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Abstract

Background: High-throughput DNA sequencing techniques offer the ability to rapidly and cheaply sequence material such
as whole genomes. However, the short-read data produced by these techniques can be biased or compromised at several
stages in the sequencing process; the sources and properties of some of these biases are not always known. Accurate
assessment of bias is required for experimental quality control, genome assembly, and interpretation of coverage results. An
additional challenge is that, for new genomes or material from an unidentified source, there may be no reference available
against which the reads can be checked.

Results: We propose analytical methods for identifying biases in a collection of short reads, without recourse to a reference.
These, in conjunction with existing approaches, comprise a methodology that can be used to quantify the quality of a set of
reads. Our methods involve use of three different measures: analysis of base calls; analysis of k-mers; and analysis of
distributions of k-mers. We apply our methodology to wide range of short read data and show that, surprisingly, strong
biases appear to be present. These include gross overrepresentation of some poly-base sequences, per-position biases
towards some bases, and apparent preferences for some starting positions over others.

Conclusions: The existence of biases in short read data is known, but they appear to be greater and more diverse than
identified in previous literature. Statistical analysis of a set of short reads can help identify issues prior to assembly or
resequencing, and should help guide chemical or statistical methods for bias rectification.
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Introduction

High-throughput or next-generation sequencing techniques are

now cheap and widely available. Current machines, which

produce short reads of up to around 500 bases, are emerging as

a fundamental tool in biology and medicine. Short-read sequenc-

ing has replaced Sanger sequencing [1,2] for applications

involving long sequences such as chromosomes or whole genomes,

and the availability of short-read sequencing has given rise

to ambitious projects such as the 1000 genomes project (www.

1000genomes.org), which is using the technology to generate a

detailed map of the genetic variation in humans. Applications of

next-generation sequencing platforms involve identification of

DNA protein interactions by ChIP-seq [3], transcriptome analysis

with RNA-seq [4], or whole genome assembly [5,6] of both known

and novel organisms.

Short-read sequencing generates vast amounts of data, using the

shotgun process. DNA molecules are amplified and then

fragmented using techniques such as sonification or nebulisation.

Portions of the DNA fragments are then sequenced by an iterative

process involving fluorescence, digital photography, and image

analysis, yielding short reads of some fixed length, from around 35 to

100 bases (for Illumina and SOLiD) and up to 500 for (Roche

454). Each of these steps, chemical and digital, may introduce

biases and errors.

The short read data produced by sequencing machines is

analysed using bioinformatics tools such as resequencers and

assemblers. When using such tools, simplifying assumptions are

commonly made: for example, that reads are evenly spread over

the sequenced genome [7–9]; and that errors randomly occur

within each read according to random substitutions. A richer

assumption is that errors are more likely towards the end of the

read, but are otherwise random as to base and location. However,

as we demonstrate in this paper, such assumptions do not appear

to apply to the data generated by one of the main current

sequencing platforms; we find that the biases are more extreme

and more complex than has previously been suspected.

Identification of bias in short-read data has been explored in

other work, such as that of Dohm et al. [10] and Harismendy et al.

[11]. Dohm et al. [10] focus on the Solexa 1G sequencing platform

and measure aspects such as error rates, regional coverage, and

biases towards particular sequences. The approach of Harismendy

et al. [11] focuses on comparison of different sequencing

technologies, analysing similarities and differences in their genome

coverage. Ehrlich et al., Kircher et al., and Rougemont et al.

independently published works in 2008–09 [12–14] that focus on

the base-calling process as an alternative to the solution Bustard

provided by Solexa (Illumina). The work of Kircher et al. [13]

points out that systematic errors can be made by the standard

software, arising from chemical and optical issues.
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In contrast, the methodology that we present focuses on

identification of biases in the short-read data itself. In particular,

we explore detection of bias with respect to the distributions of

bases and k-mers at distinct positions in the reads. An advantage of

this approach is that it does not require the availability of any

reference sequence, which also means it is less sensitive to errors

caused by polymorphisms in the organism being investigated.

Our methodology consists of three related aspects: first, counting

and comparing the frequency of bases at specific positions in the

reads; second, counting and comparing the frequency of k-mers at

specific positions in the reads; and third, evaluating and comparing

the distribution of k-mers at specific positions in the reads.

We apply our methodology to short-read sequencing data

generated by the Illumina platform for the 1000 Genomes Project.

This project is notable due to its public profile and ambitious goals,

and aims to produce data of high quality. Our analysis identifies

strong, complex biases in the reads from this dataset. For example,

the base A is significantly overrepresented at the start of reads,

while k-mers such as poly-T are dramatically underrepresented;

the k-mers in the middle few bases of the reads are distributed

differently to the other k-mers. This analysis raises questions about

the quality of the data and the ways in which the data might be

correctly interpreted.

We do not attempt to use our analysis to identify the causes of the

biases in the test cases we examine. Our primary aim is to develop

general techniques that can be used for processing any short read

data (though in particular data intended for assembly rather than

peak analysis), and each experiment will have its own character-

istics; that is, we propose a first stage of analysis that should be

applied before any further processing is undertaken. These

methods could be used to track down sources of bias, but could

equally be used, say, to choose between data sets; for example, we

have observed that different data sets – even different lanes from the

same sequencing run – may have different characteristics. A further

application is that they could be used in assembly or resequencing

to augment other information such as quality scores.

We have developed a software package that allows the user to

examine biases in a set of short-read data. In the following, we

focus on whole genome sequencing data from the Illumina

platform, but our methodology is generally applicable to other

sequencing techniques and platforms, as is our quarc package

(introduced in the next section).

