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Abstract

Background: The symptoms of numerous diseases result from genetic mutations that disrupt the homeostasis maintained
by the appropriate integration of signaling gene activities. The relationships between signaling genes suggest avenues
through which homeostasis can be restored and disease symptoms subsequently reduced. Specifically, disease symptoms
caused by loss-of-function mutations in a particular gene may be reduced by concomitant perturbations in genes with
antagonistic activities.

Methodology/Principal Findings: Here we use network-neighborhood analyses to predict genetic interactions in
Caenorhabditis elegans towards mapping antagonisms and synergisms between genes in an animal model. Most of the
predicted interactions are novel, and the experimental validation establishes that our approach provides a gain in accuracy
compared to previous efforts. In particular, we identified genetic interactors of gdi-1, the orthologue of GDI1, a gene associated
with mental retardation in human. Interestingly, some gdi-1 interactors have human orthologues with known neurological
functions, and upon validation of the interactions in mammalian systems, these orthologues would be potential therapeutic
targets for GDI1-associated neurological disorders. We also observed the conservation of a gdi-1 interaction between different
cellular systems in C. elegans, suggesting the involvement of GDI1 in human muscle degeneration.

Conclusions/Significance: We developed a novel predictor of genetic interactions that may have the ability to significantly
streamline the identification of therapeutic targets for monogenic disorders involving genes conserved between human
and C. elegans.
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Introduction

Many biological mechanisms depend on a state of signaling

homeostasis maintained by the appropriate integration of the

synergistic and antagonistic activities of signaling genes [1].

Accordingly, the symptoms of numerous diseases result from

genetic mutations that disrupt this homeostasis [2–5]. The

relationships between signaling genes suggest avenues through

which homeostasis can be restored and disease symptoms

subsequently reduced. Specifically, disruptions caused by loss-of-

function mutations in a particular gene may be compensated by

concomitant perturbations in genes with antagonistic activities.

Antagonisms and synergisms between genes can be identified

via genetic interactions. A genetic interaction between two genes

exists when the phenotypic effect of a perturbation (e.g. mutation,

RNAi treatment, drug targeting) in one gene is dependent upon a

perturbation in the other gene. Thus, disease symptoms caused by

mutations in a given gene may be compensated by perturbing

genetic interactors of the gene. That is, the genetic interactors are

potential therapeutic targets. Therefore, the identification of

genetic interactions is an important step towards the development

of treatments for monogenic disorders.

The nematode Caenorhabditis elegans is an ideal animal model for

identifying genetic interactions due its genetic tractability.

Furthermore, the high degree of conservation of molecular

pathways related to human diseases has facilitated the dissection

of physiopathological mechanisms of genetic disorders including

Duchenne Muscular Dystrophy (DMD; OMIM: 310200), lyso-

PLoS ONE | www.plosone.org 1 May 2010 | Volume 5 | Issue 5 | e10624



somal storage disorders, obesity, diabetes and Huntington’s disease

[6–8]. Although the extent to which genetic interactions are

conserved between C. elegans and human is unknown, previous

studies encourage the use of C. elegans towards the identification of

therapeutic targets for human diseases. For example, a genome-

wide RNAi suppressor screen in a C. elegans model of type 2

diabetes, i.e. a strain with a loss-of-function mutation in the C.

elegans insulin-like growth factor receptor daf-2, led to the

identification of a kinase that exhibits antagonistic activity towards

daf-2. Interestingly, mice with the kinase knocked-out appeared to

be protected against diabetes, suggesting that the antagonistic

interaction identified in C. elegans led to the identification of a

potential therapeutic target for a human disease [8]. The

application of systematic screens for other diseases hinges on the

development of high-throughput techniques enabling the quanti-

fication of relevant phenotypes. However, the development of such

quantitative techniques is in general time-consuming and may be

extremely challenging. An alternative approach involves the in

silico prediction of genetic interactions [9–11]. Interestingly, the

rate at which genetic interactions are identified with prediction-

driven screens appears to be significantly greater than the rate for

systematic experimental screens (Figure 1). This suggests that in

silico prediction represents an efficient approach to identifying

genetic interactions.

All existing in silico approaches for predicting genetic interac-

tions use several types of data including gene expression

measurements and protein-protein (PP) interactions.

Lee and colleagues developed a method for predicting whether

two given genes have a shared function [9]. The method is based

on the weighted integration of gene pair data and was trained with

pairs of genes that share functional annotations as positive learning

examples. The predictions can be used in turn to infer genetic

interactions, since pairs of genes that share function tend to exhibit

synergistic interactions. Moreover, known antagonists of a given

gene can be used as so-called seeds to search for other antagonists

of the gene; specifically, genes predicted to share function with the

seeds are inferred to be antagonists as well. However, many genes

that share a function do not synergistically interact with each other

nor do they antagonize the same gene(s), and therefore the

accuracy of this approach for predicting genetic interactions may

be limited (see the validation success rate in Figure 1).

Zhong and Sternberg developed a method to directly predict

genetic interactions [10]. This method is also based on the

weighted integration of gene pair data, but was trained with

known genetic and PP interactions as positive learning examples.

However, the method predicts a set of genetic interactions that

involves only a small portion of all C. elegans genes (,8% of the

genome, see Figure 1). This may be due to the amount of data

specific to a given gene pair that is required to make a prediction,

since such data is scarce for many gene pairs.

Chipman and Singh developed an approach for predicting

synergistic interactions only [11]. This approach uses information

gained from the contexts of genes in a biological network that

integrates several types of data (e.g. an edge exists between two

genes if they encode proteins that exhibit a PP interaction),

specifically by using the proximity between genes in the network.

While this approach appears extremely powerful based on the in

silico validation results, it remains to be determined how well this

approach performs according to experimental validation.

Since all experimentally validated approaches for predicting

genetic interactions currently suffer from limited accuracy or predict

genetic interaction sets with limited genome coverage, we developed

a novel in silico approach that uses statistical analyses of gene/protein

neighborhoods in biological networks (Figure 2). Unlike previous

approaches, the prediction of a genetic interaction between two

given genes is aided by analyses that detect common features of the

neighborhoods of the genes, or their encoded proteins (e.g. common

PP interactors of the proteins). Furthermore, our approach does not

require ‘seeds’ for every gene of interest to predict novel antagonistic

interactions, unlike the Lee et al. approach [9], and while our

approach appears comparable to the Zhong and Sternberg

approach [10] in terms of specificity, our set of predicted genetic

interactions has greater genome coverage (Figure 1).

The overall aim of this study was to identify genetic interactions

in C. elegans that warrant further study in mammals towards the

identification of promising therapeutic targets for genetic diseases.

We thus used our approach to identify genetic interactors of the

Rab-specific guanine-nucleotide dissociation inhibitor gdi-1

(WormBase: WBGene00001558) which shares 80% protein

sequence identity with GDI1 (Ensembl: ENSG00000203879; Blast

E-value: 2.106102158), a gene associated with non-syndromic

forms of mental retardation in human (OMIM: 300104) [5]. GDI1

encodes GDIa, a major regulator of Rab GTPase activity during

Figure 1. Comparison of large-scale genetic interaction studies
in C. elegans. The studies are compared in terms of the percentage of
genes with identified/predicted interactions and the success rate of
experimental validation (i.e. the fraction of tested gene pairs that exhibit a
genetic interaction). Systematic experimental screens test a limited
number of gene pairs due to the labor-intensive experimental
procedures. Moreover, these screens identify a small number of
interactions relative to the number of tested gene pairs since genetic
interactions appear to be rare. Prediction-based methods can assess all
pairs of genes in silico, and consequently, the percentage of genes with
predicted interactions tends to be larger than the percentage of genes
with interactions identified by a systematic experimental screen.
Moreover, predictions focus experimental efforts on gene pairs that are
likely to exhibit a genetic interaction. Accordingly, the success rates of
prediction-driven screens tend to be greater than the rates for systematic
experimental screens. The success rate of our study shown here is
conservative since it was computed based on the following definition: a
gene pair exhibits an interaction only if the interaction is statistically
significant according to all considered epistasis models (see Methods).
doi:10.1371/journal.pone.0010624.g001
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endocytosis and exocytosis [5,12]. This protein is thus a critical

regulator of cell signaling events. The validation of predicted

genetic interactions of gdi-1 identified several antagonists. If these

genetic interactions are conserved in the relevant human disease

system, they would suggest therapeutic targets for GDI1-associated

cognitive disorders. In addition, our results suggest the conserva-

tion of a subset of genetic interactions across different cellular

systems in C. elegans, and the involvement of GDI1 in human

myopathies resulting from mutations in components of the

Dystrophin Glycoprotein Complex (DGC).

