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Abstract

Background: Tubulin is a major substrate of the cytoplasmic class II histone deacetylase HDAC6. Inhibition of HDAC6 results
in higher levels of acetylated tubulin and enhanced binding of the motor protein kinesin-1 to tubulin, which promotes
transport of cargoes along microtubules. Microtubule-dependent intracellular trafficking may therefore be regulated by
modulating the activity of HDAC6. We have shown previously that the neuromodulator serotonin increases mitochondrial
movement in hippocampal neurons via the Akt-GSK3b signaling pathway. Here, we demonstrate a role for HDAC6 in this
signaling pathway.

Methodology/Principal Findings: We found that the presence of tubacin, a specific HDAC6 inhibitor, dramatically
enhanced mitochondrial movement in hippocampal neurons, whereas niltubacin, an inactive tubacin analog, had no effect.
Compared to control cultures, higher levels of acetylated tubulin were found in neurons treated with tubacin, and more
kinesin-1 was associated with mitochondria isolated from these neurons. Inhibition of GSK3b decreased cytoplasmic
deacetylase activity and increased tubulin acetylation, whereas blockade of Akt, which phosphorylates and down-regulates
GSK3b, increased cytoplasmic deacetylase activity and decreased tubulin acetylation. Concordantly, the administration of 5-
HT, 8-OH-DPAT (a specific 5-HT1A receptor agonist), or fluoxetine (a 5-HT reuptake inhibitor) increased tubulin acetylation.
GSK3b was found to co-localize with HDAC6 in hippocampal neurons, and inhibition of GSK3b resulted in decreased
binding of antibody to phosphoserine-22, a potential GSK3b phosphorylation site in HDAC6. GSK3b may therefore regulate
HDAC6 activity by phosphorylation.

Conclusions/Significance: This study demonstrates that HDAC6 plays an important role in the modulation of mitochondrial
transport. The link between HDAC6 and GSK3b, established here, has important implications for our understanding of
neurodegenerative disorders. In particular, abnormal mitochondrial transport, which has been observed in such disorders as
Alzheimer’s disease and Parkinson’s disease, could result from the misregulation of HDAC6 by GSK3b. HDAC6 may therefore
constitute an attractive target in the treatment of these disorders.
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Introduction

Histone deacetylase 6 (HDAC6) is a predominantly cytoplasmic

class II histone deacetylase that is involved in many cellular

processes, including degradation of misfolded proteins, cell

migration, and cell-cell interaction [1]. Tubulin is a major

substrate of HDAC6; inhibition of HDAC6 can dramatically

increase the acetylation of tubulin both in vitro and in vivo [2,3].

Recently, it was reported that increased tubulin acetylation in

neurons could promote polarized transport of the kinesin-1 cargo

protein JNK-interacting Protein 1 (JIP-1) by increasing the binding

of kinesin-1 to acetylated tubulin [4]. Moreover, Dompierre et al.

[5] found that inhibiting HDAC6 reversed the transport deficit in

a Huntington’s disease model by increasing the vesicular transport

of Brain-Derived Neurotrophic Factor (BDNF), another kinesin-1

cargo protein. The foregoing findings suggest that microtubule

acetylation and the activity of HDAC6 play important roles in

regulating the trafficking of intracellular cargoes transported by

kinesin-1. Since it is known that kinesin-1 is the motor protein

required for anterograde transport of mitochondria within axons

[6], we hypothesized that HDAC6 also regulates mitochondrial

trafficking in neurons.

Mitochondrial transport and distribution are very important for

proper neuronal function [6]. Abnormal mitochondrial transport

is often associated with neurodegenerative diseases, such as

Alzheimer’s disease, Parkinson’s disease, Huntington’s disease,

and Lou Gehrig’s disease [7,8,9]. Interestingly, reduced microtu-

bule acetylation and intracellular transport failure are regarded as

early pathogenic events in the progression of Alzheimer’s disease

[10,11].

In the present study, we show that specific inhibition of HDAC6

greatly enhances mitochondrial trafficking in cultured hippocam-

pal neurons. In previous studies, we found that inhibition of

Glycogen Synthase Kinase 3b (GSK3b) promoted mitochondrial

transport in hippocampal neurons [12,13]. Here, we demonstrate

that inhibition of HDAC6 affects mitochondrial trafficking in a
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manner similar to that of GSK3b inhibition. We also provide

evidence that GSK3b may directly regulate HDAC6.