The paper is structured as follows. We outline a mathematical

model for describing the common assumptions that have been

made about short-read sequencing data and present three simple,

yet powerful, techniques to analyse and assess bias. We then apply

our techniques to data from the 1000 Genomes Project, and

demonstrate the presence of data quality issues.

Materials and Methods

We present three simple, yet powerful, techniques for assessing a

collection of short reads. They can be easily applied to any kind of

read data and do not require any information about the organism.

A reference sequence is not required, but is useful if available. We

begin with an overview of each of our techniques.

Technique 1: Analysing base calls
This simple measure is a count of how many times each specific

base (A, C, G, T, or N) was called at given position in any read.

Representing these base counts graphically can then provide hints

about the general state of the data. If no bias is present, then one

would expect equal counts at each position for a fixed base, and

equal amounts within the two couples A&T and C&G, as there

should be no bias between the forward and reverse strands in DNA.

In general, the counts should directly reflect the C&G content of the

sequenced material. Deviation from this expected outcome suggests

possible biases in the data and where (in the reads) it may be present.

Technique 2: Comparing occurrences of k-mers in the
reads

Using a background model, not necessarily based on a reference

sequence, we estimate the expected number of counts for given k-

mers and then compare to their actual counts found at varying

positions in the reads. In our experiments we consider k-mers of

different lengths: k~3, 4, 5, and 6. If no bias is present, one would

expected relatively equal counts for a given k-mer at different read

positions, and the count for each k-mer should reflect its content in

the sequenced DNA. Again, deviation from this expected outcome

suggests possible biases in the reads, allowing one to identify k-

mers that are biased towards appearing at specific positions. If the

background model is based on a reference sequence, then one can

also identify which k-mers are generally under- or over-

represented in the data. Note that technique 1 is a special case

of technique 2 with k~1.

Technique 3: Analysing and comparing distributions of k-
mers in the read set

In this method, at each particular read position we compute the

distribution of the frequencies of all possible k-mers (of fixed

length). We then assess bias by comparing distributions at different

read positions, using the Kullback-Leibler divergence measure

known from information theory. This yields an overall dissimilarity

score between the two distributions of k-mers, with higher values

indicating higher dissimilarity. We can then compare this score

with an expected value obtained using a bootstrap approach; the

method is explained in detail in the results section. If no bias is

present, then we expect distributions from different read positions

to have a low dissimilarity score that is close to the expected value.

Modelling
Note that our methodology is generally applicable to any kind of

sequencing data. The interpretation of the results however is

specific to the kind of experiment the data was acquired through.

The following assumptions apply to whole genome sequencing

data only. When interpreting other experiments, such as ChIP-seq

or RNA-seq, different hypotheses have to be formulated and

applied accordingly.

Our methods can be used to test hypotheses about the data, which

we formalise as follows. Let n be the genome length, l the read

length, and m the number of reads. For a substring s, we define Xi,s

to be a random variable describing the number of reads that contain

s at position i. We can now model two standard assumptions.

Uniform distribution of reads in the genome. Under this

assumption, each position in the genome is equally likely to be

sampled with a read by the sequencing machine. This has the

following consequence: if there are p occurrences of a (short) k-mer

s in the genome, every read has a probability p=n of starting with

s. More precisely, let ps~p=n, then the number of reads starting

with s should follow the binomial distribution below. This forms a

null ‘‘uniform sampling’’ hypothesis:

HU
0 :~X0,s~Bi(m, ps) ð1Þ

An implication of this assumption is that k-mers occurring in

reads are equally likely to occur at any position within the reads.

Read Quality Control
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We can state an associated second null ‘‘position independence’’

hypothesis:

HP
0 :~X0,s~X1,s~X2,s~ � � �~Xl{DsDz1,s ð2Þ

In other words, the random variable Ys(i) :~Xi,s should be

uncorrelated to the parameter i. If the probability of a read starting

with s is ps, the same probability applies for all reads to have s at the

second position, the third, and so forth; for convenience we neglect

the special cases at the start and end of the genome.

Random substitution error model. Under this assumption,

the errors made by the sequencing machine do not occur uniformly

across all positions in the reads, but, where they do occur, random

substitution errors are assumed. We model this assumption as

follows. Let S be a random variable representing a substitution at an

error position in a read, then we can state a third null hypothesis:

HR
0 :~P(S~A)~P(S~C)~P(S~G)~P(S~T)~0:25 ð3Þ

where P is the probability distribution for the substitution of a base.

Datasets
We evaluate our techniques on a range of data sets coming from

different sequencing platforms and organisms. The analysis

includes a total of 205,613,470 reads of various lengths, organisms,

and sequencing platforms. The full list of read sets used can be

found in Table S1. For the sake of consistency and comparability,

we will present only one of the data sets in the main manuscript, a

publicly available read set from the 1000 genomes project (www.

1000genomes.org).

The data D was generated by a recent edition of Illumina’s

Genome Analyzer II and is a union of the components 553 1,

553 2, 554 1, and 554 2, where each component is extracted from

the NA10847 dataset (available at ftp://ftp-trace.ncbi.nih.gov/

1000genomes/ftp/data/NA10847/sequence_read/). The data

was generated with the SBS v2 kit and processed by the Pipeline

v1.3 software package. This set is 6.6 GB of data in FASTQ

format, consisting of approximately 52 million reads of length 51.

Memory restrictions on our test hardware prevented us from using

the entire set of data from the NA10847 folder. Note that the

volume of data we processed, and the size of the effects observed,

ensures that results such as the differences in proportions of

observed bases are statistically significant.