Results

The predictor of genetic interactions in C. elegans
We developed a predictor of genetic interactions using a

learning set that contains positive and negative examples of

interactions from the literature (see Table S1 for the manually-

curated interactions) and gene pairs randomly selected from the C.

elegans genome, respectively (see Methods). Since it is estimated

that the vast majority of gene pairs do not genetically interact [13],

a set of randomly selected gene pairs is expected to be enriched

with true negative examples.

Our predictor uses gene expression measurements, RNAi

knockdown phenotype observations and PP interactions from

multiple species to measure the likelihood of a genetic interaction.

The gene expression measurements were obtained from DNA

microarray results [14], and the phenotype observations were

obtained from genome-wide RNAi experiment results (see

Methods). A multi-species PP interaction network was constructed

with C. elegans, Drosophila melanogaster, Homo sapiens and Saccharomyces

cerevisiae PP interactions identified by yeast two-hybrid (obtained

from BioGRID and [15,16]). PP interactions from species other

than C. elegans were incorporated using InParanoid orthology maps

[17]. For any two given genes, we considered a measure of their

coexpression (Exp), a measure of their phenotype similarity (Ph)

and an indicator of a PP interaction between their encoded

proteins or orthologues (I) as gene pair attributes that might help

determine whether the given genes genetically interact. Variants of

the Exp, Ph and I attributes have been used by existing predictors

of genetic interactions [9,10].

Figure 2. Gene pair attributes used to predict genetic interactions. The two genes/proteins of interest are highlighted with thick grey
rings. (A) I, the presence or absence of a protein-protein (PP) interaction between the proteins encoded by the genes of interest, or their
orthologues. (B) CI, a measure of the significance of the overlap between the PP interaction neighborhoods of the proteins encoded by the genes
of interest (i.e. overlap of the red and blue regions). The PP interaction neighborhood of a given protein is the set of all of proteins that exhibit a PP
interaction with the given protein (according to the multi-species PP interaction network). (C) N, an indicator for whether the neighborhoods of the
genes of interest are enriched with the same phenotype. Here we define the neighborhood of a given gene as the set of genes that show
significant coexpression (P#0.05, see Methods) with the given gene and/or encode proteins that exhibit a PP interaction with the product of the
given gene (according to the multi-species PP interaction network). Both neighborhoods shown here are enriched with a particular phenotype. (D)
NPh, an indicator like N with the additional requirement that the genes of interest themselves must also exhibit the phenotype enriched in their
neighborhoods.
doi:10.1371/journal.pone.0010624.g002
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Importantly, our approach is the first to use particular features

of biological networks in order to improve the accuracy of the

prediction of genetic interactions. For example, considering the

multi-species PP interaction network, we define the neighborhood

of a protein as the set of proteins that exhibit a PP interaction with

it (possibly via orthology). Although two given proteins may not be

known to exhibit a PP interaction, their neighborhoods may

contain a surprising number of common PP interactors (Figure 2B).

We defined a gene pair attribute based on the encoded proteins of

the two genes of interest, measuring the significance of their

number of common PP interactors (CI). The set of gene pairs that

encode proteins with significantly many common PP interactors

(CI#0.05) is enriched with gene pairs that are known to genetically

interact (P = 6.67610239, hypergeometric test).

We also investigated whether a biological network that

integrates observations of phenotype similarity, coexpression and

PP interaction can improve the prediction of genetic interactions.

We defined a novel biological network called the PhEP network,

where nodes represent genes and the genes are labeled with their

RNAi knockdown phenotypes. Two genes are connected by an

edge if they are significantly coexpressed and/or if they encode or

have orthologous proteins that exhibit a PP interaction (see

Methods). Although a phenotype observation may be absent for

the gene itself, such observations may be available for several of its

neighbors (i.e. the genes connected to the gene of interest by one

edge) in the PhEP network. We therefore defined a gene pair

attribute indicating the enrichment of genes associated with some

phenotype in the neighborhoods of both genes of interest, in the

PhEP network (N, see Figure 2C). We demonstrated that the set of

gene pairs with such neighborhood characteristics is enriched with

gene pairs that are known to genetically interact (P = 1.206102245,

hypergeometric test). By the same line of reasoning, we defined a

variant of this gene pair attribute, NPh, indicating that the two

genes of interest are annotated with the phenotype that is enriched

in both of their neighborhoods in the PhEP network (see

Figure 2D). Again, the set of gene pairs with such neighborhood

characteristics is enriched with gene pairs that genetically interact

(P = 6.266102113, hypergeometric test).

Taken together, we showed that our network-based attributes

(CI, N and NPh) of gene pairs are significantly associated with

genetic interactions, suggesting that these attributes may facilitate

the accurate prediction of genetic interactions.

Ultimately, the Exp, Ph, I, CI, N, and NPh attribute values of a

given gene pair are integrated by a logistic regression model that

outputs a prediction score between 0 and 1 representing the

likelihood of a genetic interaction between the two genes (see

Methods).

We performed leave-one-out cross-validation to evaluate the

predictor at different score thresholds (Figure S1). We determined

that a conservative threshold of 0.975 induces error rates

comparable to those achieved by the Zhong and Sternberg (ZS)

genetic interaction predictor (Table S2). However, this threshold

also induces a set of predicted genetic interactions that is 98%

novel when compared to the prediction sets of previous studies

[9,10], and roughly three-fold more genes are present in our set

compared to the ZS set. Thus, under conditions where our

predictor and the ZS predictor have comparable accuracy

estimates, our set of predicted interactions exhibits greater genome

coverage. We chose 0.85 as our definitive threshold since it yields

an estimated false positive rate (Table S2) close to the expected

rate of finding a genetic interaction at random (0.5%) [13],

coinciding with our negative learning set of random gene pairs. At

this threshold, the estimated true positive rate is 10.8% (Table S2).

Although our predictor misses many true positive interactions,

over 800K genetic interactions are predicted and again, 98% of

them are novel (Figure S2A). In particular, our predictor proposes

more interactions per gene on average compared to the ZS

predictor (Figure S2B). In addition, roughly four-fold more genes

are present in our set of predicted interactions compared to the ZS

set (Figure S2B). Thus, when the predictor has an estimated false

positive rate that is appropriately low, the corresponding set of

predicted interactions also exhibits a large increase in genome

coverage compared to the ZS set. Genome-wide genetic

interactions predicted by our method are available online

(http://www.mcb.mcgill.ca/,anna/gInterWorm/search.php).