Results

Inhibition of HDAC6 by tubacin greatly increases
mitochondrial movement

To determine whether HDAC6 activity affects mitochondrial

trafficking, we applied tubacin (20 mM), a specific HDAC6

inhibitor [14], to cultured hippocampal neurons and followed

the movement of fluorescently tagged mitochondria using time-

lapse fluorescence microscopy. We found that tubacin greatly

enhanced mitochondrial movement, as shown by the kymographs

in Fig. 1A (Movies S1, S2, S3). Both the number of moving

mitochondria and the average velocity increased following tubacin

treatment (Fig. 1D and G). Consistent with this finding, in neurons

treated with trichostatin A (TSA, 10 mM), a nonspecific HDAC

inhibitor that has been used previously to enhance the acetylation

of microtubules [4,5], there was a similar increase in mitochon-

drial motility (Fig. 1B, E, H and Movies S4, S5, S6). In contrast,

niltubacin (20 mM), a tubacin analog that neither inhibits HDAC6

nor enhances acetylation of microtubules [14], did not alter

mitochondrial movement (Fig. 1C, F, I and Movies S7, S8, S9).

Within the limits of our imaging technique, we did not observe any

changes in the morphology of mitochondria following exposure to

HDAC inhibitors.

Inhibition of HDAC6 increases acetylation of tubulin and
association of kinesin-1 with mitochondria in
hippocampal neurons

In agreement with an earlier report using non-neuronal cells

[14], Western blot analysis of acetylated tubulin in extracts from

hippocampal neurons showed that treatment with tubacin (20 mM)

increased levels of acetylated tubulin (Fig. 2A, lane 2). Treatment

with TSA (10 mM) had a similar effect (Fig. 2A, lane3) and, as

expected, the administration of niltubacin (20 mM) did not change

levels of tubulin acetylation, relative to controls (Fig. 2B, lane 2).

Total levels of kinesin-1B and tubulin were unaffected (Fig. 2A

and B).

We postulated that the observed increase in mitochondrial

movement resulting from HDAC6 inhibition would correlate with

increased levels of acetylated tubulin and kinesin-1 associated with

mitochondria. To measure both the level of acetylation of tubulin

and the amount of kinesin-1 associated with mitochondria, we

isolated mitochondria from hippocampal neurons that had been

treated with tubacin, TSA, or niltubacin. As shown by Western

blot analysis, inhibition of HDAC6 by tubacin increased the

amount of kinesin-1 associated with mitochondria compared to an

untreated control (Fig. 2E, lanes 1 and 2). Similarly, treatment

with TSA resulted in more kinesin-1 in the mitochondrial fraction

(Fig. 2E, lanes l and 3), whereas administration of niltubacin did

not cause a significant change compared to an untreated control

(Fig. 2F, lanes 1 and 2). It is likely that not all of the tubulins found

in the mitochondrial fractions are associated with organelles via

kinesin-1. Although we cannot completely exclude the possibility

of cytoplasmic contamination, it has been shown that a significant

amount of tubulin binds tightly to mitochondria via the voltage-

dependent anion channel [15].

Inhibition of GSK3b also increases acetylation of tubulin
in hippocampal neurons

In a previous study, we found that inhibition of GSK3b
dramatically stimulated mitochondrial movement [12]. The fact

that many substrates of GSK3b are cytoskeleton-related proteins

[16] prompted us to investigate the effects of GSK3b inhibition on

the acetylation of tubulin. We found that inhibiting GSK3b with

lithium chloride (LiCl, 10 mM) resulted in both an increase in the

level of acetylated tubulin and the amount of kinesin-1 associated

with mitochondria (Fig. 2B, lane 3; Fig. 2F, lane 3). These results

closely resemble the effects of inhibiting HDAC6 using tubacin or

TSA (Fig. 2A, lanes 2 and 3; Fig. 2E, lanes 2 and 3). Using two

different GSK3b inhibitors, we confirmed that blocking activity

greatly enhanced mitochondrial movement, as shown by the

kymographs presented in Fig. 3A and B (Movies S10, S11, S12,

S13, S14, S15). Quantification of the number of moving

mitochondria and average velocity are shown in Fig. 3C–F. In

parallel cultures, inhibition of GSK3b led to an approximately

60% increase in the acetylation of tubulin (Fig. 3G and H). In

contrast, levels of acetylated tubulin declined by approximately

40% when GSK3b activity was increased by inhibiting Akt activity

(Fig. 3I and J). These results are consistent with the idea that the

Akt-GSK3b signaling pathway may control mitochondrial move-

ment in neurons by modulating acetylation of microtubules via the

regulation of HDAC6.