The reference for the human genome used in this paper is hg18

NCBI Build 36.1 from March 2006, available from genome.ucs-

c.edu/cgi-bin/hgTracks.

We have also successfully applied our analysis techniques to

other datasets. Some results are included in the supplementary

material and referenced in our discussions; we refer to this data as

data sets D1 to D7. The data presented in the main manuscript, D,

corresponds to D5 in Table S1.

We filtered the data for artefacts that were present in the

collection of reads, in order to exclude artificial biases. We filtered

out poly-A fragments, which, users suggested, may occur

frequently at the peripheral areas of the flow cells in the Genome

Analyzer due to reflections. We also filtered out a sequencing

primer starting with ‘‘GATTACAGGCATGAGC’’, which we

were able to identify after k-mer analysis of the data set.

Software
Publicly available software for our analysis methods can be

downloaded from www.genomics.csse.unimelb.edu.au/quarc. The

package is called quarc (Quality Analysis and Read Control).

Results and Discussion

We applied our three analysis techniques to our subset of the

1000 Genomes Project data, and used the model and null

hypotheses proposed above to interpret the significance of our

results.

Analysing base call frequencies
Our first approach to analysing the data was inspired by

observations made by Dohm et al. [10] and the base-call analysis

routines provided by Illumina (http://www.illumina.com/).

Figure 1 shows a base-call graph for the dataset, and Figure 2

shows the accompanying quality values for these base calls. The

following observations can immediately be made:

N A common assumption about short-read data is that base call

frequencies should be independent of the position in the

read. Figure 1, however, indicates that this assumption is

only true from about base 10. The beginnings (bases 1 to 9)

of the reads show great deviation from the expected

behaviour.

N The deviant behaviour we observe across the initial bases

cannot be attributed to the internal quality measures used by

the sequencing machine. Figure 2 shows that there is no

significant drop in quality score values across the first ten

positions of the reads, indicating good reliability of the base

frequencies at these positions.

N Figure 2 has strong similarity to a graph presented by Dohm

et al. [10], showing a fall in quality scores toward the end of the

reads. This result is also consistent with the observations made

by Chaisson et al. in [15].

N The presence of major biases in the starting locations, or

possibly the presence of sequencing primers left in the input

data, could be responsible for the shape of the base call graph

in Figure 1. We observed this behaviour (see Figures S1 and S2

Figure 1. Basecalls for each position in the reads for dataset D
from the 1000 genomes project (see Section ‘‘Datasets’’).
doi:10.1371/journal.pone.0012681.g001

Read Quality Control
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as examples) in all the Genome Analyzer outputs we

investigated.

N There is a noticeable enrichment of As over Ts and Cs over Gs

in the base call frequencies. This is true for all of the Illumina

Genome Analyzer II read sets investigated in the supplemen-

tary data as well (except one that is not representative of a

regular sequencing run). Such differences in complementary

bases could be explained with strand sampling biases.

However, a strand bias can’t explain the consistent preference

for one base over the other. Poly-A fragments (mentioned in

the data set section) that have not been removed from the data

could play a role in oversampling of As, but there is no

analogous phenomenon that would explain the difference

between Cs and Gs. An amplification and sampling bias may

be the cause for the observation.

N Note that the same observation can be made for the 454

data regarding AT, but the roles are switched for CG (see

Figure S8).

The base calls are exhibiting this behaviour, even after our

filtering of the dataset for primers and other artefacts, as described

in Section ‘‘Datasets’’. We discovered this kind of pattern as a

common characteristic for base calls coming from Illumina

sequencers; see the supplementary data for further analysis.

The data sets D1 and D4 in the supplementary data have been

mapped to their reference genomes to ensure only valid reads.

Furthermore, the reads of D4* have been quality filtered, so that

we only retained reads in which all bases have a high quality score.

Our aim is to develop methods that do not require a reference, but

it is plausible to hypothesise that the biases are due to poor reads;

this mapping and filtering eliminates poor reads as an explanation

for the biases.

Analysis of D3 (another 1000 genomes dataset) revealed another

striking anomaly in base call frequencies, shown in Figure S3, with

base frequency varying wildly with position and significant falloff

in calling of A towards the end of the read. We believe it is

important to be aware of such characteristics before undertaking

genome assembly.

Other sequencing platforms show different error characteristics,

which then shows in the base call frequencies. Data set D7 was

created with Roche’s pyrosequencing technology 454; its base call

progression can be reviewed in Figure S8. There is a noticeable

increase of A nucleotides towards the end of reads, whereas the

occurrences of Cs decline. Note however, that this read set is

composed out of various read lengths, and the observed behaviour

could be explained by sampling biases as well as error biases.

Being aware of these characteristics of the input data can help to

better interpret them, thus demonstrating the value of applying

simple statistics of this kind of data before trying to make use of it.

For instance, base call progressions at the end of reads, such as

those in the data sets D1, D4, D5 (D), and D7 (see Table S1),

suggest that users should make use of trimming techniques like that

presented by Qu et al. [16].

Analysing occurrences of k-mers
Our second technique examines the frequency of k-mer

occurrences against a background model. Having observed

anomalies occurring at the start of reads identified in Section

‘‘Analysing base call frequencies’’, we generalised the concept and

compared the frequencies of k-mers for varying k at the read start

against their overall frequencies in the reference sequence or, if not

available, with a background model derived from the rest of the

reads. As was formalised in ‘‘Modelling’’ section, we would expect

that each position in the genome is equally likely to be sampled by

a read and thus the k-mers at a start of the read should follow the

distribution of the k-mers in the reference or background

(methylation issues excluded). However, we found large discrep-

ancies from this assumption in our analysis, with k-mers at the start

of a read being under- or over-represented with respect to the

background model by orders of magnitude.

