior to plating.

Found at: doi:10.1371/journal.pone.0012988.s004 (0.33 MB TIF)

Table S3 MLSA primers. MLSA loci and primers listed with

annealing temperature (T) and length of amplicon. * indicates loci

used in [28].

Found at: doi:10.1371/journal.pone.0012988.s005 (0.52 MB TIF)

Table S4 MLSA sequence allele accession numbers. Allele

numbers for each of the 12 MLSA loci for each strain are shown in

the table on the left. Locus marker codes correspond to Table S3.

MLSA loci are listed with each allele and accession number in the

table on the right.

Found at: doi:10.1371/journal.pone.0012988.s006 (0.67 MB TIF)

Table S5 CRISPR loci accession numbers. Accession numbers

for CRISPRs are listed by strain and locus. The first number at

each locus corresponds to the leader end sequence and the second

number corresponds to the trailer end. ‘NA’ and ‘X’ as in Figure 1.

The CRISPR_id from the CRISPRdb website [50] is shown for

M.16.27 and M.16.4.

Found at: doi:10.1371/journal.pone.0012988.s007 (0.82 MB TIF)
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