Inhibition of GSK3b decreases the activity and protein
levels of HDAC6 in hippocampal neurons

HDAC6 is the only cytosolic enzyme known to cause the

deacetylation of tubulin in neurons [17]. We therefore investigated

whether inhibiting GSK3b would directly affect HDAC6 activity.

Whole cell lysates of hippocampal neurons, treated for one hour

with LiCl, SB216763, or an Akt inhibitor (Akt-i) were separated

into cytoplasmic and nuclear fractions. Total HDAC activity was

assayed in both fractions. Treatment with either of the GSK3b
inhibitors resulted in a slight decrease of HDAC6 protein level

(Fig. 4A, B). However, a marked decrease in deacetylase activity

was measured in the cytoplasmic fraction, but not in the

corresponding nuclear fraction (Figure 4C). In contrast, when

GSK3b activity was elevated by inhibiting Akt (Akt inhibitor VIII,

5 mM), the activity of HDAC6 was significantly increased (Fig. 4D),

a finding that is consistent with the Western blot analysis of tubulin

acetylation in hippocampal neurons shown in Figure 3I and J.

GSK3b regulates HDAC6 in situ
It has been shown that HDAC6 is a phosphoprotein [18,19],

but neither the kinases that are responsible for phosphorylating

HDAC6 nor the effect of phosphorylation on this deacetylase have

been established. Our finding, that GSK3b likely regulates

HDAC6 activity, suggests that HDAC6 is a substrate for GSK3b.

To test this idea, we first examined the localization of GSK3b and

HDAC6 in neurons by immuocytochemistry (Fig. 5A–D). Images

of co-immunostained hippocampal neurons acquired through

confocal microscopy revealed that GSK3b and HDAC6 were both

distributed throughout the cells (Fig. 5E and F). Moreover,

immunoprecipitation experiments showed that HDAC6 and

GSK3b were found in the same protein complex in hippocampal

neurons (Fig. 5G), suggesting that HDAC6 and GSK3b physically

interact with each other in situ. Various phosphorylation site

prediction methods have indicated that serine-22 in murine and

rat HDAC6 (corresponding to serine-21 in human HDAC6) may

be phosphorylated by GSK3b. Further, a genome-wide phospho-

protein survey has shown that this site on HDAC6 is phosphor-

ylated [18]. Using a commercially available antibody (Abcam,

ab61058, HDAC6-phospho S22), we found that inhibiting

GSK3b with SB216763 decreased the level of phospho S22

immunoreactivity in hippocampal neurons and concomitantly

increased the number of acetylated microtubules (Fig. 5H, I). In
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contrast, inhibition of Akt resulted in increased levels of phospho

S22 and decreased acetylation of microtubules (Fig. 5H–J, K–M).

5-HT regulates acetylation of tubulin
We reported earlier that 5-HT promotes mitochondrial

transport in hippocampal neurons via the 5-HT1A receptor

[12]. Our finding, that either 5-HT or 8-OH-DPAT, a 5-HT1A

receptor agonist, could promote mitochondrial transport via the

Akt-GSK3b signaling pathway [12], led us to investigate whether

5-HT might also regulate the acetylation of tubulin. Western blot

analysis of acetylated tubulin showed that treatment with either 5-

HT or 8-OH-DPAT, significantly increased the amount of

acetylated tubulin in treated hippocampal neurons (Fig. 6A and

C). Similarly, increased levels of acetylated tubulin and kinesin-1

were found in mitochondrial fractions isolated from parallel

cultures that had also been treated with the same drugs (Fig. 6B

and D). Fluoxetine, a selective serotonin reuptake inhibitor, also

increased both the acetylation of tubulin (Fig. 6E and G) and the

association of kinesin-1 with mitochondria (Fig. 6F and H). We

suggest that 5-HT promotes axonal transport of mitochondria in a

manner similar to that of HDAC6 inhibition.

GSK3b is known to phosphorylate the kinesin light chain, and

inhibit axonal transport [20]. We probed lysates and purified

mitochondria from 5-HT-treated and control cultures with

antibodies directed against the kinesin light chains (KLC1 and

KLC2). No light chains were detected in the mitochondrial

fractions, suggesting that any effect of GSK3b on mitochondrial

movement in hippocampal neurons does not involve phosphory-

lation of these kinesin light chains (Figure S1).