In more detail: we obtain the probability distribution for all k-

mers from a reference genome as a background model. No

reference is ideal; some genomes are CG-rich to a greater extent

than others, for example, while others have such a high proportion

of coding region (such as Drosophila) that other forms of non-

randomness may be observed. However, a reference from a similar

organism should have reasonably similar statistical properties. As

Figure 2. Average Phred quality scores for D. Bars represent the mean quality score for each position in a read (see [17] for details).
doi:10.1371/journal.pone.0012681.g002
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noted below, the pool of reads themselves can be used as a

background model.

According to our null hypothesis HU
0 , the distribution of any k-

mer should be binomial Bi(m,ps). Since m is large and ps is small

for this kind of data, we calculate log values of the distribu-

tion using the Sterling approximation (that is, we approximate

the factorials for large numbers as n:log(n){nzlog(n)=2z

log(2p)=2). We can then obtain p-values by approximating the

cumulative probabilities for the given binomial distribution taking

the observed values; for values far from the distribution’s mean we

estimate the tail by Pr(Xƒx)ƒ2:Pr(X~x), for E=pƒ1=(2zq),
E the mean and q the binomial probability. The p-values obtained

for certain k-mers show highly significant differences from the

expected values at the 0:1% confidence level. This provides strong

evidence to reject the HU
0 hypothesis.

We identified some of these anomalies as PCR primers contained

in the reads (as for example in the NA06985 read set presented in

the supplementary data). Other anomalous k-mers could not be

explained as easily and, more curiously, showed consistently

unusual behaviour across completely unrelated datasets. The

polynucleotide sequences are a notable example. Our experiments

with several datasets showed an under-representation of poly-C,

poly-G, and poly-T sequences at the read start – and in general

compared to the reference genome – whereas the reverse

complement of poly-T, namely poly-A, occurred well in the

expected range. The calculated p-values for poly-C, poly-G, and

poly-T 6-mers are all significant at the 0:1% significance level. We

also analysed where such polynucleotide sequences occurred in the

reads. Figures 3 and 4 show the frequency for k-mers of repeated

nucleotides at each position in a read, with the dotted line showing

their expected frequency based on the reference genome. Note the

interesting and significant difference of representation of identical

strings in complementary form (poly-A versus poly-T and poly-C

versus poly-G).

The frequencies of these anomalous k-mers show significant

correlation with their position of occurrence in a read. Squared

correlation coefficients and their p-values are shown in Table 1.

The statistics were generated using the PASW statistics 17.0

software and cubic interpolation was found to provide the best fit

when finding the correlation between read position and

frequency for a given k-mer. We summarise our observations as

follows:

Figure 3. Occurrences of poly-A and poly-T sequences of different length depending on position in the read and their expected
values for read set D. y-axis shows the total number of occurrences (log scale). Dotted lines represent the expected occurrences for the respective
k-mer lengths. Poly-A sequences displayed as ^, poly-T as 0.
doi:10.1371/journal.pone.0012681.g003
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N The highly significant p-values in Table 1 suggest that

frequencies of certain k-mers are not independent of their

position in a read. We thus reject the null hypothesis HP
0 and

hence also reject HU
0 .

N All the polynucleotide sequences show increased frequency

towards the end of reads.

N Unusual behaviour is found at the start of reads, where the

selected k-mers have unusually high or low frequencies (see

Figure 3). We found this kind of behaviour repeated across

different datasets.

N The majority of k-mers (that is, those other than the

polynucleotide strings) don’t show this kind of behaviour and

their frequency distributions are consistent with the null

hypothesis.

N Comparing our results from Figure 4 with Figure 1 shows that

there is a dramatic increase of poly-G 6-mers at the end of

reads, even though the count of base calls for single G bases

remains stable towards the end of reads.

N Polynucleotide sequences consisting of C or G are significantly

less represented in the reads compared to the reference

genome. This stands in contrast to the observations made by

Dohm et al. [11], who detected an enriched representation

with higher CG content. This bias however, was observed in

Solexa 1G sequencers. Other unpublished experiments we

have undertaken show that this bias is not prevalent for later

editions of the Illumina sequencing platform.

N Experiments show that the higher occurrences of poly-A, poly-

T, poly-C, or poly-G sequences at the end of reads is not a

reflection of the material being sequenced but is due to a

systematic introduction of error, turning quasi poly-nucleotide

sequences into actual ones by minor changes. We verified this

by mapping the reads to a reference genome and identifying

erroneous bases in uniquely mapping reads: The majority of

poly-G sequences in the read data were seen to occur due to

systematic sequencing errors, violating the assumption HR
0 .

This contradicts our error models, because errors are not

context free.

Although we show results here using a reference sequence, this

method, as the others, can be applied without a reference. The

reference has been used to validate our methodology, not as an

essential step to obtain results. Note that, in absence of a reference,

the pool of reads themselves can be used to obtain a background

model, and that the positional analysis of k-mer frequencies is

entirely independent of a reference in the first place.

Figure 4. Occurrences of poly-C and poly-G sequences of different length depending on position in the read and their expected
values for read set D. y-axis shows the total number of occurrences (log scale). Dotted lines represent the expected occurrences for the respective
k-mer lengths. Poly-C sequences displayed as ^, poly-G as 0.
doi:10.1371/journal.pone.0012681.g004
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As was the case for the first method we presented, this second

simple statistic can provide useful quality information on a set of

reads, and help guide later computational or chemical analysis.

