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Abstract

Background: Systemic sclerosis (SSc) is an autoimmune disease characterized by immunological and vascular abnormalities.
Until now, the cause of SSc remains unclear. Sclerodermatous graft-versus-host disease (ScGVHD) is one of the most severe
complications following bone marrow transplantation (BMT) for haematological disorders. Since the first cases, the similarity
of ScGVHD to SSc has been reported. However, both diseases could have different etiopathogeneses. The objective of this
study was to identify new serum biomarkers involved in SSc and ScGVHD.

Methodology: Serum was obtained from patients with SSc and ScGVHD, patients without ScGVHD who received BMT for
haematological disorders and healthy controls. Bi-dimensional electrophoresis (2D) was carried out to generate maps of
serum proteins from patients and controls. The 2D maps underwent image analysis and differently expressed proteins were
identified. Immuno-blot analysis and ELISA assay were used to validate the proteomic data. Hemolytic assay with sheep
erythrocytes was performed to evaluate the capacity of Factor H (FH) to control complement activation on the cellular
surface. FH binding to endothelial cells (ECs) was also analysed in order to assess possible dysfunctions of this protein.

Principal Findings: Fourteen differentially expressed proteins were identified. We detected pneumococcal antibody cross-
reacting with double stranded DNA in serum of all bone marrow transplanted patients with ScGVHD. We documented
higher levels of FH in serum of SSc and ScGVHD patients compared healthy controls and increased sheep erythrocytes lysis
after incubation with serum of diffuse SSc patients. In addition, we observed that FH binding to ECs was reduced when we
used serum from these patients.

Conclusions: The comparative proteomic analysis of serum from SSc and ScGVHD patients highlighted proteins involved in
either promoting or maintaining an inflammatory state. We also found a defective function of Factor H, possibly associated
with ECs damage.
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Introduction

Systemic sclerosis (SSc) is an autoimmune disorder characterised

by microvascular endothelial cell (EC) apoptosis, excessive

extracellular matrix protein deposition and perivascular infiltra-

tion of mononuclear cells in skin and affected organs. SSc is an

heterogeneous disorder in terms of disease symptoms and clinical

course, which has been classified into limited SSc (lSSc) and diffuse

SSc (dSSc) [1,2]. lSSc affects only the skin of distal extremities and

face and is usually characterized by a very slow clinical course,

whereas dSSc affects wide areas of skin and internal organs and

may have severe pulmonary, cardiac, gastrointestinal and renal

involvement. To date, no completely effective treatment is

available for SSc, mainly related to the lack of knowledge of its

pathogenesis. Increasing evidence suggests that several environ-

mental events and a host-specific susceptibility may be important

in the development of SSc [3–9]. An interesting model has been

suggested for the pathogenesis of SSc, in which viral or bacterial

infections and toxic agents lead to the production of auto-reactive

cellular and humoral immune responses resulting in EC death and
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extracellular matrix protein deposition, in a genetically predis-

posed host [5,9].

Graft-versus-host disease (GVHD) is an immunological disorder

that occurs in approximately half of patients receiving allogenic

bone marrow transplantation (BMT) for haematological disorders.

It is usually classified as acute or chronic based on the time of onset

and clinical manifestations. Acute GVHD usually occurs within 2

to 6 weeks following BMT and primarily affects the skin, the liver

and the gastrointestinal tract. Chronic GVHD appears at least 2 or

3 months after allogenic BMT and may be progressive (acute

GVHD merging into chronic), quiescent (acute GVHD that

resolves completely but is later followed by chronic GVHD) or it

may occur de novo. The manifestations of chronic GVHD are

somewhat protean and often show similarities with autoimmune

diseases. Sclerodermatous GVHD (ScGVHD) is a complication that

appears in 10–15% of patients with chronic GVHD [10].

ScGVHD is characterized by clinical manifestations similar to

SSc, including sclerotic skin. The etiologic factors of ScGVHD are

still unclear and its classification as an autoimmune disorder has

not yet been established. In fact, the presence in serum of

ScGVHD patients of antibodies against cellular antigens is rare

and non-specific, whereas they are present in almost all SSc

patients [8,11].

Here, we carried out a comparative proteomic analysis of serum

from lSSc, dSSc, ScGVHD patients and control subjects to

identify new biomarkers possibly involved in the pathogenesis of

these disorders [12]. We found fourteen proteins differently

expressed in patients compared to controls, which could play an

important role in either promoting or maintaining a chronic

inflammatory state in subjects affected by SSc or ScGHVD.

Materials and Methods

Ethics
The institutional ethics committee of Verona Hospital approved

the experimental protocol. All subjects provided written informed

consent before enrolment.

Patient selection
We enrolled patients with lSSc (n = 11) and dSSc (n = 15),

patients with ScGVHD (n = 8) and without ScGVHD (n = 5) who

received BMT for haematological diseases and age- and sex-

matched healthy subjects (n = 15). Patients referred to our Depart-

ment for standard care and clinical evaluation, including serum

determinations of anti-nuclear (ANA) and anti-extractable nuclear

antigen (anti-ENA) antibodies, which had been determined

according to standardised protocols.

Blood collection
Venous blood was drawn from each subject into two 7 ml

fasting blood tubes and allowed to clot at room temperature for

1 hour. Serum was separated by centrifugation at 20006g for

15 min at 4uC, aliquoted and stored at 280uC.

When transplanted patients (T) were enrolled, blood samples

were collected before BMT and at the moment of ScGVHD

diagnosis. T patients without ScGVHD were evaluated at the

same time of those who developed ScGVHD. Serum from SSc

patients was used within one year, whereas serum from onco-

haematologic patients was used within three years from the

collection.