Discussion

Specific inhibition of HDAC6 leads to increased
mitochondrial motility

Mitochondrial transport is critical for proper neuronal function

[6]. Within axons, mitochondria, like other cargoes, are known to

be carried along microtubules by molecular motor proteins such as

kinesin and dynein [6]. However, the means by which the

interaction between mitochondria and the transport machinery is

regulated, and the links to particular signals that affect the

movement of mitochondria are not fully understood. Recently, it

was shown that acetylation of tubulin promotes the trafficking of

kinesin-1 dependent cargoes such as JIP-1 and BDNF [4,5]. This

was demonstrated by preventing tubulin deacetylation with

tubacin, a specific HDAC6 inhibitor. In the presence of the same

inhibitor, we increased acetylation of tubulin in cultured

hippocampal neurons, and found that this correlated with

increased rates of mitochondrial transport. Although it remains

unclear how the acetylation of tubulin enhances the movement of

cargoes on microtubules, there is evidence that acetylation

increases the interaction between tubulin and such motor proteins

as kinesin-1 and dynein [4,5,21]. It is possible that acetylated

microtubules act as higher-affinity tracks for mitochondrial

movement, and therefore reduce the need for mitochondria to

switch tracks during transport. Such enhanced interaction between

microtubules and motor protein might explain the extended

episodes of motility that we observed in our experiments. By

fractionating cytoplasmic extracts of tubacin-treated cultures, we

found that greater amounts of acetylated tubulin and kinesin-1

were associated with mitochondria following exposure to tubacin.

Since kinesin-1 is not an exclusively mitochondrial motor protein,

it is likely that the observed effect of increased acetylation of

microtubules on mitochondrial movement produced by inhibiting

HDAC6 is a reflection of a more general promotion of

intracellular cytoplasmic trafficking within neurons. Consistent

with this idea, it was recently reported that inhibition of HDAC6

produced a higher transfection efficiency by enhancing intracel-

lular transport of transfected plasmids [22].

Is tubulin deacetylation the only way in which HDAC6
regulates mitochondrial trafficking?

In addition to tubulin, HDAC6 is associated with many other

proteins [1]. At present, it is not certain whether other substrates of

HDAC6 are involved in the enhancement of mitochondrial

trafficking that we have observed. Under pathological circum-

stances, the effect of HDAC6 on the degradation of misfolded-

protein may also be involved in mitochondrial trafficking. HDAC6

has been found in aggresomes containing dynein and other

proteins [23]. The formation of aggresomes might play a role in

mitochondrial movement regulated by HDAC6. Indeed, it was

recently reported that protein trafficking of both Parkin and DJ-1

aggresomes were directly involved in HDAC6 inhibition [24,25].

Moreover, the cdc20-APC aggresome complex was also shown to

be involved in direct binding to HDAC6, as well as neuronal

dendritic morphogenesis [26]. Taken together, the foregoing

suggests that protein degradation might play a role in the

regulation of intracellular trafficking. The intricate relationship

between HDAC6-related protein degradation and mitochondrial

trafficking merits further study.

In a recent genome-wide RNAi screen of Drosophila melanogaster,

HDAC6 was identified as a modulator of mitochondrial function,

suggesting not only that it may exert a major influence on

mitochondrial trafficking, but also that it may have a profound

effect on overall mitochondrial function [27].

The function of HDAC6 phosphorylation
Using a phosphoepitope-specific antibody, we showed that

phosphorylation of HDAC6 at serine-22, which conforms to the

consensus site for GSK3b phosphorylation, was reduced by

modulating GSK3b activity (Fig. 5H–J). This suggests that GSK3b
may directly phosphorylate HDAC6 at this site, although further

work with purified proteins is needed to determine whether this is

the case. Since some other kinases share the same consensus

phosphorylation site with GSK3b—for example cdk5 and p38—

HDAC6 may also be simultaneously regulated by other kinases via

phosphorylation of serine-22.