For example, our results illustrate that the biases are probably due

to the chemical processing rather than the sample preparation, as

the data sets were prepared in different laboratories. Although the

choice of data to use as a background model may lead to apparent

biases, our results here suggest there are other more significant

causes. This is confirmed by the Kullback-Leibler analysis, as we

next explain.

Distribution analysis
Our third proposed analysis assesses the data in more depth.

Given the observation in Figure 3 and 4 and the uneven

distribution over the read positions of distinct sequences, we

analyse the overall k-mer distributions for each position in a read.

We then compare distributions using the Kullback-Leibler (KL)

divergence to get an intuition of how different the distributions are.

Given two probability distributions P and Q, the KL divergence

of a set of k-mers S is:

K L(PDDQ)~
X

s[S

ps log2 (
ps

qs

) ð4Þ

where ps, qs denote the probability of s under P or Q respectively.

Intuitively, this function measures how different two distributions

are, a higher value implying higher divergency. In information

theory, the KL divergence measures the average amount of bits

wasted per symbol when using distribution Q for encoding when

symbols are in fact distributed according to P.

Let P6
i be the distribution for all 6-mers at position i. We then

compute the KL divergence between each possible pair of

positions: (K L(P6
i DDP

6
j )), 1ƒi, jƒn, where n :~l{5 is the

number of 6-mers in a read, with l the read length. Figure 5

shows a graphical representation of the divergence profile.

N Divergence is high when comparing the first position’s

distribution against any other. This might imply biases in the

starting positions of reads and thus the existence of biased 6-

mers in the first bases.

N Divergence is high when comparing the first with the last

position’s distribution. This observation is valid across all

analysed datasets – and expected as explained later.

N The main area of the graph contains small divergence

measures of around 0:002. This ‘plain’ of small divergences

seems to confirm the claim made earlier in the ‘‘Modelling’’

section, that for the majority of 6-mers, their occurrences are

consistent with the null hypothesis HU
0 , thus also implying HP

0 .

N There is a small but significant ‘‘bump’’ in the divergence

when comparing any positions with those around 25 to 30.

This can be seen as lighter coloured stripes crossing

horizontally and vertically through the middle of Figure 5.

We believe it to be caused by artefacts left in the data. Factors

such as primers occur in a particular reading frame and can

cause biases in the distributions at particular loci of the reads.

N Besides the obvious extreme values for divergence stated

above, there is a more subtle but clearly visible decline in

divergence from the first few positions towards the end of the

reads, in general, divergence is higher for early position’s

distributions than for later ones. This also coincides with the

Figure for the bootstrap experiment presented shortly.

N Across several datasets, the general shape of the graph

representing the KL divergences was similar: maximal diver-

gence occurred for the first position and was high compared to

any other position. See Figures S9 to S16 for illustration.

To assess the observed divergences, we use a form of bootstrap.

We use the maq (maq.sourceforge.net) simulation tool to generate

multiple synthetic read sets from the human genome, of the same

size as our natural data set, using the assumptions underlying HR
0 .

We first train the simulator using the quality scores from our test

data and then generate 100 different sets of reads (each with

around 52 million reads) from the reference genome based on the

adopted quality scores. For each read set, the KL divergence

values are computed and then an average is taken over all read

sets. With this approach we simulate the expected value and the

variance of the KL divergence values under the uniform sampling

null hypothesis HU
0 .

The central limit theorem then implies that the divergence

measure should be normally distributed around the distribution’s

mean. Mean and variance are derived directly from the simulated

distribution. Figure 6 shows the expected values for the KL

divergence under the null hypothesis; as can be seen, these are

much smaller than the values observed for the real data. (Note that

the vertical axes are on different scales.) Table 2 shows further

results; instead of p-values we provide effect size in distance from

the mean as multiples of the standard deviation of the respective

distribution.

The general ‘stingray’ shape of the graph in Figure 6 is initially

surprising, but is a direct consequence of the error model adapted

by the simulation tool. Recall that we trained the simulator with

the quality scores of the dataset (see Figure 2). The higher

probabilities for errors at the end of reads leads to a higher

diversity of the 6-mer distributions and such to the observed graph;

note that the distribution of 6-mers in the human genome is

biased, so that introducing errors using random substitutions tends

to make the distribution become more even towards the end of the

reads. Note further that increasing error rates under the

assumption of HR
0 makes the k-mer distributions converge towards

a uniform distribution, since eventually every position in a read is

replaced by an error with equal probability for each base. Even

though the error model adopted here does not capture all of the

errors in real data, it does reflect the notion of increasing error rate

Table 1. Cubic correlation coefficients for polynucleotide
sequences of different length for the read set D.

polyA polyC polyG polyT

3{mers

Correlation R2 0:492 0:009* 0:670 0:565*

p-value 2:E{6 0:54* 3:E{10 1:E{9*

4{mers

Correlation R2 0:657 0:393 0:953 0:892

p-value 7:E{10 9:E{5 5:E{28 2:E{20

5{mers

Correlation R2 0:857 0:800 0:993 0:974

p-value 8:E{18 1:E{14 8:E{46 2:E{33

6{mers

Correlation R2 0:925 0:978 0:996 0:993

p-value 1:E{23 7:E{35 6:E{51 9:E{45

*Values for linear correlation (better fit).
doi:10.1371/journal.pone.0012681.t001
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towards the ends of reads. Thus, we expect higher divergence

between early and late distributions, because the errors corrupt the

pattern of 6-mers observed.