The biological relevance of the predicted genetic interaction

network was assessed in silico using pathway annotations ([18] and

Table S3). Previous studies show that genetic interactions occur

within and between pathways, although between-pathway inter-

actions are more prevalent amongst interactions identified in

large-scale studies [19–21]. Therefore, we investigated the

connectivity of pairs of genes annotated to the same pathway, in

the predicted network (see Methods). We found that a significant

fraction of these pathway gene pairs are directly connected

(P = 1025, Figure 3A), indicating predicted interactions within

pathways. We also found that a significant fraction of pathway

gene pairs are connected through shared neighbors (P = 1025,

Figure 3B), and in most cases, at least one of the shared neighbors

is not in the same pathway as the pair (98% and 99% of the cases

for all and just signaling pathways, respectively). These cases

indicate predicted interactions that likely occur between pathways,

or within a pathway if the shared neighbor is an unknown member

of the pathway of the pair. Interestingly, we predict significantly

many genetic interactions within and between pathways mapped

from human to C. elegans, as we do for pathways derived directly

from C. elegans (compare ‘‘all pathways’’ to ‘‘signaling pathways’’ in

Figure 3). Taken together, the connectivity of pathway genes in the

predicted network is consistent with connectivity observations

based on genetic interactions identified experimentally [19–21],

even for pathway genes mapped from human, and thus supports

the validity of our predictor.

The set of predicted genetic interactions exhibits
improved coverage of genes conserved between human
and C. elegans

We investigated whether more genes conserved between human

and C. elegans are present in our set of predicted genetic

interactions when compared to other prediction sets. When all

prediction sets are restricted to genes with human orthologues (see

Text S1), it is still true that a large fraction of our set is novel

(Figure S2A). We thus examined the level of characterization of

human genes with C. elegans orthologues present in prediction sets.

Our analysis shows that in silico methods tend to predict genetic

interactions involving well-characterized genes more often than

poorly-characterized genes (Figure S2C). All human genes with C.

elegans orthologues only present in the ZS prediction set have a

high level of characterization (gene characterization index .5

[22]). Interestingly, 25% of human genes with C. elegans

orthologues only present in our prediction set do not have a high

level of characterization. Taken together, our approach predicts a

large number of novel genetic interactions for genes conserved

between C. elegans and human, and also predicts interactions for

genes orthologous to poorly-characterized human genes that have

no predicted interactions by other approaches.

In order to better understand why our method predicts genetic

interactions that are mostly novel, we investigated the genes with

human orthologues associated with mental retardation and synaptic

plasticity (MRSP) that we curated from the literature (Table S4).

Predicting gdi-1 Interactors
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Over two-fold more MRSP genes are present in our set of predicted

genetic interactions compared to the ZS set (89% and 40% of the

genes, respectively). In examining the MRSP genes that are present

in our set only, we found that these genes are generally associated

with more information with our approach than with the ZS

approach (see Figure S3A and the Methods). In particular, the

additional information comes from our novel network-based

attributes (e.g. the CI and N attributes). The values of these

attributes are computable for nearly all MRSP genes, but the values

of most ZS attributes are computable only for a smaller subset of

the genes (Figure S3B). These results suggest that the network-based

attributes facilitate the prediction of novel interactions.

A large number of human genes associated with disease are

conserved in C. elegans [23]. For example, GDI1, a human gene

associated with mental retardation [5], has high sequence similarity

(Blast E-value: 2.106102158) to gdi-1, a C. elegans gene that has yet to

be functionally characterized. Since GDI1 is involved in neurotrans-

mission and has been associated with cognitive deficiency in human

[5,12], it is functionally related to our set of human MRSP genes

(Table S4). We thus investigated whether the relationship between

GDI1 and MRSP genes is conserved between human and C. elegans.

Interestingly, our method predicts that gdi-1 genetically interacts

more frequently with MRSP genes than with other genes (P =

1.161025, two proportion test), and it also shares genetic interaction

partners more frequently with MRSP genes than with other genes

(P = 1.1610250, two proportion test). These results provide statisti-

cally significant evidence that the interactions between GDI1 and its

potential neurological partners are conserved in C. elegans.

Validation of predicted genetic interactors of gdi-1
We identified phenotypes that result from treating C. elegans

animals with gdi-1(RNAi). These phenotypes include sterility (Ste,

Figure 4C), a gonad morphogenesis defect characterized by a

shortening of gonads (Gon, Figure 4A,C), an ovulation defect

characterized by an accumulation of endomitotic oocytes (Emo,

Figure 4B,C), and a severe reduction of sheath cell contraction

(Figure 4D). We showed that gdi-1 controls ovulation and gonad

morphogenesis processes by modulating somatic gonad cell

functions. That is, rrf-1(pk1417) (WormBase: WBGene00004508)

animals, which are resistant to RNAi in somatic cells, expressed

significantly reduced levels of the phenotypes when subjected to

gdi-1(RNAi) compared to wild-type and mutant animals resistant to

Figure 3. Assessment of the biological relevance of the predicted genetic interaction network with pathway annotations. Here we
show scenarios where a pair of genes annotated to the same pathway (A) is directly connected or (B) shares $1 neighbor in a genetic interaction
network, where the gene pair of interest is highlighted with thick grey rings. In (A), the genes exhibit a within-pathway genetic interaction based on
the given set of pathway annotations. In (B), the genes belonging to the same pathway (e.g. pathway A) both interact with a gene that may either be
an unknown member of the same pathway (within pathway interaction), or may belong to a different pathway (e.g. pathway B, between-pathway
interactions). Below, the frequencies at which each scenario occurs in the predicted network and in randomized networks are shown with respect to
all pathways and to signaling pathways only (see Methods). The ‘‘all pathways’’ and signaling pathway annotations were derived from human and C.
elegans experimental data respectively. For each set of pathway annotations, the median, first and third quartile frequencies of each scenario were
computed across N = 100K randomized networks; the bar length depicts the median and the error bars depict the first and third quartiles. Both
scenarios occur more frequently than what is expected by chance, for both sets of pathway annotations.
doi:10.1371/journal.pone.0010624.g003
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RNAi in germinal cells (see gdi-1(RNAi) and ppw-1(pk2505)(Worm-

Base: WBGene00004508); gdi-1(RNAi) respectively in Figure 4C).

These results suggest that gdi-1 is a critical regulator of signaling

pathways controlling reproductive functions in C. elegans.

To experimentally validate our predictions, we examined 18

strains containing mutations in 12 genes predicted to genetically

interact with gdi-1. Ste, Emo and Gon phenotypes were measured

for mutant and wild-type animals submitted to RNAi against gdi-1

or the negative control, egfp (Figure 5A). Epistasis analyses of these

measurements were performed using three commonly used

statistical models [24,25] to identify significant genetic interactions

(see Tables S5 and S6 for the estimated epistasis coefficients and P

values, respectively). We also applied a statistical test that measures

the suppression of gdi-1(RNAi)-induced phenotypes (see Methods).

Our results show only partial agreement between the different

models of epistasis (Figure 6A). The most stringent requirement

(i.e. significant interaction by all applicable tests, P#0.05) resulted

in a validation success rate of 42%, while more permissive analysis

(i.e. significant interaction by at least one test) increased the success

rate to 67%. This represents an 84- or 134-fold improvement over

the expected success rate from random genetic screening. Although

validation success rates depend on the selected bait gene(s) (e.g. gdi-

1 in our study), our success rates surpass those reported for existing

methods [9,10] (Figure 1A), thus suggesting that our method

represents an important improvement in predictive accuracy.

Of the 12 putative genetic interactions tested, five were successfully

validated according to all statistical tests used to analyse our results.