We observed that inhibiting GSK3b decreased overall deace-

tylase activity in cytoplasmic extracts of hippocampal neurons, but

not in the corresponding nuclear fractions, suggesting that the

effect is quite specific (Fig. 4B). The fact that HDAC6 is the

predominant cytoplasmic deacetylase in neurons [1] suggests that

GSK3b-dependent phosphorylation may enhance HDAC6 activ-

Figure 1. Inhibition of HDAC6 by tubacin dramatically promotes mitochondrial movement in hippocampal neurons. Kymographs (A,
B and C) depicting mitochondrial motility were made from Movies S1, S2, S3, S4, S5, S6, and S7, S8, S9 respectively. In the experiment, a segment of
axon was imaged continuously for 3 hours with a short break to allow for administration of drugs. Images were acquired at 10-second intervals. A.
Treatment with tubacin. B. Treatment with TSA. C. Treatment with niltubacin. D, E and F. Quantification of the numbers of moving mitochondrial
during the period of observation (n = 6). Only mitochondria that moved through the entire field of view were counted. G, H and I. Quantification of
mean velocities of moving mitochondria (n = 5).
doi:10.1371/journal.pone.0010848.g001
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ity, resulting in a decrease in acetylation of tubulin and an

inhibition of both mitochondrial motility and the transport of

other kinesin-1 dependent cargoes. Conversely, the activation of

Akt—for example, by exposure to serotonin with consequent

phosphorylation and inhibition of GSK3b—would lead to a

decrease in HDAC6 activity, higher levels of tubulin acetylation,

and increased movement of mitochondria.

Kinesins bind to various cargoes via several different adaptor

proteins [28]. Kinesin light chains comprise an important class of

adaptor proteins that associate with kinesin-1, and mediate fast

Figure 2. Changes in tubulin acetylation and association of kinesin-1B with mitochondria occur following treatment with tubacin,
TSA, or LiCl. A. Western blot analysis of kinesin-1B and acetylated tubulin levels in total cell lysates from hippocampal neuronal cultures that were
treated with tubacin (20 mM) or TSA (10 mM) for one hour. B. Western blot analysis of kinesin-1B and acetylated tubulin levels in total cell lysates from
hippocampal neuronal cultures that were treated with niltubacin (20 mM) or LiCl (10 mM) for one hour. C. Quantification of Western blot results
shown in A (n = 3). D. Quantification of Western blot results shown in B (n = 3). E. Western blot analysis of kinesin1-B and acetylated tubulin protein
levels in a mitochondrial fraction isolated from hippocampal neuronal cultures that were treated with tubacin (20 mM) or TSA (10 mM) for one hour. F.
Western blot analysis of kinesin1-B and acetylated tubulin protein levels in a mitochondrial fraction from hippocampal neuronal cultures that were
treated with niltubacin (20 mM) or LiCl (10 mM) for one hour. G. Quantification of Western blot results shown in E (n = 3). H. Quantification of Western
blot results shown in F (n = 3). Mitochondrial protein levels were normalized to voltage-dependent anion channel (VDAC) protein levels.
doi:10.1371/journal.pone.0010848.g002
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axonal transport [29]. It has been shown that GSK3b phosphor-

ylates kinesin light chain 2 (KLC2), and negatively regulates

anterograde axonal transport [20]. In the present work, we did not

detect KLC1 nor KLC2, the major KLCs [30], in fractions of

mitochondria isolated from hippocampal neurons. Work by others

has indicated that KLCs may not be the predominant adaptor

protein that links kinesin-1 to mitochondria [31,32,33,34]. In

Drosophila, the proteins Milton and dMiro are critical to transport

of mitochondria in neurons, and mammalian homologues of these

proteins (GRIF-1 and Miro1) have been shown mediate transport

of mitochondria [34]. Moreover, in a recent study of the transport

of Na, K-ATPase-containing vesicles, mitochondrial motility was

not affected by knock-down of KLC2 by shRNA [35]. These

observations are consistent with the idea that GSK3b regulates

mitochondrial transport by acting through HDAC6, independent

of KLCs.

Potential implications for disease and therapy
The present study suggests that GSK3b inhibition and HDAC6

activity are closely linked. A number of anti-depressant medica-

tions act directly or indirectly to block GSK3b activity. For

example, LiCl is known to inhibit GSK3b, and we have previously

shown that the selective serotonin reuptake inhibitor, fluoxetine,

decreases GSK3b activity by upregulating Akt [12]. It is

conceivable that these drugs ultimately act to counter depression

via a common downstream mechanism: namely the modulation of

HDAC6 activity. The regulation of HDAC6 would affect

intracellular trafficking of both organelles and proteins in neurons

through changes in levels of acetylated tubulin. It is important to

note that HDAC6 is also involved in other important cellular

processes, serving in some instances as a stress response ‘central

node’ [36] and in others as a cellular redox state sensor [37]. In

any case, many of the molecular effects of HDAC6 impact the

structure and function of microtubules and actin filaments, both of

which are critical to intracellular trafficking.