Bidimensional electrophoresis (2D) analysis
Total serum proteins were determined by BCA Protein Assay

Kit (Thermo Scientific, Rockford, IL., USA). Serum was diluted in

buffer containing 8 M urea (Fluka, Buchs, Switzerland), 4%

CHAPS (USB, Cleveland, OH, USA), 40 mM Tris (Sigma/

Aldrich, St Louis, MO, USA), 1% Dithiothreitol (DTT, Fluka),

2% IPG-buffer (GE Healthcare, Little Chalfont, UK) and traces of

bromophenol blue (Sigma/Aldrich). Immobiline dry strips (pH

range 3–10, 4–5.5, GE Healthcare) were rehydrated overnight in

Rehydratation Solution containing 8 M urea, 2% CHAPS, 1%

DTT and 1.5% IPG buffer pH 4–7. For the isoelectrofocusing,

50 ml of the diluted serum sample at the final concentration of

12 mg/ml were loaded in two cups put at the positive and negative

side of the IPG strip. Isoelectric focusing was performed using

IPGphor electrophoresis unit (GE Healthcare). Total voltage

applied was 55 KV. Subsequently, IPG strips were reduced in

Equilibration buffer (0.5 mM Tris-HCl pH 6.8, 6 M urea, 30%

glycerol (Sigma/Aldrich), 2% SDS (Sigma/Aldrich) containing

1% DTT. Strips were then alchilated in the same buffer

containing 2.5% iodoacetamide (Fluka) instead of DTT.

The second dimension was run in a Hoefer 600 apparatus

(Hoefer, Holliston, USA) and proteins were separated into a 9–

16% polyacrilamide gels; gels were stained with colloidal

Coomassie. Based on preliminary data on the reproducibility of

the 2D maps, we generated 2D maps from serum of each patient

and healthy control.

Then, gels underwent to image analysis by the image master 2D

Platinum software (GE Healthcare). Spots were analyzed by

statistic tests to select those statistically significantly expressed in

the comparison between groups.

Electrophoresis fractionation and in situ digestion
Selected protein spots were excised from 2D gels and washed in

50 mM ammonium bicarbonate pH 8.0 in 50% acetonitrile to a

complete destaining. The gel pieces were re-suspended in 50 mM

ammonium bicarbonate pH 8.0, containing trypsin 100 ng,

incubated for 2 hrs at 4uC and overnight at 37uC. The

supernatant containing the resulting peptide mixtures was

removed and the gel pieces were re-extracted with acetonitrile.

The two fractions were then collected and freeze-dried.

MALDI MS analysis
MALDI mass spectra were recorded on an Applied Biosystem

Voyager DE-PRO mass spectrometer equipped with a reflectron

analyser and used in delayed extraction mode. 1 ml of peptide

sample was mixed with an equal volume of a-cyano-4-hydro-

xycynnamic acid as matrix (10 mg/ml in 0.2% TFA in 70%

acetonitrile), applied to the metallic sample plate and air dried.

The acceleration voltage was 20 kV, delay time 100 ns and the

grid voltage was set to 73%. Spectra were acquired from 600 to

5000 Da using 1000 laser shots/spectrum. Mass calibration was

performed by using the standard mixture provided by the

manufacturer. The typical error was in the 50–100 ppm range.

Mass signals were then used for database searching using the

MASCOT peptide fingerprinting search program (Matrix Science,

Boston, USA) available on the net.

Liquid chromatography-tandem mass spectrometry
(LC-MS/MS) analysis

When the identity of the proteins could not be established by

peptide mass fingerprinting, the peptide mixtures were further

analyzed by LCMSMS using the LC/MSD Trap XCT Ultra

(Agilent Technologies, Palo Alto, CA) equipped with a 1100 HPLC

system and a chip cube (Agilent Technologies). After loading, the

peptide mixture (7 ml in 0.5% TFA) was first concentrated and

washed (i) at 1 ml/min onto a C18 reverse-phase pre-column

FH in SSc and ScGVHD Patients
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Table 1. Demographic and clinical data of SSc patients and healthy subjects.

Subject
Sex
(M/F)

Age
(yr)

Disease
duration
(yr)