All five interactions are antagonistic, and the genes that antagonize

gdi-1 are the following: unc-96 (WormBase: WBGene00006825),

encoding a paramyosin-binding protein [26]; unc-89 (WormBase:

WBGene00006820), encoding a titin-like myosin light chain (MLC)-

specific kinase [27]; tra-4 (WormBase: WBGene00018740), a close

orthologue of the human proto-oncoprotein and transcriptional

repressor PLZF (Ensembl: ENSG00000109906) [28]; aspm-1 (Worm-

Base: WBGene00008107), the closest orthologue of the mammalian

ASPM (Ensembl: ENSG00000066279), a gene associated with mitotic

spindle assembly and microcephaly [29,30]; and dyb-1 (WormBase:

WBGene00001115), the closest orthologue of dystrobrevin (Ensembl:

ENSG00000134769), a component of the DGC in human [31].

Notably, we showed genetic interactions between gdi-1 and

regulators of the actin-myosin contractile apparatus. Indeed, gdi-1-

associated phenotypes were reduced by a mutation in the MLC-

specific kinase (MLCK) unc-89, while gdi-1(RNAi) phenocopies a

mutation in the MLC-specific phosphatase mel-11 (WormBase:

WBGene00003196; Figure 5A). This suggests that gdi-1 antagonizes

MLC phosphorylation and consequently, contraction through the

actin-myosin apparatus during gonad morphogenesis. Consistent

with these results, gdi-1-associated phenotypes were reduced by a

chemical inhibitor of MLCK (ML-7) and a chemical inhibitor of

myosin II ATPase activity (blebbistatin) (Figures 5B and 6).

We also identified a genetic interaction between gdi-1 and dyb-1

that affects gonad morphogenesis (Figures 5A and 6). The latter

gene is a close orthologue of dystrobrevin, a component of the

DGC that when altered leads to myopathies [32]. Moreover,

dystrobrevin is a functional partner of dystrophin (Ensembl

ENSG00000198947), a protein that is associated with DMD and

mild cognitive deficiencies in human [32]. C. elegans is a model

organism used to dissect the molecular mechanism of myopathy

associated with mutations in the DGC components dyb-1 and dys-1

(WormBase: WBGene00001131, the orthologue of dystrophin)

[33]. As shown previously, mutations in dyb-1 and dys-1 produce a

progressive myopathy when combined with a weak allele of hlh-1

(WormBase: WBGene00001948; compare panels A and B of

Figure 7) [34,35]. We showed that gdi-1(RNAi) treatment

significantly reduces muscle degeneration in dyb-1(cx36);hlh-

1(cc561) and dys-1(cx18);hlh-1(cc561) mutants (Figure 7C). There-

fore, we demonstrated that the antagonism between gdi-1 and dyb-

1 is conserved in different cellular systems in C. elegans.

Figure 4. Phenotypical characterization of gdi-1(RNAi)-treated
animals. (A,B) DAPI staining of egfp(RNAi)- (labeled wt) and gdi-1(RNAi)-
treated wild-type animals. (A) Gonad morphogenesis defects (Gon)
characterized by short gonads (*) are observed in gdi-1(RNAi)-treated
animals. Scale bar, 200 mm. (B) Accumulation of Endomitotic oocytes (Emo,
arrowheads) in the proximal gonad of gdi-1(RNAi)-treated animals. Arrows
indicate the spermathecae. Scale bar, 25 mm. (C) Sterility (Ste), Gon and
Emo phenotypes were measured in wild-type, rrf-1(pk1417) and ppw-
1(pk2505) animals submitted to gdi-1(RNAi) (N = 3). The mean expressivity/
penetrance of each phenotype is shown with error bars representing 6
one standard error. A (*) indicates a statistically significant reduction of the
phenotypes (P#0.05, Student’s t-test) compared to wild-type animals
treated with gdi-1(RNAi). (D) Distributions of the sheath cell contraction
frequency for egfp(RNAi)- (labeled wt) and gdi-1(RNAi)-treated animals.
doi:10.1371/journal.pone.0010624.g004
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Taken together, our experimental results identified genes that

antagonize gdi-1 activity during gonad morphogenesis, ovulation

(Figure 6B), and muscle degeneration.

Discussion

We present a prediction-based approach to identifying

genetic interactions in C. elegans. The approach predicts many

novel interactions, including interactions for poorly-characterized

genes. Our validation results for gdi-1 suggest that our predictions

identify true interactions with a success rate far beyond random

genetic screening (i.e. at least 84-fold greater than the rate of

identifying true interactions by chance), and that our approach has

improved accuracy compared to previous approaches. Moreover,

we identified five genes with antagonistic activities towards gdi-1

activity during gonad morphogenesis and/or ovulation, including

genes associated with phosphorylated MLCs and dyb-1. Interest-

ingly, we also showed that the antagonism between gdi-1 and dyb-1

influences muscle cell morphology.

Our predictor integrates novel attributes based on network

analysis. We showed that each network-based attribute identifies

gene pairs that are enriched for true genetic interactions. The

common interactors (CI) attribute is based on the common PP

interactors of the proteins encoded by the two genes of interest, in

Figure 5. Validation of a subset of genetic interactions predicted for gdi-1. Ste, Gon and Emo phenotypes were measured in animals
submitted to RNAi against egfp (grey) or gdi-1 (green). The mean difference in the expressivity/penetrance of each phenotype in perturbed (mutant
or chemically treated) versus wild-type (wt) animals (denoted w[x]2w[y], for animals of type x and y) is shown with error bars representing 6 one
standard error, N$3. For Ste, the Z-score of the difference in expressivity is plotted (see Text S1). (D) and (*) indicate statistically significantly
differences for animals treated with egfp(RNAi) and gdi-1(RNAi), respectively (P#0.05, see Methods). NA: not available. (A) Differences in phenotype
expressivity induced by mutations in genes predicted to interact with gdi-1. (B) Differences in phenotype expressivity induced by chemical treatment.
Blebbistatin (Blebb.) is a myosin ATPase inhibitor and ML-7 is a specific inhibitor of myosin light-chain kinase.
doi:10.1371/journal.pone.0010624.g005
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a multi-species PP interaction network. Two given proteins that

have surprisingly many common PP interactors may be members

of the same complex, thereby increasing the likelihood that their

encoding genes genetically interact, since members of the same

complex tend to genetically interact [13,36]. Moreover, the N and

NPh attributes are based on shared phenotypes in a so-called PhEP

network constructed with RNAi knockdown phenotype, gene

expression and PP interaction data. When a specific phenotype is

associated with surprisingly many neighbors of a given gene in the

PhEP network, it may follow that the gene modulates this

phenotype. Thus, if the neighborhoods of two given genes are

characterized by the same phenotype(s), the genes may modulate

the same phenotype(s), thereby increasing the likelihood that they

genetically interact. Furthermore, the network-based attributes

provide additional information for less-studied genes, such as genes

that may not have been assayed individually (e.g. for phenotype

observations) or with other genes systematically (e.g. for PP

interactions). For example, no phenotypes have been observed for

unc-89 and it has not been tested for a PP interaction with gdi-1.

However, the CI and N attributes support a genetic interaction

between unc-89 and gdi-1, which we confirmed experimentally.

This suggests that the network-based attributes facilitate the

accurate prediction of genetic interactions.

Our analyses suggest that in silico approaches tend to predict

genetic interactions involving well-characterized genes more often

than poorly-characterized genes. The Zhong and Sternberg (ZS)

approach explicitly restricts the predictions to genes that satisfy a

minimum information requirement (i.e. a gene must be associated

with information from at least one attribute that is not the C. elegans

gene expression attribute) [10]. Only ,50% of all genes satisfy the

requirement. As a result, only ,25% of all genes pairs are tested in

silico. In our approach, we do not impose a minimum information

requirement. Moreover, we gained information for ,80% of all

gene pairs by integrating our network-based attributes. These

features of our approach may be responsible for the large number

of novel predicted genetic interactions.