The divergence measure can be applied for any k. Large k will

result in low sampling of each k-mer and thus lower the statistical

significance. Also, some k-mers might never be sampled at some

positions in the read, whilst being contained at other positions,

resulting in difficulties in calculating the KL divergence. Smaller k

results in little specificity of the k-mers to a region in the genome,

and thus reduces the power of the method to discover regional

biases. The choice for length six for this analysis however was

arbitrary.

Discussion
DNA sequencing is a complex process combining several stages

of preparation, chemistry, and computational analysis. Biases for

Figure 5. 3d plot of the KL matrix for D. Data points correspond to KL(P6
i DDP

6
j ), i shown on the x-axis, j on the y-axis.

doi:10.1371/journal.pone.0012681.g005

Figure 6. 3d plot of the mean KL values for the bootstrap approach (simulated data). Data points correspond to KL(P6
i DDP

6
j ), i shown on

the x-axis, j on the y-axis. Note that the scale is not the same as used in Figure 5.
doi:10.1371/journal.pone.0012681.g006
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distinct k-mers or fragment lengths can be introduced at many

points during this process: PCR can favour certain k-mers, for

example, as can DNA fragmentation. The chemistry used inside

the sequencing hardware and the interpretation of the optical

reactions is sensitive to interferences of many kinds, such as light

and temperature. Our observations imply that some unexpected,

complex biases are present in data from the 1000 genomes project,

and that these may affect how the data is interpreted.

Table 1 shows that some sequences’ occurrences are highly

correlated with the position in the reads, contradicting assump-

tions of how reads are obtained from a DNA sequence. This

correlation could be due to the preparation steps of the sequencing

library or biases in the sequencing step, or it could be a systematic

error in the interpretation of the reaction in the sequencer. These

kinds of errors are noted by Harismendy et al. [11] and in more

detail by Kircher et al. [13]. For example, this includes the

tendency of G to be confused with T, and also a general T

accumulation along the reads. The latter was observed in some but

not all of our experiments (see Figures S1 to S8).

On the other hand, it could be a correct image of the data and

caused by biases in the starting positions of the reads. This is

confirmed by results presented in the supplementary data: the data

set D4* was mapped to the reference and quality filtered to ensure

only high quality reads that stem from the actual organism with

high probability. Figures S7 and S15 show the graphs for base call

frequencies and the KL divergence measure. The results show no

improvement in the observed biases.

Biases in the starting positions of reads become apparent when

looking at the other analyses. Figure 5, representing the Kullback-

Leibler divergence of different positions’ distributions, shows that

the starting positions of reads do not coincide with the general null

hypothesis or with the general shape of distributions at other

positions. One has to be careful about interpreting the possible

biases, because adaptor sequences or any fragments that appear in

a distinct reading frame in a read may lead to this observation.

Quality filtering however suggests that this is not the case. Figure

S15 looks slightly improved over Figure S11, with smaller

divergence for late positions in reads. The divergence at the start

of reads however remains present. We thus believe that the

underlying issues are not simple sequencing errors or fragments

left in the data, but rather systematic biases in site selection in the

read generation process.

However, we did filter the data (recall the ‘‘Datasets’’ section) to

get a clearer image of the state and the observation persisted. We

also note that, even if primers or other artefacts were somehow left

in the data, the shape of the graph should look different if the reads

were unbiased in their starting positions: A primer that occurs at the

start of reads massively biases the distribution for the first position –

but it also does the same for the second, third, and so on, for a large

number of positions, as adaptor sequences or primers are typically

long. That is, if the graph’s shape is due to this kind of phenomena,

the high divergence should stretch further into the reads.

The same argument applies to Figure 1, where the unusual k-

mers should certainly exceed 10 bp. Thus use of our techniques

can give insight into these biases in read starting positions:

analysing the over- and under-represented sequences at the starts

of reads by calculating p-values as described in Section ‘‘Analysing

occurrences of k-mers’’ might indicate favoured and avoided

positions in a genome on a sequence level.

A criticism of the analysis in Section ‘‘Distribution analysis’’ could

be that the comparison to a reference mightn’t be fair: the actual

read data could be biased due to initial sample preparation from the

genome and the sequence might simply be different from the

reference. However, these issues should not affect the overall

distributions significantly and, in particular, should not affect the

general shape of the graph at all, which this is determined by our

assumptions only and not by the sequence the reads stem from.

Recall that we do not compare the read data with the reference

genome in this step, but distributions along the reads themselves.

Using the reference for the bootstrap however ensures maintenance

of the same genome complexity and coverage ratio as in the test data.

Practical experience demonstrates that short read data is

feasible for the common tasks of re-sequencing or assembly

[5,6]. Yet we need to be aware of possible biases and try to

understand the underlying characteristics of short-read data better

to make the most of the information contained in it, and doing so

may aid in construction of longer contigs with greater coverage, or

in accurate determination of genome regions involved in gene

expression.

Our statistical tests have practical implications for a wide variety

of biological investigations. For example,

N Combining the results from base call and distribution analyses,

reads can be trimmed in a guided manner: The trimming

points can be chosen in a manner to maintain as much

sequencing material as possible while minimising errors. The

results of Qu et al. [16] show that a significant volume of errors

can be omitted this way. This increases the mappability of the

data in case of resequencing, RNA-seq, and so on.