Autoantibody
profile RSS

Lung
fibrosis

Other clinical
abnormalities

Current
pharmacological
treatment

Healthy

1 F 28 NA - - - - -

2 F 50 NA - - - - -

3 M 50 NA - - - - -

4 F 55 NA - - - - -

5 F 68 NA - - - - -

6 F 60 NA - - - - -

7 F 545 NA - - - - -

8 F 43 NA - - - - -

9 M 43 NA - - - - -

10 F 41 NA - - - - -

11 F 63 NA - - - - -

12 F 62 NA - - - - -

13 M 33 NA - - - - -

14 M 28 NA - - - - -

15 F 43 NA - - - - -

16 F 32 NA - - - - -

lSSc

1 F 75 5 ACA 3 no no Iloprost

2 F 36 5 ACA 7 no no Ilocrost

3 F 43 6 ACA 15 no no Iloprost

4 F 66 31 ANA 6 no no Iloprost

5 F 82 9 ACA 7 no no Iloprost

6 F 65 6 ACA 9 no no Iloprost

7 F 44 5 ACA 10 no no Iloprost

8 F 65 11 ACA 20 no no Iloprost

9 F 64 9 ACA 12 no no Iloprost

10 M 61 9 ACA 18 no no Iloprost

11 F 77 13 ACA 9 no no Iloprost

dSSc

1 F 64 7 Scl-70 23 yes no Iloprost

2 F 30 8 Scl-70 35 yes arrhythmia Iloprost

3 F 74 9 Scl-70 7 yes no Iloprost

4 F 30 10 Scl-70 18 yes no Iloprost+ AZA

5 F 64 9 Scl-70 6 yes no Iloprost+MTX

6 F 68 13 Scl-70 14 no arrhythmia Iloprost

7 M 71 10 Scl-70 10 yes arrhythmia Iloprost

8 F 60 14 Scl-70 11 no polmonary hypertension Iloprost

9 F 64 9 Scl-70 11 yes no Iloprost+AZA

10 M 49 13 Scl-70 16 no no Iloprost

11 F 30 5 Scl-70 6 yes no Iloprost+AZA

12 F 39 6 Scl-70 13 no no Iloprost

13 F 66 6 Scl-70 7 yes no Iloprost+AZA

14 M 53 11 Scl-70 5 no no Iloprost

15 F 31 4 Scl-70 21 yes no Iloprost+AZA

lSSc: limited Systemic Sclerosis; dSSc: diffuse Systemic Sclerosis; F: female; M: male; ANA: anti-nuclear antibodies; ACA: anti-centromere antibodies; Scl-70: anti-
topoisomerase I antibodies; mRSS: modified Rodnan Skin Score; MTX: methotrexate; AZA: azathioprine.
doi:10.1371/journal.pone.0012162.t001
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(Waters) or (ii) at 4 ml/min in 40 nl enrichment column (Agilent

Technologies chip), with 0.1% formic acid as the eluent. The

sample was then fractionated on a C18 reverse-phase capillary

column (75 mm643 mm in the Agilent Technologies chip) at a flow

rate of 200 nl/min, with a linear gradient of eluent B (0.1% formic

acid in acetonitrile) in A (0.1% formic acid) from 5 to 60% in

50 min. Elution was monitored on the mass spectrometers without

any splitting device. Peptide analysis was performed using data-

dependent acquisition of one MS scan (m/z range from 400 to

2000 Da/e) followed by MS/MS scans of the three most abundant

ions in each MS scan. Dynamic exclusion was used to acquire a

more complete survey of the peptides by automatic recognition and

temporary exclusion (2 min) of ions from which definitive mass

spectral data had previously been acquired. Moreover a permanent

exclusion list of the most frequent peptide contaminants (keratins

and trypsin peptides) was included in the acquisition method in

order to focus the analyses on significant data.

Database Search
Mass spectral data obtained from both the MALDI MS and

the LC-MS/MS analyses were used to search a non-redundant

protein database using an in-house version of the Mascot

(Matrix Science, Boston, MA, USA) software. The accurate

peptide mass values from MALDI MS analyses were used in the

Peptide Mass Fingerprint type of search taking into account the

Carbamidomethyl-Cys as fixed modification, a peptide mass

tolerance of 6100 ppm and a number of missed cleavages of 2.

Peptide mass values and sequence information from LC-MS/

MS experiments were used in the MS/MS Ion Search taking

into account the Carbamidomethyl-Cys as fixed modification, a

precursor ion and a fragment ion mass tolerance of 6600

ppm and 0.6 Da respectively. Only protein identifications

with significant MASCOT score (p,0.05) were taken into

consideration.

Immuno-blot analysis
For the analysis of the platelet basic protein (PBP) and the Factor

H (FH), 35 mg of total serum proteins were solubilised in sample

buffer (50 mM Tris pH 6.8, 2% SDS, 10% glycerol, traces of

bromophenol blue), under reducing (100 mM b-mercaptoethanol)

or non reducing conditions, respectively. Samples were loaded on

polyacrylamide gels, transferred to nitrocellulose membranes and

probed with goat polyclonal anti-PBP antibody (clone T17, Santa

Cruz Biotechnology, Santa Cruz, CA, USA) or mouse monoclonal

anti-FH antibody (clone L20/3,Santa Cruz Biotechnology). Perox-

idase conjugated sheep anti-mouse or donkey anti-goat IgG (GE

Healthcare) were used as secondary antibodies and ECL-Plus (GE

Healthcare) as chemiluminescence detection system.

ELISA assay
FH in serum was quantified using the Human Complement

Factor H ELISA kit (Hycult Biotech, Uden, The Netherlands)

according to the manufacturer’s protocol.

Hemolytic assay
The hemolytic experiment was conducted as previously described

[13]. 100 ml of serum were diluted in 2.5 mM barbital (Merck

Chemicals, Nottingham, UK), 1.5 mM sodium barbital (Merck

Chemicals), 144 mM NaCl (Sigma/Aldrich), 7 mM MgCl2 (Sig-

ma/Aldrich), 10 mM EGTA (Sigma/Aldrich), pH 7.2–7.4. A

duplicate of each sample was prepared in the same buffer plus

50 mM EDTA (Carlo Erba Reagenti, Milan, Italy) and was used as

a blank. 200 ml of sheep erythrocytes (16108 cells/ml) were added

to each sample and blank and the mixtures were incubated at 37uC
under mixing. The reaction was stopped after 30 min with 2.5 mM

barbital, 1.5 mM sodium barbital, 144 mM NaCl, 2 mM EDTA,

pH 7.2–7.4. The mixtures were centrifuged and the hemolysis was

determined by measuring the absorbance at 414 nm of the

supernatants. The percentage of lysis of each sample was calculated

Table 2. Demographic and clinical data of ScGVHD patients.