All of the experimentally validated interactions are antagonistic.

This suggests that our learning set contains a strong signal for

antagonistic interactions and that our approach captures this

signal. If this is the case, our approach may be advantageous for

predicting antagonistic interactions. Consequently, our approach

may also be advantageous for proposing antagonisms that warrant

further study in mammals towards the identification of therapeutic

targets for monogenic disorders.

Because of its involvement in vesicular trafficking in mammals,

GDI1 may be a critical regulator of several signaling pathways

controlling functions such as synaptic plasticity, learning and

memory acquisition [5,37,38]. Interestingly, the signaling path-

ways involving ephrins, integrins and inositol-triphosphate that

control gonad morphogenesis and ovulation in C. elegans are highly

similar to the pathways controlling synaptic plasticity in human

[39–44]. Supporting this observation, the anti-epileptic drug

valproate, which targets components of these signaling pathways

in human, has been shown to cause severe alteration of sheath cell

contraction and ovulation processes in C. elegans [45]. Moreover,

our data suggest that gdi-1, like valproate [45], controls ovulation

processes by modulating somatic gonad cell functions. As

documented by the Gilbert and Bolker study [46], a conserved

signaling pathway can control different cellular processes in

different organisms; for example, ovulation in C. elegans versus

synaptic plasticity in human. However, a signaling pathway that is

conserved across different cellular systems and species may have

also acquired some context-specific signaling components. We

therefore do not expect all signaling pathway observations in one

context to apply to another context. However, a number of genes

identified as genetic interactors of gdi-1, using Ste, Gon and Emo

as phenotypical readouts in nematodes, have high sequence

similarity to genes with neurological functions in human. These

observations support the search for genetic interactors of gdi-1 with

a role in controlling gonad morphogenesis and ovulation in C.

elegans to suggest likely genetic interactors of GDI1 controlling

cognitive abilities in human. Nevertheless, this strategy for

identifying genetic interactions relevant to cognition requires

extensive validation in higher organisms such as mouse.

One of the genetic interactions that we uncovered is between

gdi-1 and aspm-1. In both C. elegans and mammals, aspm-1 controls

mitotic spindle positioning and consequently, the ratio of

symmetric and asymmetric cell divisions [29,47]. While control

of asymmetric division of somatic gonadal precursor cells (SGPs) is

required for the proper morphogenesis of gonads in C. elegans [48],

it is still unknown whether the modulation of asymmetric division

in these cells is at the origin of the interaction between gdi-1 and

aspm-1. aspm-1 is an orthologue of ASPM, a gene involved with

brain development in human. In particular, ASPM is involved in

the control of neuronal progenitor proliferation and is associated

with microcephaly [47]. Since GDI1 is expressed in both

proliferative and differentiated neurons during brain development

[5], it would be interesting to test whether GDI1 genetically

interacts with ASPM in mammalian brains and consequently, test if

the simultaneous perturbation of both genes would result in a

reduction of cognitive disabilities associated with mutations in

either ASPM or GDI1 alone.

The molecular origin of the genetic interaction observed

between gdi-1 and tra-4 is also unknown. The transcriptional

repressor tra-4 was shown to promote female development by

repressing male-specific genes in C. elegans [28]. This gene was also

characterized as a SynMuvB gene because it was shown to

negatively regulate let-60 (WormBase: WBGene00002335)/Ras-

mediated vulval development in nematodes [28]. Interestingly,

several SynMuvB genes have been shown to control somatic

gonad development [49,50]. Further studies will be required to

assess the function of tra-4 during somatic gonad development and

its potential interaction with SynMuvB genes in the cellular

context of that process.

We also showed genetic interactions between gdi-1 and

regulators of the actin-myosin contractile apparatus. Indeed, gdi-

Figure 6. Epistasis between gdi-1 and its predicted genetic interactors and chemical suppressors. (A) The minimum (M), additive (+) and
multiplicative (*) statistical models of epistasis were used in the analysis. A statistical test for the specific suppression (S) of gdi-1(RNAi)-induced
defects was also used (see Methods for details). Significant synergistic and antagonistic interactions are illustrated with shades of red and blue,
respectively (P#0.05). Darker shades indicate significant interactions with P#0.01. The absence of a statistically significant interaction is indicated by a
white entry. NA: not available. (B) Schematic representation of gdi-1 interactors. Blue lines represent antagonistic interactions with gdi-1. The dashed
red line indicates phenocopy between mel-11 and gdi-1. unc-96 (paramyosin-binding protein), unc-89 [myosin light chain (MLC)-kinase], and mel-11
(MLC-phosphatase) are regulators of the actin-myosin contractile apparatus (AMCA, represented in grey) [26,72]. unc-54 and myo-1 are type II myosin
heavy chains. tra-4 encodes a PLZF-like transcription factor [28]. aspm-1 (orthologue of mammalian ASPM) and dyb-1 (orthologue of a component of
the dystrophin glycoprotein complex, DGC) have been associated with mitotic spindle assembly and DGC function in human, respectively [32]. ML-7
and blebbistatin (Blebb.) are specific inhibitors of MLC-kinase and myosin II ATPase activities, respectively.
doi:10.1371/journal.pone.0010624.g006
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1-associated phenotypes were reduced by mutations in the MLCK

unc-89 and its functional partner unc-96 [26]. Interestingly, unc-96

is required for the proper distribution of unc-89 at the M-line in

body-wall muscle sarcomeres [26]. Our data suggest a partnership

between unc-96 and unc-89 that promotes the contraction of the

actin-myosin contractile apparatus in gonad somatic cells, in a

pathway antagonistic to gdi-1. This hypothesis is also supported by

the significant reduction of gdi-1(RNAi)-induced phenotypes in

animals treated with the MLCK and myosin II inhibitors ML-7

and blebbistatin, respectively.

Interestingly, MLC phosphorylation and myosin II function

have been shown to control synaptogenesis, dendritic spine

morphology and synaptic plasticity in mammals [51,52]. More-

over, the inhibition of MLCK function in the lateral amygdala of

the mouse brain has been shown to enhance auditory fear

conditioning (i.e. learning and memory) and to facilitate synaptic

plasticity [53]. Because mutating GDI1 in mice has the opposite

effect [54], it is of interest to assess whether phosphorylated MLC

and GDI1 have antagonistic functions in neurological mechanisms

that enable learning and memory acquisition in mammals. If

antagonism is present, inhibiting phosphorylated MLC is a

potential therapeutic strategy to reduce the symptoms associated

with GDI1 mutations in human.

We also demonstrated that the activity of gdi-1 is antagonistic with

the activity of the dystrobrevin orthologue, dyb-1, during gonad

morphogenesis in C. elegans. Dystroglycan is another component of

the DGC and its orthologue dgn-1 has been previously shown to

control gonad morphogenesis in C. elegans [55]. Our data suggest

that dyb-1 also contributes to this developmental process. Interest-

ingly, the antagonism between dyb-1 and gdi-1 is consistent with the

likely antagonism in mammals where dystrobrevin acts as a

regulator of cell signaling through the inhibition of receptors and

membrane recycling [56], and GDI1 potentially promotes these

cycling events by regulating RAB4 and RAB5 [38]. We also showed

that this antagonism is conserved in different cellular systems in C.

elegans since gdi-1(RNAi) treatment significantly reduced muscle

degeneration in both dyb-1;hlh-1 and dys-1;hlh-1 animals. Mecha-

nisms of muscle degeneration resulting from functional alterations of

dystrobrevin or dystrophin are still poorly understood in mammals

[57]. While C. elegans is an animal model of choice to dissect the

pathological mechanisms associated with myopathies [58], the

antagonisms observed between the GDI1, dystrobrevin and

dystrophin orthologues in C. elegans should be confirmed in DMD

mammalian models (e.g. the mdx mouse) before considering GDI1

as a promising therapeutic target for DMD. Furthermore, since

DGC components and GDI1 are expressed at the synapses of

hippocampus neurons [34,38] it would be extremely interesting to

test whether perturbations of dystrobrevin function may reduce

cognitive disabilities associated with mutations in GDI1 in mammals.