It was reported recently that HDAC6 exhibits increased activity

in cerebral cortex and hippocampus of Alzheimer’s disease

patients [38]. This finding is consonant with the observed

reduction of acetylated tubulin in affected neurons from

Alzheimer’s disease patients [10], and may further strengthen

the link between mitochondrial movement and this disorder.

Given these observations, it is possible that the reported

perturbation of mitochondrial transport associated with Alzhei-

mer’s disease is caused by an elevated level of HDAC6 and a

consequent alteration of the cellular trafficking machinery.

Moreover, it is possible that, in Alzheimer’s disease, aberrant

HDAC6 levels are induced by increased activity of GSK3b [39].

The present study not only supports the importance of GSK3

Figure 3. GSK3b activity regulates both mitochondrial movement and tubulin acetylation. Inhibition of GSK3b by LiCl or SB216763
promotes mitochondrial movement and increases levels of acetylated tubulin, whereas activation of GSK3b via inhibition of Akt decreases levels of
acetylated tubulin in hippocampal neurons. Kymographs (A and B) of mitochondrial motility correspond to Movies S10, S11, S12 and S13, S14, S15
respectively. In the experiment, a segment of axon was imaged continuously for 3 hours with short break to administer drugs. Images were acquired
at 10-second intervals. A. Treatment with LiCl. B. Treatment with SB216763. C and D. Quantification of the numbers of moving mitochondria during
the period of observation (n = 5). Only mitochondria that moved through the entire field of view were calculated. E and F. Quantification of mean
velocities of moving mitochondria (n = 5). G. Western blot analysis of acetylated tubulin in extracts from hippocampal neurons that were treated with
LiCl or SB216763. H. Quantification of Western blot shown in G. I. Western blot analysis of acetylated tubulin, phosphorylated Akt (pAkt), and
phosphorylated GSK3b (pGSK3b) in extracts from hippocampal neurons that were treated with Akt inhibitor. J. Quantification of Western blot shown
in I.
doi:10.1371/journal.pone.0010848.g003

Figure 4. Inhibition of GSK3b decreases protein levels and activity of HDAC6 in hippocampal neurons. A. Western blot analysis of
protein levels of HDAC6 in hippocampal neurons that were treated with LiCl (10 mM) or SB216763 (2 mM) for one hour. B. Quantification of Western
blot shown in A (n = 3). C. HDAC6 activity assay of total protein lysate from hippocampal neurons that were treated with LiCl (10 mM) or SB216763
(2 mM) for one hour. D. HDAC6 activity assay of total protein lysate from hippocampal neurons that were treated with Akt inhibitor VIII (5 mM) for one
hour. Efficiencies of the separation of cytoplasmic and nuclear phases in C and D are shown by Western blot using anti-GAPDH antibodies.
doi:10.1371/journal.pone.0010848.g004
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Figure 5. HDAC6 and GSK3b are co-localized in hippocampal neurons; HDAC6 serine-22 phosphorylation levels are modulated by
GSK3b. A–F. Immunostaining of HDAC6 and GSK3b in hippocampal neurons. F. Plot of co-localization generated from confocal image data collected
from four neurons (six Z levels per cell; total sample size ,24). G. Immunoprecipitation of GSK3b and HDAC6, respectively. H–J. Confocal images of
immunostained acetylated tubulin and phosphorylated HDAC6 (anti-phosphoserine 22) in hippocampal neurons. H. Before treatment. I. After
treatment with SB216763. J. After treatment with Akt inhibitor VIII (5 mM). K, L and M. Quantification of images H–J. Mean values of relative pixel
intensities are shown.
doi:10.1371/journal.pone.0010848.g005
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kinases (including GSK3a and GSK3b) as critical nodes in the

progression of Alzheimer’s disease [40], but also emphasizes the

central role of GSK3 in regulating intracellular trafficking

[41,42,43].

Materials and Methods

Primary cell culture and infection of cell culture
Preparation of hippocampal neuronal cultures and infection

with the MitoTurboRFP lentivirus were as previously described

[12,13].