Subject
Sex
(M/F)

Haematological
disease

Age at
BT (yr)

GVHD
development
after BMT (yr)

Autoantibody
profile Cutaneous features

Extracutaneous
involvement

Current
pharmacological
treatment

ScGVHD

1 M ALL 23 3 ANA Diffuse induration of skin no Iloprost

2 F MDS 35 2 - Lichen sclerosus no -

3 M AML 34 5 ANA Morphea no Iloprost

4 F AML 57 3 ANA Morphe no Iloprost

5 M AML 53 8 ANA Morphea no Iloprost

6 M AML 31 6 ANA Lichen sclerosus no -

7 F AML 61 1 ANA Morphea no Iloprost

8 M AML 36 5 - Morphea no Iloprost

T w/o GVHD

1 M AML 45 - - - - -

2 F AML 53 - - - - -

3 M ALL 27 - - - - -

4 M AML 33 - - - - -

5 F AML 32 - - - - -

ScGVHD: Sclerodermatous Graft-Versus-Host Disease; T w/o GVHD: bone marrow transplanted patients without Graft-Versus-Host Disease; F: female; M: male; ALL: acute
lymphoblastic leukaemia; AML: acute myeloblastic leukaemia; MDS: myelodysplastic syndrome; BMT: bone marrow transplantation; BT: before transplantation; ANA:
anti-nuclear antibodies.
doi:10.1371/journal.pone.0012162.t002
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by subtracting the A414 of the blank and dividing by the absorbance

of the control of total lysis. Whenever indicated, 100 ml of each

serum sample were incubated with 25 or 50 mg of Purified Human

Factor H (Merck Chemicals Ltd., Nottingham, UK) to evaluate the

effect of purified human FH on sheep red cell lysis.

Factor H binding assay to endothelial cells
Human umbilical vein endothelial cells (HUVECs) were

obtained according to the method of Jaffe et al. [14]. Cells were

grown in a 12.5 cm2 culture flask filled with 10 ml of M-199

containing 10% fetal calf serum (FCS, Seromed, Berlin,

Figure 2. 2D serum maps of a patient with diffuse SSc and a healthy control. 1200 mg of total serum proteins were focused on non-linear
pH 3–10 immobiline dry strips and then separated into 9–16% polyacrilamide gels, which were stained with colloidal Coomassie. Marked are the
protein spots, which have been identified by mass spectrometry.
doi:10.1371/journal.pone.0012162.g002

Figure 1. Synthetic referring gels of SSc patients and healthy controls. A comparative proteomic analysis of serum from SSc patients and
healthy controls was conducted to identify differently expressed protein spots. Only protein spots that were present in almost 75% of the total
samples of each subject category were included in the synthetic referring gels.
doi:10.1371/journal.pone.0012162.g001

FH in SSc and ScGVHD Patients
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Germany), 2 mM glutamine (Seromed, Berlin, Germany), 30 mg/

ml endothelial cell growth supplement (Sigma-Aldrich, St. Louis,

Mo, USA), 100 mg/ml heparin (Sigma-Aldrich, St. Louis, Mo,

USA), 100 U/ml penicillin-streptomycin (Sigma-Aldrich, St.

Louis, Mo, USA), 100 mg/ml streptomycin (Sigma-Aldrich, St.

Louis, Mo, USA), and 2.5 mg/ml amphotericin (Sigma-Aldrich,

St. Louis, Mo, USA). The flasks were incubated at 37uC, 100%

humidity, and 5% of CO2. After reaching confluence, cells were

sub-cultured in 75 cm2 culture flasks and medium was refreshed

every 2 days.

Cells were used up to passage 4. Prior to harvesting, HUVECs

were washed thoroughly in 2xPBS to remove FCS-derived FH and

returned to serum-free media for 2 h before being detached by

incubation in 0.01% EDTA/PBS. Cells were treated with patient

and control sera (20% in 0.5xDPBS) for 20 min at 4uC and

subsequently incubated with mouse monoclonal anti- human FH

antibody (AbD Serotec) and Alexa-fluor 488–conjugated goat anti-

mouse IgG (Invitrogen) 1:100 at 4uC for 20 min. All washes and

incubation steps were performed in 0.5xPBS containing 0.5%

BSA. Control experiments were performed in the absence of

serum.

Cells were examined by the fluorescence-activated cell sorter

(FACScan, Becton-Dickinson Immunocytometry Systems, Moun-

tain View, California, USA) equipped with Cell Quest software.

Forward and sidewise scatters were used to define the fluorescent

cell population and 10.000 events were routinely counted.

Statistical analysis
Analysis of Variance was used to evaluate differences between

controls and patients if concentrations of the identified proteins

were normally distributed, according to the skewness-kurtosis test.

The assumption of homoschedasticity was verified by Bartlett’s

test. Pair-wise comparisons were performed adjusting for multiple

comparisons by Bonferroni correction if the global test was

significant. The Kruskal-Wallis test was done for the functional

analysis of serum FH.

Results

Clinical and demographic characteristics of SSc and
ScGVHD patients

All SSc patients fulfilled the American College of Rheumatology

criteria for the diagnosis of SSc [2] and were clustered into two

groups: lSSc and dSSc subjects, according to the criteria of LeRoy

et al [1]. In particular, patients with dSSc presented anti Scl70 Abs

and patients with lSSc were positive for anti-centromere Abs,

except patient 4 who presented only ANA (Table 1).