In summary, we developed a bioinformatics tool to predict

genetic interactions in C. elegans towards the identification of

therapeutic targets to address monogenic disorders associated with

disruptions in signaling homeostasis. Our tool uses network-based

attributes and our validation suggests that it predicts interactions

more comprehensively and with improved accuracy compared to

other tools. In addition, we experimentally confirmed the

interactions that were predicted between gdi-1 and several genes

involved in neurological functions in human. Notably, we

Figure 7. gdi-1 suppresses dys-1- and dyb-1-associated muscle
degeneration. Body-wall muscle fibers observed using polarized light
microscopy in (A) wild-type and (B) dys-1(cx18);hlh-1(cc561) animals. The
arrow indicates an abnormal/degenerated muscle cell. Scale bar, 200 mm.
(C) Muscle degeneration was assessed in wild-type (wt), dys-1(cx18);hlh-
1(cc561) and dyb-1(cx36);hlh-1(cc561) animals submitted to RNAi against
egfp (grey) or gdi-1 (green). The percentage of abnormal muscle cells in a
methanol fixed animal, estimated with polarized light microscopy, was
used to quantify muscle degeneration in the animal. Boxplots of these
percentages are shown. The total number of animals assessed across

three independent experiments is shown above each boxplot in
parentheses. The percentage of abnormal muscle cells is significantly
reduced in gdi-1(RNAi)-treated versus egfp(RNAi)-treated mutant animals
as indicated by the P values shown at the top (see Methods).
doi:10.1371/journal.pone.0010624.g007
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established that perturbation of aspm-1, tra-4, unc-89, unc-96, or

dyb-1 reduces the signaling unbalance resulting from a reduction of

gdi-1 expression. We also showed that a reduction of gdi-1

expression significantly reduces muscular dystrophy in nematode

DMD models. Further studies using relevant mammalian models

are required to assess whether ASPM, MLC phosphorylation

machinery and dystrobrevin would be potent therapeutic targets

for cognitive disabilities associated with mutations in GDI1.

Similarly, further studies in mammalian models would be required

to assess whether GDI1 would be a potent therapeutic target for

DMD. In conclusion, we have developed a valuable tool that

facilitates the mapping of genetic interactions in C. elegans. Since

the conservation of pathogenic mechanisms and genetic interac-

tions between distant species is still under intense debate,

experimental validation in mammals of genetic interactions

identified in C. elegans is required to evaluate the potential of our

method to significantly streamline the therapy development

process for monogenic disorders that involve genes and signaling

pathways conserved between human and C. elegans.

Methods

The development and subsequent analysis of the genetic

interaction predictor were completed in the R v2.6 statistical

computing environment (http://www.r-project.org, [59]).

Construction of the learning set
A learning set, comprised of a positive and a negative subset,

was constructed for the training of the predictor of genetic

interactions. The positive learning set consists of 1,522 genetic

interactions identified by automated [60] or manual curation of

the literature (see Table S1). The negative learning set should

consist of pairs of non-interacting genes. Since the vast majority of

gene pairs are believed not to genetically interact [13], we built our

negative learning set from ,14,000 randomly selected gene pairs

from the set of all genes mapped to a genomic location (WormBase

release WS180, http://www.wormbase.org/). The approximate

1:10 ratio of positive to negative interactions was established to

guarantee a learning set with a thorough sampling of all gene pair

combinations (,386 million in total).

Datasets used to derive attributes
The gene expression data was obtained from [14]. We obtained

all RNAi knockdown phenotype data in WormBase release

WS141 and removed seven uninformative or redundant types,

such as ‘‘wildtype’’, ‘‘unclassified’’, ‘‘not embryonic’’ and ‘‘com-

plex phenotype.’’ Protein-protein (PP) interactions were obtained

from all C. elegans, Saccharomyces cervisiae, Drosophila melanogaster, and

Homo sapiens yeast two-hybrid datasets stored in BioGRID v2.0.37

(http://www.thebiogrid.org/) and from two additional yeast two-

hybrid datasets [15,16] that are absent from this database. We

focused on yeast two-hybrid datasets because the technique detects

an interaction with minimal influence from endogenous environ-

ments, e.g. a fly cell. We assume that two proteins do not exhibit a

PP interaction if both proteins were assayed and no interaction

was found. To create a multi-species PP interaction network, we

used the orthology mappings generated by InParanoid v1.35 [17]

(non-default parameters: score cutoff 10, in-paralog confidence

cutoff 0.025, sequence overlap cutoff 0.2) when run with protein

sequences obtained from the InParanoid dataset from June, 2006

(http://inparanoid.sbc.su.se/cgi-bin/index.cgi). Comparisons with

hand-curated orthologies for a subset of genes indicated that our

parameter settings produced orthology mappings with minimal

false positive results (data not shown). The names of the genes/

proteins described in the datasets were updated to the names used

in WormBase release WS180.

Derivation of attributes for use in the logistic regression
The co-expression attribute Exp(g, g9) is the P value derived for

the Pearson correlation of genes g and g9 across all microarray

hybridizations (conditions) relative to the empirically estimated

probability distribution of correlation for all gene pairs (i.e. a fitted

normal). Figure S4 establishes the need for this estimation due to

the lack of fit to standard models of a correlation distribution.

Correlations greater than 0.35 are statistically significant (P#0.05)

according to the estimated distribution. The co-phenotype

attribute Ph(g, g9) measures the statistical significance of the

number of shared phenotypes between the two genes via a

standard Fisher’s exact test (N = the number of phenotypes

observed for at least two genes). We defined the multi-species PP

interaction network such that nodes represent C. elegans proteins

and an edge exists between two proteins if they, or their

orthologous proteins in a species considered here, exhibit a PP

interaction according to the PP interaction dataset. The binary

interaction attribute I(g, g9) indicates whether the proteins encoded

by g and g9 exhibit a PP interaction in our multi-species PP

interaction network (Figure 2A). Similarly, the common inter-

actors attribute, CI(g, g9), considers the statistical significance of the

observed number of common PP interactors of the proteins

encoded by g and g9, in the multi-species PP interaction network

(Figure 2B). Specifically, CI(g, g9) is assigned a P value derived from

a one-tailed Fisher’s exact test (N = the number of genes encoding

proteins that are in the multi-species PP interaction network).

We defined a biological network called the PhEP network,

where two genes g and g9 are connected by an edge if and only if

the Pearson correlation of their gene expression exceeds 0.35, their

gene products exhibit a PP interaction, or their orthologues (in any

species considered here) exhibit a PP interaction (Figure 2C,D).

For a given gene, we measured how surprising it is to witness the

observed number of its neighbors (i.e. genes connected to it by one

edge) in the PhEP network labeled with a specific phenotype

identified by RNAi in C. elegans. This was measured using a one-

tailed Fisher’s exact test (N = the number of genes with some

assigned phenotype). If the derived P value is less than or equal to

0.05 for g and g9 (Figure 2C), we assign a value of 1 to a categorical

variable N(g, g9), and 0 otherwise. Similarly, if g and g9 exhibit a

phenotype that is also enriched in both their neighborhoods in the

PhEP network (Figure 2D), we assigned a value of 1 to a

categorical variable NPh(g, g9), and 0 otherwise.