Live cell imaging and image analysis
To provide life support for primary neuronal cultures during

extended imaging sessions, we used a microscope stage-top

incubator that we designed and built to enclose a 35 mm glass-

bottom culture dish. The stage-top incubator chamber is

connected, through a closed circuit of silicon hoses, to a Forma

Model 3154 water-jacketed incubator (Thermo Fisher Scientific,

Inc., Waltham, MA) that supplies an atmosphere of 90% air/10%

CO2. Ambient air and stage temperatures are maintained at 37uC
via thermostat-controlled resistors mounted both inside the stage-

top incubator chamber and on its aluminum base. Fluorescence

microscopy was used to observe axonal transport of MitoTur-

boRed-labeled mitochondria in live hippocampal neurons. Time-

lapse image series were acquired under high magnification (636
PLAN APO oil immersion objective; numerical aperture = 1.32;

Leica, GmbH, Germany) using a Leica DMI-6000B inverted

fluorescence microscope (Leica GmbH, Germany) equipped with

a Sutter Lamda 10-2 emission filter wheel, Sutter DG-4 xenon

light source (Sutter Instruments, Novato, CA), and a Cooke

Sensiscam qeTM cooled CCD camera (Cooke Corporation,

Romulus, MI). Microscope control and image capture and

analysis were accomplished using the SlidebookTM image

acquisition and analysis software package (Intelligent Imaging

Innovations, Inc., Denver, CO). In each imaging session,

individual frames of mitochondria within an axon segment were

acquired every 10 seconds (except where noted) for a total

recording time of one hour. Kymographs were generated by the

‘smooth curve analysis’ module in SlidebookTM. Confocal images

were acquired with a Zeiss LSM 710 laser confocal microscope

(Karl Zeiss, Microimaging, GmbH, Germany). Confocal data was

analyzed using Imaris software package (Bitplane Inc., Saint Paul,

MN).

Immunocytochemical staining and reagents
Details of immunostaining protocols used in the present study

can be found in a previous publication [13]. HDAC6 antibodies

were purchased from Abcam (Cambridge, MA), Santa Cruz

Biotechnology (Santa Cruz, CA), and Cell Signaling (Denvers,

MA). GSK3b antibodies were purchased from Cell Signaling

(Denver, MA). Acetylated tubulin antibodies were purchased from

Sigma (St. Louis, MO). Tubacin and niltubacin were kindly

provided by Dr. Stuart Schreiber of Harvard University. Akt

inhibitor VIII was purchased from Calbiochem (La Jolla, CA). All

Figure 6. 5-HT signals increase levels of Kinesin-1B and acetylated tubulin in mitochondrial fractions isolated from hippocampal
neurons. A, C. 5-HT or 8-OH-DPAT increases acetylation of tubulin in hippocampal neurons. B, D. Fluoxetine increases acetylation of tubulin in
hippocampal neurons. E, F, G, H. 5-HT, 8-OH-DPAT, or fluoxetine increase the amount of kinesin1-B (top panel) and acetylated tubulin (bottom panel)
found in a mitochondrially-enriched fraction. Mitochondrial protein levels were normalized to VDAC. Quantifications of Western blots were based on
multiple experiments (n$3).
doi:10.1371/journal.pone.0010848.g006
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other chemicals were purchased from Sigma-Aldrich (St. Louis,

MO) if not otherwise specified.

Western blotting
Details of the Western blot protocol used in the present study

can be found in a previous publication [13].

Isolation of mitochondria
Mitochondrial fractions were isolated from rat hippocampal

neuronal cultures following the ‘sucrose gradient separation

protocol’ developed by Mitosciences, Inc. (Eugene, OR).

Activity assay of HDAC6
Basic procedures were performed according to product

instructions included with the HDAC activity fluorometric assay

kit used (Biomol, Plymouth Meeting, PA). When samples were

detected, the wavelength of excitation was 460 nm and the

detected wavelength of emission was 360 nm (gain = 850). In the

assay for HDAC6 activity, protein extracts from whole cell lysates

of hippocampal neurons were separated into cytoplasmic and

nuclear phases using a corresponding product from Pierce

(Rockford, IL).

Supporting Information

Figure S1 Kinesin light chains (KLCs) do not copurify with

mitochondria isolated from hippocampal neurons. Western blot

analysis of lysates and mitochondrial fractions from 5-HT-treated

and control cultures. Protein extracts were probed with kinesin-1B,

kinesin light chain 1 (KLC1), kinesin light chain 2 (KLC2) and b-

actin antibodies.

Found at: doi:10.1371/journal.pone.0010848.s001 (0.16 MB TIF)

Movie S1 Mitochondrial motility before treatment with tubacin.