The skin involvement of SSc patients was quantified by the

modified Rodnan Skin Score (mRSS) [15] and other organ

abnormalities were evaluated with routinely examinations, includ-

ing chest radiograph, electrocardiogram, colour-doppler echocar-

diogram and pulmonary function test. As shown in Table 1, no

lSSc patients had important internal organ involvement whereas

Figure 3. 2D serum map of a patient with limited SSc. 1200 mg of total serum proteins were focused on non-linear pH 3–10 immobiline dry
strips and then separated into 9–16% polyacrilamide gels, which were stained with colloidal Coomassie. Marked are the protein spots, which have
been analysed by mass spectrometry.
doi:10.1371/journal.pone.0012162.g003
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most of dSSc patients presented fibrosis alveolitis (n = 10),

cardiac arrhythmia (n = 3) or pulmonary hypertension (n = 1)

(Table 1). Conversely, none of the GVHD patients fulfilled the

American College of Rheumatology criteria for the diagnosis of

SSc. None of these patients presented anti-ENA antibodies,

while ANA antibodies were found in six of them (Table 2). The

measurement of skin involvement by the mRSS was not possible

because ScGVHD patients presented cutaneous features in body

areas that are not typical of SSc. In particular, sclerotic lesions

were predominantly localized in the trunk and limbs and had

been classified as morphea plaques or lichenoid eruptions.

Only one patient presented diffuse induration of the skin. No

internal organ involvement was detected in ScGVHD patients

(Table 2).

Table 3. Biomarker candidates identified using proteomic analysis.

Spot
nr. Access.nr. Protein name Functional cluster MS analysis

Coverage
% Disease vs control ratio *

dSSc lSSc ScGVHD

1 gi/85681919 Complement Factor H precursor Cell protection MALDI MS 7 1.75 1.90 1.63

2 gi/4507725 Transthyretin Acute phase response LC-MS/MS 39 n/d H n/d H n/d H

3 gi/229528 Protein Len, Bence Jones Immune response LC-MS/MS 22 n/d H n/d H n/d H

4 gi/229528 Protein Len, Bence Jones Immune response LC-MS/MS 22 n/d H n/d H n/d H

5 gi/4557321 Apolipoprotein A-I precursor Acute phase response LC-MS/MS 47 1.73 1.08 2.19

6 gi/225986 Amyloid related serum protein (SAA) Cell proliferation Immune
response

MALDI MS 75 1.16 1.51 2.03

7 gi/129874 Platelet basic protein precursor Cell activation Immune
response

MALDI MS 44 1.31 1.52 1.92

8 gi/93163358 Apolipoprotein A-IV precursor Acute phase response MALDI MS 34 4.74 9.44 14.24

9 gi/5174411 CD5 antigen-like Immune response MALDI MS 62 4.5 2.87 3.81

10 gi/693863 IgM autoantibody light chain, anti-GPIIb Immune response LC-MS/MS 15 n/d H n/d H n/d H

11 gi/1911815 Antitubulin IgG1 kappa VL chain Immune response LC-MS/MS 15 6.61 2.95 4.32

12 gi/15637439 Anti-pneumococcal capsular polysaccharide Ig
light chain variable region

Infection LC-MS/MS 13 n/d H n/d H n/d H

13 gi/4504489 Histidine-rich glycoprotein precursor Not known MALDI MS 21 0.30 0.54 0.13

14 gi/3603391 Anti Pneumococcal/anti dsDNA Ig L-chain Fab
fragment

Infection LC-MS/MS 30 n/d H n/d H n/d H

MS: mass spectrometry; n/d H: not detected in healthy subjects.
*: Disease vs control ratio is calculated as the mean volume in the diseased subjects divided by the mean volume in control subjects.
doi:10.1371/journal.pone.0012162.t003

Figure 4. Synthetic referring gels of haematological patients. A comparative proteomic analysis of serum from patients with ScGVHD or
without ScGVHD and before BMT was conducted to identify differently expressed protein spots. Only protein spots that were present in almost 75%
of the total samples of each subject category were included in the synthetic referring gels.
doi:10.1371/journal.pone.0012162.g004
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Patients with haematological disorders underwent allogeneic

haematopoietic stem cell transplantation, which was obtained

from HLA-identical siblings. As conditioning regimen, they

received cyclophosphamide associated with total body irradiation

therapy. Then, they received methotrexate and cyclosporine for

the GVHD prophylaxis (data not shown).

During this study, all SSc and ScGVHD patients received the

cyclic Iloprost therapy, except for patients with lichenoid eruptions.

Figure 5. 2D serum maps of a patient before BMT and after ScGVHD. 1200 mg of total serum proteins were focused on pH 4–5.5 immobiline
dry strips and then separated into a 9–16% polyacrilamide gels; gels were stained with colloidal Coomassie. Marked is the protein spot, which has
been analysed by mass spectrometry.
doi:10.1371/journal.pone.0012162.g005

Figure 6. Immuno-blot analysis of complement FH and PBP. (A) Immuno-blot analysis of PBP and graph reporting the quantification of PBP
derived protein expression as detected by densitometric analysis. 35 mg of total serum proteins were solubilised under reducing conditions, loaded
on 12% polyacrylamide gels, transferred to nitrocellulose membranes and probed with goat polyclonal anti-PBP antibody. We could not separate by
this technique the individual peptides of this family because of their small differences in the amino acid sequence length. Shown is one
representative experiment of five with similar results. (B) Immuno-blot analysis of FH and graph reporting the quantification of FH expression as
detected by densitometric analysis. FH molecules from serum of dSSc, lSSc, ScGVHD patients and H, bT and T w/o GVHD subjects were separated by
mono-dimensional electrophoresis on 8% polyacrylamide gels under non reducing conditions. Samples were transferred to nitrocellulose membranes
and probed with mouse monoclonal anti-FH antibody. Shown is one representative experiment of five with similar results.
doi:10.1371/journal.pone.0012162.g006
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Moreover, some dSSc patients with lung fibrosis (n = 6) were treated

with immunosuppressive therapy (methotrexate or azathioprine).