Missing values for any of the derived attributes (due to missing

values in the underlying datasets) were replaced with the expected

value (i.e. the sample mean) of the attribute before training.

Model specification, training and cross-validation
The logistic regression model is of the form:

ln
p(g, g’)

1{p(g, g’)

� �
~c0zcExpExp(g, g’)

zcPhPh(g, g’)zcI I(g, g’)

zcCI CI(g, g’)zcNN(g, g’)

zcNPhNPh(g, g’)

where p(g, g9) is the probability of a genetic interaction between

genes g and g9, c0 is the learned intercept term of the model, cExp,

cPh, cI, cCI, cN, cNPh are the learned coefficients for the attributes,
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and Exp(g, g9), Ph(g, g9), I(g, g9), CI(g, g9), N(g, g9) and NPh(g, g9) are the

attribute values for g and g9.

To select the optimal logistic regression model in the context of

our learning set and attributes, we assessed models defined by

different attribute combinations and trained with different

positive:negative weight ratios. Specifically, we trained models

using each of the following weight ratios: 1:1, 1:2, 1:5, 1:10 and

1:100. If negative examples are weighted more heavily, prediction

errors on these examples result in greater penalties, and model

coefficients are fitted accordingly. Using each weight ratio, we

trained the models defined by all non-empty subsets of the

attributes (in total, 2621 = 63 models), with each of five different

folds of the learning set to avoid learning set bias. In training each

model with the iterative weighted least squares algorithm [61], we

assume that the initial fit estimated from the weighted data is

reasonably close to the optimal fit, and thus assume that the

algorithm converges to the optimal fit (with the default tolerance

and at most 50 iterations). For each fold, we define the optimal

model as the model that yielded the lowest Akaike’s Information

Criterion (AIC), a measure that considers both fit to the data and

complexity of the model. Any weight ratio that did not yield the

same optimal model for all five folds was eliminated from

consideration. For each remaining weight ratio, we computed

the mean AIC of the optimal model (across the folds). The 1:2

weight ratio yielded the lowest mean AIC and we thus selected this

ratio and the corresponding optimal model to define our genetic

interaction predictor. Therefore, within the scope of logistic

regression models defined by our attributes and trained with our

learning set and tested weight ratios, the full model that uses all six

attributes was found to be optimal based on our convergence

assumptions and the AIC (Table S7).

Leave-one-out cross-validation of the full model was performed to

obtain true and false positive rates for ‘‘unseen’’ data (Figure S1). The

final predictor was trained on the full learning set using the tuned

weighting and all six attributes. If a pair of genes has a prediction

score $0.85, the two genes are predicted to genetically interact.

Logistic regression is a technique that does not take into account

the obvious dependencies between the attributes. To test the

strength of dependencies between attributes we experimented with

graphical models, specifically by using a software package for

learning Bayesian networks (i.e. the deal package v1.2-30) [62]. The

learning set used to train the logistic model was also used to train a

Bayesian network. The resulting network exhibits several depen-

dencies between the attributes (Figure S5), many of which are

expected since some attributes are derived from the same underlying

datasets. Although predictive accuracy might be improved if these

attribute dependencies were accounted for, doing so would require a

more sophisticated predictive model that relies on an abundance of

data to accurately quantify the dependencies. Due to the paucity of

attribute data for some genes (e.g. a gene may only have data for the

Exp and N attributes), such a predictive model trained with the

current datasets would not necessarily be advantageous over a

simpler model (such as a logistic regression model).

Predictions from other genetic interaction predictors
The functional interactions predicted by the Lee et al. method were

obtained from the WormNet v1 core set [9]. The genetic interactions

predicted by the Zhong and Sternberg method were downloaded in

June, 2006 [10]. The names of the genes in these prediction datasets

were updated to the names used in WormBase release WS180.

Quantifying the information available for a gene
In quantifying the information available for a gene, we took into

account the usefulness of particular types of data for the prediction

of genetic interactions. Specifically, if there is sufficient data to

compute the value of a predictive attribute (e.g. Exp) for any pair

involving a particular gene, the usefulness of the value is quantified

by the magnitude of the weight of the attribute in the predictive

model (e.g. |cExp|). The total quantity of information available for

a gene is thus defined as the sum of the magnitudes of weights

corresponding to attributes for which values can be computed.

The quantities were scaled to be in [0,1] via division by the

maximum quantity achievable. The subsequent relative quantities

allow for comparisons between predictors that use different

attributes (see Figure S3).

Analysis of the predicted genetic interaction network
with pathway annotations

The biological validity of the predicted genetic interaction

network was assessed in silico by computing the shortest path

distance between genes annotated to the same pathway. We

defined the predicted network such that a node exists for each C.

elegans gene and an edge exists between two genes if they are

predicted to genetically interact. We also defined 100K random-

ized networks such that each randomized network is identical to

the predicted network, except that the nodes are assigned a

random permutation of the gene labels. C. elegans pathway

annotations derived from human were obtained from KEGG

release 44 (http://www.genome.jp/kegg/) and signaling pathway

annotations derived directly from C. elegans were obtained from

[63] (Table S3). Using the predicted network and each

randomized network, the shortest path distance (i.e. the minimum

number of edges to traverse in a given network to get from one

gene to the other) was computed for every pairing of genes

annotated to the same pathway. For each network, we

subsequently computed di, the number of pathway gene pairs

with shortest path distance = i, for i = 1,2. d1 represents the number

of within-pathway interactions based on the given set of pathway

annotations (Figure 3A). d2 represents the number of pathway gene

pairs that are not connected directly, but share $1 neighbor in the

network, suggesting within- or between-pathway interactions

(Figure 3B). Let di,pred represent di of the predicted network. The

significance of di,pred was estimated with a permutation P

value~(xz1)=(Nz1) [64], where x is the number of randomized

networks with di$di,pred, and N is the total number of randomized

networks. We further examined pathway gene pairs with shortest

path distance = 2 in the predicted network. Specifically, we

computed the percentage of these pairs that satisfy the following

criterion: the given pair has $1 shared neighbor that is not

annotated to any of the pathways associated with either member of

the pair. The pairs that satisfy this criterion likely exhibit predicted

within-pathway interactions with an unknown member of the

pathway of the pair, or predicted between-pathway interactions.

Nematode strains
Nematodes were grown on nematode growth media (NGM;

Brenner, 1974) at 20uC. Bristol strain N2 animals were used as wild-

type animals. Nematode strains containing the following alleles were

retrieved from the Caenorhabditis Genetic Center (CGC), which is funded by

the NIH National Center for Research Resources (NCRR): rrf-1

(pk1417), ppw-1 (pk2505), dyb-1 (cx36), unc-89 (e1460), unc-89 (st85), unc-

89 (ok1116), unc-89 (ok1659), unc-96 (su151), tra-4 (ok1636), mel-11

(sb56), trp-2 (gk298) (WormBase: WBGene00006615), smo-1 (ok359)

(WormBase: WBGene00004888), aspm-1 (ok1208), lin-36 (n766)

(WormBase: WBGene00003021), F42G8.10 (ok1199) (WormBase:

WBGene00018361), tag-163 (ok644) (WormBase: WBGene00006508),

F54D5.4 (ok2046) (WormBase: WBGene00010050), dys-1 (cx18), hlh-1

(cc561) (see Table S8).
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RNAi and drug treatment
Blebbistatin (100 mM) and ML-7 (50 mM) were incorporated in