N Based on the same observations, a guided kmer selection for

kmer-based assembly algorithms can leverage performance for

de novo assembly applications. Avoiding read regions of the

data set that contain high error rates and bias, will benefit the

assembly quality and performance, because avoiding errors

makes assembly of the short read data easier, and it drastically

reduces the memory consumption of assembly tools – one of

the main problems for sequencing larger genomes.

N With the results from distribution and k-mer analyses, a more

accurate coverage estimation for quantitative analysis such as

ChIP-seq or RNA-seq can be achieved. The statistical tests

that are used for this kind of experiment are highly sensitive,

and rely on accurate estimations of the gene (or RNA)

coverage. Evaluating sampling biases and normalising for

them could greatly improve the accuracy of gene expression

studies with NGS data.

As new uses of short-read data continue to appear, we expect

that precise knowledge of the data’s statistical properties will

continue to be of importance.

Conclusions
We have presented strong evidence that the common assump-

tions made about short-read sequencing data are inaccurate. There

Table 2. Statistics for the bootstrap approach and
comparison with the read data.

Statistic

Average standard deviation from mean 5:15E{6

95% confidence interval for (lower bound) 5:03E{6

mean standard deviation (upper bound) 5:27E{6

Avg. distance of observed values from expected value* 593:02

Avg. effect size for 1st position distr. from expected values* 3179:30

*In standard deviations.
doi:10.1371/journal.pone.0012681.t002
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seem to persist chemical or mechanical biases in the process that

lead to surprising biases, such as overrepresentation of some k-mers

in the middle of reads. We have to be aware of these biases when

working with the data. When analysing methylation or expression

characteristics, for example, biases in coverage can lead to mis-

interpreted results if ignored. In terms of sequence assembly a

notion of locality of k-mers stemming from particular positions

could help improve the quality.

We presented new, simple tests and demonstrated that they

provide insight into the sequencing data’s state. The results pose

questions about the quality and characteristics of high throughput

sequencing data, and that of the 1000 Genomes Project in

particular. We therefore recommend application of our techniques

to maximise the use of information contained in the data and to

better understand experimental results.

The base call analysis is easiest to apply and can give a good first

impression of the data’s state. A smooth graph will indicate the

desired characteristics of the read data, while fragmented patterns

indicate a problem. Counting occurrences of k-mers can help

identifying such artefacts and filter them, but also aid understand-

ing about more complex characteristics of the sequencing data

such as positional biases. Applying the Kullback-Leibler measure

helps to assess the state of the read data in more depth; a ‘smooth’

set of divergence values implies a homogenous read set, while any

conspicuous patterns in the divergences identify biases and can

help to direct further chemical and computational analysis.

Supporting Information

Table S1

Found at: doi:10.1371/journal.pone.0012681.s001 (0.07 MB

PDF)

Figure S1 Basecalls for the read set D2 (NA06895) from the

1000 Genomes Project. X-axis showing the position in the read, y-

axis the relative base frequency.

Found at: doi:10.1371/journal.pone.0012681.s002 (0.63 MB TIF)

Figure S2 Basecalls for the read set D6 (NA12272) from the

1000 Genomes Project. X-axis showing the position in the read, y-

axis the relative base frequency.

Found at: doi:10.1371/journal.pone.0012681.s003 (0.95 MB TIF)

Figure S3 Basecalls for the read set D3 (NA11829) from the

1000 Genomes Project. X-axis showing the position in the read, y-

axis the relative base frequency.

Found at: doi:10.1371/journal.pone.0012681.s004 (0.72 MB TIF)

Figure S4 Basecalls for the read set D4 (NA12155) from the

1000 Genomes Project. X-axis showing the position in the read, y-

axis the relative base frequency.

Found at: doi:10.1371/journal.pone.0012681.s005 (1.63 MB TIF)

Figure S5 Basecalls for the read set D1 (SRX005986) from

NCBI’s Sequence Read Archive. X-axis showing the position in

the read, y-axis the relative base frequency.

Found at: doi:10.1371/journal.pone.0012681.s006 (1.78 MB TIF)

Figure S6 Basecalls for the read set D5 (NA10847) from the

1000 Genomes Project. X-axis showing the position in the read, y-

axis the relative base frequency.

Found at: doi:10.1371/journal.pone.0012681.s007 (2.87 MB TIF)

Figure S7 Basecalls for the read set D4* (NA12155) from the

1000 Genomes Project. X-axis showing the position in the read, y-

axis the relative base frequency.

Found at: doi:10.1371/journal.pone.0012681.s008 (1.57 MB TIF)

Figure S8 Basecalls for the read set D7 (SRX017210) from

NCBI’s Sequence Read Archive. X-axis showing the position in

the read, y-axis the relative base frequency. Note that the graph is

cut off at position 361, because only a very small number of reads

exceeds this read length.

Found at: doi:10.1371/journal.pone.0012681.s009 (3.46 MB TIF)

Figure S9 Kullback-Leiber divergence for the read set D1

(SRX005986) from NCBI’s Short Read Archive. Data point

represent KL(PiIPj), x-axis indexing the first distribtion, y-axis the

latter. Pi corresponds to the distribution of 6-mers at the ith

position in a read. Note that the graph has been trimmed of the

last position’s distribution because of the high error rates.

Found at: doi:10.1371/journal.pone.0012681.s010 (6.32 MB TIF)

Figure S10 Kullback-Leiber divergence for the read set D2

(NA06985) from the 1000 Genomes Project. Data point represent

KL(PiIPj), x-axis indexing the first distribtion, y-axis the latter. Pi

corresponds to the distribution of 6-mers at the ith position in a

read.