2D serum maps of SSc patients differ from those of
normal subjects

We generated pH 3–10 2D gels from serum of some SSc

patients (lSSc n = 10; dSSc n = 10) and controls (healthy n = 5). To

reduce the variability of each patient sample and to evaluate the

data significance, we generated synthetic referring gels from

pH 3–10 2D maps of each subject category by the GE 2D Image

Master Platinum software analysis. Only protein spots that were

present in almost 75% of the total samples of each subject category

were included in the synthetic referring gels. For isolated spots

included in the synthetic gel, the intensity, area and volume values

of the original spot were assigned. The % volume and the %

intensity values were recalculated according to the total volume

and intensity of the new synthetic image. The disease referring gels

were matched with the control one and protein spots that

exhibited differences of more than 1.5 fold in intensity and volume

between dSSc or lSSc and control, were selected for the

identification (Fig. 1). Moreover, to better investigate the proteins

present in the acidic gel region, we also generated pH 4–5.5 2D

gels which were analysed as above described.

This approach allowed us to highlight seven protein spots in

pH 3–10 2D maps (Fig. 2) and six in pH 4–5.5 2D maps

(Fig. 3), which were differently expressed in SSc patients,

compared to healthy controls. These protein spots were excised

from the gels and analysed by mass spectrometry (Table 3). We

identified thirteen proteins, that were divided into five

functional clusters: (i) cell protection, (ii) cell proliferation,

(iii) acute phase response, (iv) immune response (v) host

infection. Concentration differences of each identified protein

had been expressed as ratio between the mean volume of the

spot in each subgroup of patients and in healthy controls

(Table 3).

Some of the identified proteins such as the amyloid related

serum protein (SSA) and the apolipoprotein A–I (apoA-I) had

already been described as being involved in SSc [16,17], whereas

the Factor H (FH) and platelet basic protein (PBP) were firstly

identified in the present study.

We then asked whether patients with ScGVHD may present

similarities with the natural occurring SSc form.

Serum protein expression profile of ScGVHD patients is
similar to that of SSc patients, except for anti-
Pneumococcal/anti-double-stranded DNA antibodies

The comparative proteomic analysis was conducted on serum of

some SSc and ScGVHD patients (lSSc n = 10; dSSc n = 10;

ScGVHD n = 8). In addition, we evaluated 2D serum maps of T

patients without GVHD (n = 5) and ScGVHD patients before

Table 4. Differences in FH concentration, using immuno-blotting.

Factor H (Western Blotting)

Global Test Multiple Comparisons

P = 0.0024 Sample A Sample B p-value*

Healthy lSSc 0.084

Healthy (n = 5; median: 0.52; Q1-Q3: 0.43-0.56) Healthy dSSc 0.003

dSSc (n = 5; median: 0.77; Q1-Q3: 0.74-0.79) Healthy ScGVHD 0.009

ScGVHD (n = 5; median: 0.76; Q1-Q3: 0.69-0.77) lSSc dSSc 0.525

lSSc (n = 5; median: 0.68; Q1-Q3: 0.59-0.72) lSSc ScGVHD 1.000

dSSc ScGVHD 1.000

The Kruskal-Wallis test was used for the statistical analysis of the data.
*A p-value less than 0.0083 was considered significant, according to Bonferroni correction.
doi:10.1371/journal.pone.0012162.t004

Table 5. Differences in FH concentration, using ELISA assay.

Factor H (ELISA assay)

Global Test Multiple Comparisons

P = 0.00114 Sample A Sample B p-value*

Healthy lSSc 0.015497

Healthy (n = 9; median: 904.7067; Q1-Q3: 903.316-944.5305) Healthy dSSc 0.022007

dSSc (n = 13; median: 1192.891; Q1-Q3: 971.8707-1369.209) Healthy ScGVHD 0.000038

ScGVHD (n = 4; median: 1753.066; Q1-Q3: 1720.969-1985.02) lSSc dSSc 0.407116

lSSc (n = 11; median: 1061.01; Q1-Q3: 961.6105-1391.766) lSSc ScGVHD 0.007990

dSSc ScGVHD 0.004286

The Kruskal-Wallis test was used for the statistical analysis of the data.
*A p-value less than 0.004167 was considered significant, according to Bonferroni correction.
doi:10.1371/journal.pone.0012162.t005
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BMT (n = 8). To simplify the image master 2D software analysis,

we created synthetic referring gels of each haematological patient

subgroups, as previously described (Fig. 4). The serum protein

profile of ScGVHD patients resulted quite similar to that of SSc

patients (Fig. 1, Table 3), but was different from those of ScGVHD

patients before BMT and T patients without GVHD (Fig. 4).

It is interesting to note that we found anti-Pneumococcal/anti-

double-stranded DNA antibody fragments only in serum of T

patients with ScGVHD, not in serum of the same subjects before

BMT (Fig. 5) and not even in serum of T patients without

ScGVHD or in SSc subjects, except for patient 4 with lSSc, and

healthy controls.

Factor H is increased and modulated in dSSc and
ScGVHD patients

We investigated two proteins out of those identified by

comparative proteomic analysis that might be new possible

functional biomarkers involved in the pathogenesis of SSc and

ScGVHD disorders: PBP, which contributes to the extracellular

fibrosis and FH which is essential for the vascular EC protection

from the complement lysis [18,19].