Time-lapse series showing motility of MitoTurboRFP-labeled

mitochondria in cultured hippocampal neurons for one hour

before administration of tubacin.

Found at: doi:10.1371/journal.pone.0010848.s002 (3.00 MB

MOV)

Movie S2 Mitochondrial motility after treatment with tubacin.

Time-lapse series showing motility of MitoTurboRFP-labeled

mitochondria in cultured hippocampal neurons for first hour after

administration of tubacin.

Found at: doi:10.1371/journal.pone.0010848.s003 (3.11 MB

MOV)

Movie S3 Mitochondrial motility after treatment with tubacin.

Time-lapse series showing motility of MitoTurboRFP-labeled

mitochondria in cultured hippocampal neurons for second hour

after administration of tubacin.

Found at: doi:10.1371/journal.pone.0010848.s004 (3.19 MB

MOV)

Movie S4 Mitochondrial motility before treatment with TSA.

Time-lapse series showing motility of MitoTurboRFP-labeled

mitochondria in cultured hippocampal neurons for one hour

before administration of TSA.

Found at: doi:10.1371/journal.pone.0010848.s005 (0.66 MB

MOV)

Movie S5 Mitochondrial motility after treatment with TSA.

Time-lapse series showing motility of MitoTurboRFP-labeled

mitochondria in cultured hippocampal neurons for first hour after

administration of TSA.

Found at: doi:10.1371/journal.pone.0010848.s006 (2.96 MB

MOV)

Movie S6 Mitochondrial motility after treatment with TSA.

Time-lapse series showing motility of MitoTurboRFP-labeled

mitochondria in cultured hippocampal neurons for second hour

after administration of TSA.

Found at: doi:10.1371/journal.pone.0010848.s007 (0.75 MB

MOV)

Movie S7 Mitochondrial motility before treatment with niltu-

bacin. Time-lapse series showing motility of MitoTurboRFP-

labeled mitochondria in cultured hippocampal neurons for one

hour before administration of niltubacin.

Found at: doi:10.1371/journal.pone.0010848.s008 (1.98 MB

MOV)

Movie S8 Mitochondrial motility after treatment with niltuba-

cin. Time-lapse series showing motility of MitoTurboRFP-labeled

mitochondria in cultured hippocampal neurons for first hour after

administration of niltubacin.

Found at: doi:10.1371/journal.pone.0010848.s009 (1.34 MB

MOV)

Movie S9 Mitochondrial motility after treatment with niltuba-

cin. Time-lapse series showing motility of MitoTurboRFP-labeled

mitochondria in cultured hippocampal neurons for second hour

after administration of niltubacin.

Found at: doi:10.1371/journal.pone.0010848.s010 (1.01 MB

MOV)

Movie S10 Mitochondrial motility before treatment with LiCl.

Time-lapse series showing motility of MitoTurboRFP-labeled

mitochondria in cultured hippocampal neurons for one hour

before administration of LiCl.

Found at: doi:10.1371/journal.pone.0010848.s011 (1.29 MB

MOV)

Movie S11 Mitochondrial motility after treatment with LiCl.

Time-lapse series showing motility of MitoTurboRFP-labeled

mitochondria in cultured hippocampal neurons for first hour after

administration of LiCl.

Found at: doi:10.1371/journal.pone.0010848.s012 (1.29 MB

MOV)

Movie S12 Mitochondrial motility after treatment with LiCl.

Time-lapse series showing motility of MitoTurboRFP-labeled

mitochondria in cultured hippocampal neurons for scond hour

after administration of LiCl.

Found at: doi:10.1371/journal.pone.0010848.s013 (1.76 MB

MOV)

Movie S13 Mitochondrial motility before treatment with

SB216763. Time-lapse series showing motility of MitoTur-

boRFP-labeled mitochondria in cultured hippocampal neurons

for one hour before administration of SB216763.

Found at: doi:10.1371/journal.pone.0010848.s014 (1.21 MB

MOV)

Movie S14 Mitochondrial motility after treatment with

SB216763. Time-lapse series showing motility of MitoTur-

boRFP-labeled mitochondria in cultured hippocampal neurons

for first hour after administration of SB216763.

Found at: doi:10.1371/journal.pone.0010848.s015 (1.76 MB

MOV)

Movie S15 Time-lapse series showing motility of MitoTur-

boRFP-labeled mitochondria in cultured hippocampal neurons for

second hour after administration of SB216763.

Found at: doi:10.1371/journal.pone.0010848.s016 (2.57 MB

MOV)
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