Found at: doi:10.1371/journal.pone.0012681.s011 (3.12 MB TIF)

Figure S11 Kullback-Leiber divergence for the read set D4

(NA12155) from the 1000 Genomes Project. Data point represent

KL(PiIPj), x-axis indexing the first distribtion, y-axis the latter. Pi

corresponds to the distribution of 6-mers at the ith position in a

read. Note that the graph has been trimmed of the last position’s

distribution because of the high error rates.

Found at: doi:10.1371/journal.pone.0012681.s012 (6.32 MB TIF)

Figure S12 Kullback-Leiber divergence for the read set D5

(NA10847) from the 1000 Genomes Project. Data point represent

KL(PiIPj), x-axis indexing the first distribtion, y-axis the latter. Pi

corresponds to the distribution of 6-mers at the ith position in a

read.

Found at: doi:10.1371/journal.pone.0012681.s013 (3.52 MB TIF)

Figure S13 Kullback-Leiber divergence for the read set D6

(NA12272) from the 1000 Genomes Project. Data point represent

KL(PiIPj), x-axis indexing the first distribtion, y-axis the latter. Pi

corresponds to the distribution of 6-mers at the ith position in a read.

Found at: doi:10.1371/journal.pone.0012681.s014 (3.44 MB TIF)

Figure S14 Kullback-Leiber divergence for a chip-seq data set.

Data point represent KL(PiIPj), x-axis indexing the first distrib-

tion, y-axis the latter. Pi corresponds to the distribution of 6-mers

at the ith position in a read.

Found at: doi:10.1371/journal.pone.0012681.s015 (2.91 MB TIF)

Figure S15 Kullback-Leiber divergence for the read set D4*

(NA12155) from the 1000 Genomes Project. Data point represent

KL(PiIPj), x-axis indexing the first distribtion, y-axis the latter. Pi

corresponds to the distribution of 6-mers at the ith position in a read.

Found at: doi:10.1371/journal.pone.0012681.s016 (6.32 MB TIF)

Figure S16 Kullback-Leiber divergence for the read set D7

(SRX017210) from NCBI’s Short Read Archive. Data point

represent KL(PiIPj), x-axis indexing the first distribtion, y-axis the

latter. Pi corresponds to the distribution of 6-mers at the ith position

in a read. Note that the graph is only displayed up to postition 250,

since the very low number of reads exceeding this read length makes

comparison of distributions difficult and little meaningful.

Found at: doi:10.1371/journal.pone.0012681.s017 (6.32 MB TIF)

Author Contributions

Conceived and designed the experiments: JS JB JZ. Performed the

experiments: JS. Analyzed the data: JS JB TC JZ. Contributed reagents/

materials/analysis tools: JS. Wrote the paper: JS JB JZ.

Read Quality Control

PLoS ONE | www.plosone.org 10 September 2010 | Volume 5 | Issue 9 | e12681



References

1. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-

terminating inhibitors. Proc Natl Acad Sci U S A 74: 5463–5467.

2. von Bubnoff A (2008) Next-generation sequencing: The race is on. Cell 132:

721–723.

3. Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of

in vivo protein-DNA interactions. Science (New York, NY) 316: 1497–1502.

4. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and

quantifying mammalian transcriptomes by rna-seq. Nat Meth 5: 621–628.

5. Wang J, Wang W, Li R, Li Y, Tian G (2008) The diploid genome sequence of an

asian individual. Nature 456: 60–65.

6. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L (2008) The complete

genome of an individual by massively parallel DNA sequencing. Nature 452:

872–876.

7. Hernandez D, François P, Farinelli L, Østerås M, Schrenzel J (2008) De novo
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8. Schröder J, Schröder H, Puglisi SJ, Sinha R, Schmidt B (2009) Shrec: A short-

read error correction method. Bioinformatics (Oxford, England): btp379+.

9. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly

using de bruijn graphs. Genome research 18: 821–829.

10. Dohm JC, Lottaz C, Borodina T, Himmelbauer H (2008) Substantial biases in

ultra-short read data sets from high-throughput dna sequencing. Nucl Acids Res:
gkn425+.

11. Harismendy O, Ng P, Strausberg R, Wang X, Stockwell T, et al. (2009)
Evaluation of next generation sequencing platforms for population targeted

sequencing studies. Genome Biology 10: R32+.
12. Erlich Y, Mitra PP, delaBastide M, McCombie WR, Hannon GJ (2008) Alta-

cyclic: a self-optimizing base caller for next-generation sequencing. Nature

methods 5: 679–682.
13. Kircher M, Stenzel U, Kelso J (2009) Improved base calling for the illumina

genome analyzer using machine learning strategies. Genome Biology 10: R83+.
14. Rougemont J, Amzallag A, Iseli C, Farinelli L, Xenarios I, et al. (2008)

Probabilistic base calling of solexa sequencing data. BMC Bioinformatics 9:

431+.
15. Chaisson MJ, Brinza D, Pevzner PA (2009) De novo fragment assembly with

short mate-paired reads: Does the read length matter? Genome Research 19:
336–346.

16. Qu W, Hashimoto Si, Morishita S (2009) Efficient frequency-based de novo

short-read clustering for error trimming in next-generation sequencing. Genome
Research 19: 1309–1315.

17. Ewing B, Green P (1998) Base-calling of automated sequencer traces using
phred. II. error probabilities. Genome Research 8: 186–194.

Read Quality Control

PLoS ONE | www.plosone.org 11 September 2010 | Volume 5 | Issue 9 | e12681



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