We carried out immuno-blot analysis with specific antibodies

against FH and PBP from serum of five subjects of each patient

and control subgroup. Serum levels of PBP derived peptides

were similar in SSc and ScGVHD patients compared to controls

(Fig. 6 A) and the global test was not significant (p = 0.2292). A

similar level of PBP derived peptides was also found between

SSc and ScGVHD patients (Mean Difference: -2.02. C.I.95%:

-6.95; 2.91).

As shown in Fig. 6 B, FH serum levels were significantly

increased in dSSc patients (p = 0.003) and almost reached

significance in ScGVHD patients (p = 0.009) compared to healthy

controls, as also confirmed by Bonferroni-adjusted pairwise

comparisons after Analysis of Variance (Table 4). A similar

concentration of FH was found between SSc and ScGVHD

patients (Mean Difference: -0.02. C.I.95%: -0.14; 0.11). High

levels of FH were also observed in T patients who did not develop

ScGVHD (Fig. 6 B).

Then, we performed ELISA assay for FH analysis in a larger

cohort of SSc and healthy subjects (lSSc n = 11; dSSc n = 13;

healthy n = 9; ScGVHD n = 4) that confirmed what we document-

ed with immuno-blot analysis (Table 5).

Table 6. Sheep erythrocyte lysis by human sera.

Lysis (%)

Global Test Multiple Comparisons

P = 0.00064 Sample A Sample B p-value*

Healthy lSSc 0.025921

Healthy (n = 15; median: 3.63; Q1-Q3: 2.18-5.83) Healthy dSSc 0.031100

dSSc (n = 15; median: 10.72; Q1-Q3: 3.00-52.66) Healthy ScGVHD 0.050120

ScGVHD (n = 7; median: 1.87; Q1-Q3: 0.12-3.68) lSSc dSSc 0.000126

lSSc (n = 11; median: 1.19; Q1-Q3: 0.28-2.51) lSSc ScGVHD 0.483931

dSSc ScGVHD 0.000870

The Kruskal-Wallis test was used for the statistical analysis of the data.
*A p-value less than 0.004167 was considered significant, according to Bonferroni correction.
doi:10.1371/journal.pone.0012162.t006

Figure 7. Hemolysis of sheep erythrocytes. (A) Lysis of sheep erythrocytes by human serum. 50-100 ml of serum from dSSc patients (n = 3) and
healthy controls (n = 3) were incubated with 200 ml of sheep erythrocytes (16108 cells/ml). Hemolysis was determined by measuring the absorbance
at 414 nm of cell supernatants. Data are presented as percentage of the total lysis. (B) Addition of purified FH on sheep erythrocytes. Sheep
erythrocytes (16108 cells/ml) were preincubated with 100 ml of serum from dSSc and H patients and then incubated with 25 or 50 ml of human
purified FH. Data are presented as percentage of the total lysis.
doi:10.1371/journal.pone.0012162.g007
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We then performed a functional analysis using serum from

patients (lSSc n = 11; dSSc n = 15; ScGVHD n = 7) and controls

(healthy n = 15) to evaluate the ability of FH to control

complement activation on cell surfaces. The hemolytic assay was

conducted using sheep erythrocytes that resist to human

complement-mediated hemolysis but are more sensitive than

human red cells when a perturbation of FH function is present

[20–22]. According to the Bonferroni-adjusted pairwise compar-

isons after Kruskal-Wallis test, we observed significant increased

hemolysis with serum from dSSc patients, compared with serum of

either lSSc patients (Table 6, dSSc vs lSSc: p,0.001) or ScGVHD

patients (dSSc vs ScGVHD: p,0.001), but no significant

differences were observed compared to healthy controls (dSSc vs

H: p = 0.031), since the threshold for significance was set to

p = 0.004167 and not to p = 0.05, due to pairwise correction.

We also carried out the hemolysis assay either with increasing

amounts of dSSc serum or in presence of exogenous purified

human FH. As shown Fig. 7 A, increasing amounts of dSSc serum

induced a higher degree of haemolysis compared to serum from

normal controls. The addition of purified human FH to serum of

dSSc patients significantly prevented the complement-mediated

hemolysis in serum from dSSc patients (Fig. 7 B).

To validate these results, the in vitro binding of FH to human

ECs was investigated with HUVECs, which had been used as

model of self-cells. We incubated HUVECs with human sera from

patients and healthy subjects (lSSc n = 6; dSSc n = 8; ScGVHD

n = 3; healthy n = 5) and the binding of native FH was measured by

flow cytometry. We observed reduced surface-bound FH when

HUVECs were incubated with the serum from dSSc patients (Fig. 8),

in particular in dSSc patients with pulmonary involvement (Figure

inset). For the other cases, the large variability in FH cell binding

documented for lSSc patients and the limited number of ScGVHD

patients that we analysed, did not allow us to formulate a conclusion.

Discussion

Here, we used the comparative proteomic approach to identify

new differently expressed proteins in patients with SSc compared

with healthy subjects and to evaluate, for the first time, a population

of T patients who developed sclerotic lesions related to GVHD.

In agreement with previous studies on SSc patients, we observed

high levels of amyloid related serum protein (SSA) in serum of SSc

patients [23], but we firstly found that SSA was also increased in

ScGVHD patients. Since SSA has been described as being

involved in chemotaxis of inflammatory cells, modulation of

proinflammatory cytokines and endothelial cell proliferation

[24–28], the present data support a possible role of SSA in the

development of ScGVHD.

In addition, we found that CD5 antigen-like molecule and

apoA-I were increased in SSc and ScGVHD patients compared to

Figure 8. Factor H binding to endothelial cells. HUVEC were incubated in patient and control sera (dSSc n = 8; lSSc n = 6; ScGVHD n = 3; healthy
n = 5) and bound FH was visualized with a specific antibody by flow cytometry. The results obtained were compared using box and whiskers plot.
Figure inset. Two subtypes of dSSc patients are represented: patients with important pulmonary involvement (dSSc lung, n = 4) and patients with
exclusive cutaneous involvement (dSSc skin, n = 4). The results obtained were compared using box and whiskers plot.
doi:10.1371/journal.pone.0012162.g008
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healthy controls. The CD5 antigen-like molecule seems to play a

critical role in autoimmune disorders, mediating B lymphocytes

[29,30], whereas the apoA-I improves vascular complications in a

mouse model of SSc [17].

We also identified another protein, PBP, possibly important in

the development of fibrosis in SSc patients, based on the

observation that PBP regulates human fibroblast growth by

activation of platelet-derived growth factor receptor [31–33],

whereas its derivate, the connective tissue-activating peptide-III

(CTAP-III), stimulates the glycosaminoglycan formation, partici-

pating in the extracellular matrix remodelling. Although we did

not find significant changes in PBP serum levels of disease subjects

compared to controls, the acid form of PBP suggests that the PBP

mobility shift in 2D maps might be related to PBP post-

translational modifications, e.g. protein phosphorylation state,

more than to PBP quantitative differences (Table 3, Table S1)

[34]. Others proteins show differences on experimental isoelectric

point (pI) and/or molecular weight (MW) compared with their

theoretical values in 2D maps of diseased subjects, suggesting

possible post-translational modifications (Table 3, Table S1). We

observed an acidic isoform of Transthyretin (spot 2) most likely

related to a protonation of one of its Lysine residue [35]; the

presence of Bence Jones proteins with lower pI compared to the

theorical one (spots 3 and spot 4) might also suggest protonation of

one or more Lysine/Arginine residues; the Histidine-rich

glycoprotein precursor (spot 13) with lower experimental MW

compared to the theoretical one, possibly caused by deglycosyla-

tion of the protein.

FH is another novel protein that we found differently expressed

in both SSc and ScGVHD patients compared to normal controls

and has been never reported before. We observed that FH (spot 1)

was placed in disease 2D gels at higher MW than the theoretical

one, which might be related to a saccharide portion that remains

still complexed to Asparagine at the C-terminal of the protein

(Table 3, Table S1) [36,37]. FH is an important regulator of the

alternative complement pathway, which can be activated by a

variety of polysaccharides, bacteria and viruses [38,39]. The

consequence of complement activation via the alternative pathway

is the indiscriminate C3b binding to self and foreign cellular

surfaces, resulting in cell lysis. FH protects host cells from

complement mediated damage by binding ECs and inactivating

the C3b fragment [40,41].

Elevated serum FH levels, which we found in all the subgroups

of patients, may be related to the increased FH cellular release for

self protection against complement attack during an infection or

inflammatory disease [42,43]. A previous study has shown that

acute myeloid leukemia blasts produce factors increasing the

complement protein synthesis by human hepatocytes in vitro [44]

but so far no data are available on serum FH levels in onco-

haematological patients after chemotherapy or radiation therapy.

These data, together with the identification of anti-Pneumococcal/

anti double-stranded DNA antibodies in serum of all patients with

ScGVHD, which should be further validated with more specific

techniques, open an interesting scenario on the possible role of

infectious agents and regulator complement proteins in the etio-

pathogenesis of this disease [45]. In fact, there are evidence about

Figure 9. Schematic diagram of the working hypothesis. Increasing evidence suggests that damage to the vascular endothelium may be an
early event in the SSc disease. It has been already shown that environmental agents and immune mechanisms may be the possible effectors of such
an insult, but the cause of the higher host susceptibility to them remains unclear. We propose that endothelium of patients with dSSc may be not
adequately protected because of a defective defensive barrier on cellular surface. FH is an important complement regulator, which protects host cells
from complement mediated damage by binding ECs and inactivating the C3b fragment (Figure inset). A defective FH binding to ECs could
contribute to the vascular damage, not providing host cells with protection against complement attack during an inflammatory insult.
doi:10.1371/journal.pone.0012162.g009
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the pivotal role of FH in mediating the pneumococcus adhesion to

human ECs in vitro [46,47].

However, the reduced FH binding to HUVECs and the

increased lysis of sheep red cells after addition of serum from dSSc

patients suggest a perturbation of the attachment of the soluble FH

to the cellular surface at least in this subgroup of patients, as

supported by the fact that increased lysis of sheep red cell was

prevented by the addition of exogenous FH. In this case, we

propose that dSSc patients may have a defect of the defensive

barrier on cellular surface that could predispose them to

endothelial damage. FH dysfunction might promote comple-

ment-mediated cellular damage and expose intracellular antigens,

which cross-react with anti-bacterial antigen antibodies, amplify-

ing and perpetuating the activity of the immune system against the

host (Fig. 9). An aberrant expression of complement components

on EC surface and high plasma levels of cleavage products of

activated alternative pathway have already been detected in the

early active phase of dSSc patients [48,49]. Moreover, it has been

shown in an animal model of autoimmune encephalomyelitis that

purified human FH administration reduces both clinical score and

tissue inflammation [50].

In conclusion, we believe that this study provides new elements

which could be involved in EC damage with possible clinical

implications for SSc and ScGVHD patients. Further studies need

to be carried out to evaluate the effective pathological role of these

peptides in the above diseases.
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analysis.
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