NGM agar before plate pouring. The drug-containing plates were

used throughout RNAi treatment. The pL4440-dest-gdi-1 con-

struct, used to submit animals to RNAi against gdi-1, was kindly

provided by Dr Marc Vidal, Dana-Farber Cancer Institute. The

pL4440-dest-egfp construct was generated as described previously

[65]. These constructs were transformed into HT115 (DE3) strains

[66] and the animals were submitted to RNAi treatment as

previously described [67]. To score the sterility phenotype (Ste),

synchronized L1 larvae were fed RNAi-expressing bacteria for 72h

at 18uC. Three young adults were then transferred to fresh plates

seeded with RNAi-expressing bacteria and they were allowed to

lay eggs for 48h at 18uC. The progeny were counted and sterility

was measured as detailed in the Epistasis statistics section. The

penetrances of the endomitotic oocyte (Emo) and gonad

morphogenesis defect (Gon) phenotypes were scored after DAPI

staining the RNAi-treated animals fixed with methanol. Emo and

Gon phenotypes were scored by fluorescence microscopy using a

Leica DM5500 microscope equipped with a 636 oil-immersion

objective and using regular sets of filters for excitation at an ultra-

violet wavelength. An animal was considered as expressing the

Emo phenotype if at least one endomitotic oocyte was present in

the gonad. An animal was considered as expressing the Gon

phenotype if its gonad was significantly shorter than gonads

observed in N2 animals. The position of the gonad turn with

respect to the anterior and posterior intestine nuclei was used to

measure the relative length of a gonad. Muscle degeneration was

observed in methanol-fixed nematodes upon polarized-light

illumination, using a Leica DM5500 microscope equipped with

a 1006 oil-immersion objective. Only the centermost 20 cells of

the two muscle quadrants facing the objective were observed to

quantify the abnormal cells. Fluorescent microscopy pictures were

captured using the Leica DFC350FX R2 camera and the Leica

AF6000 software series. Polarized light microscopy pictures were

captured from a Zeiss Axioimager Z1 equipped with a 636 oil-

immersion objective and an Axiocam HRM camera controlled by

the Axiovision software v4.5. The potential modulation of RNAi

efficiency in the different backgrounds tested, and the relative

contribution of balancers to identified genetic interactions, were

examined to confirm the validity of our results (see Text S1 and

Figure S6).

Measurement of sheath cell contraction
Sheath cell contraction rates were scored in anesthetized

animals (0.1% tricaine and 0.01% tetramisole in M9 buffer) as

previously described [68]. Basal contractions were estimated by

monitoring lateral sheath displacement [69] upon DIC illumina-

tion at room temperature, using a Leica DM5500 microscope

equipped with a 636 oil-immersion objective.

Epistasis statistics
Let wx M [0,1] represent the level of a particular phenotype

expressed by genetic population x. Conversely, let Fx~1{wx

represent the ‘‘fitness’’ of x with respect to the phenotype, e.g. a

maximal value of 1 indicates that the phenotypic defects are

absent in all animals of type x. Let wm, wgdi-1, wm/gdi-1 and wwt

represent the level of the phenotype expressed by animals with

mutation(s) in (predicted interactor) gene m, wild-type animals

submitted to gdi-1(RNAi), m-mutant animals submitted to gdi-

1(RNAi) and wild-type animals, respectively. Three different

models were used to quantify epistatic effects through an epistasis

coefficient e. The models use values that have been normalized to

wild-type levels, i.e. w’x~wx{wwt and F ’x~Fx=Fwt. Under the

minimum model [70]:

e~(Fm=gdi{1{Fwt){ min (Fm{Fwt,Fgdi{1{Fwt)

~ max (w’m,w’gdi{1){w’m=gdi{1

Under the additive model [25]:

e~(w’mzw’gdi{1){w’m=gdi{1

Under the multiplicative model [25]:

e~F ’m=gdi{1{F ’m:F ’gdi{1

Within each model, a function of the phenotypic level expressed by

the doubly-altered population (e.g. wm/gdi-1) is compared to some

expectation of the level, given what is known about the populations

with the single-gene perturbations. This expectation is computed

by a model-specific function, f(wm, wgdi-1, wwt) M [0,1]. For example,

under the additive model, f (wm,wgdi{1,wwt)~w’mzw’gdi{1 if

w’mzw’gdi{1ƒ1, otherwise f (wm,wgid{1,wwt)~1.

If e,0, there is a synergistic interaction between m and gdi-1. If

e.0, there is an antagonistic interaction. We also identified genes

that, when mutated, specifically suppress the phenotypic effects of

gdi-1(RNAi) (observed in wild-type animals). This was achieved by

statistically testing if w’gdi{1{w’m=gdi{1w0. See Text S1 for details

regarding all statistical tests performed, including details about our

normality assumption (Figure S7).

The Ste level expressed by a genetic population x was defined as

wx~1{Bx=Bwt, where Bx and Bwt are the brood size measure-

ments for x and wild-type animals, respectively. The Gon and Emo

levels were defined as wx~nx=nx,total , where nx is the number of x

animals observed to have the phenotype and nx,total is the total

number of x animals examined.

Statistic for the suppression of muscle degeneration
Let wx~yx=nx represent the level of muscle degeneration

expressed by an animal in genetic population x, where yx is the

number of abnormal muscle cells and nx is the total number of

muscle cells observed in the animal. In each independent

experiment, at least 20 animals were observed for each

genetic population. We statistically tested the hypothesis that

wm/gdi-1,wm, i.e. gdi-1(RNAi) treatment suppresses the muscle

degeneration observed in m-mutant animals. Specifically, the

hypothesis was tested using the Mann-Whitney test and a P

value was obtained for each independent experiment. The P

values were combined to compute an overall P value using the

weighted-Z method [71] (N = 3). The weight of each indepen-

dent experiment was the total number of animals observed

(i.e. the number of gdi-1(RNAi) treated m-mutant animals

observed plus the number of control-treated m-mutant animals

observed).

Supporting Information

Text S1 Supporting Methods.

Found at: doi:10.1371/journal.pone.0010624.s001 (0.05 MB

DOC)

Figure S1 Receiver-operating-characteristic curve of the genetic

interaction predictor. The error rates were estimated with leave-

one-out cross-validation. The threshold associated with each point

(i.e. a pair of rates) is indicated in red text. Only the portion of the

curve with the smallest false positive rates is shown since, in
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practice, having fewer false positives instead of greater sensitivity is

more important for laborious experimental validation.

Found at: doi:10.1371/journal.pone.0010624.s002 (0.08 MB

TIF)

Figure S2 Comparison of genome-wide genetic interactions

predicted by different approaches. (A) Venn diagrams of

predicted interactions from Zhong and Sternberg [10], Lee

et al. [9] and this study. Left, interactions between any C. elegans

genes. Right, interactions between C. elegans genes with human

orthologues. Our approach predicts many novel interactions and

about 85% of them are between C. elegans genes without human

orthologues. (B) Comparison of the mean number of predicted

interactions per gene and the percentage of genes with predicted

interactions (i.e. the percentage of the genome covered by the set

of predicted interactions), between two studies. The comparisons

are made in the context of mental retardation and synaptic

plasticity (MRSP) genes only and in the genome-wide context

(GW). (C) Comparison of the number of human genes whose C.

elegans orthologues have predicted interactions, stratified by gene

characterization index (see Text S1). Our approach predicts

novel interactions for genes orthologous to poorly-characterized

human genes.

Found at: doi:10.1371/journal.pone.0010624.s003 (0.42 MB

TIF)

Figure S3 The relationship between the quantity of information

available for a gene and the number of predicted genetic

interactions. The quantity of information available for a gene is

a measure that takes into account the fact that some gene pair

attributes are more informative than others for predicting genetic

interactions. See the Methods for the computation of the total

quantity of information for each gene. MRSP: mental retardation

and synaptic plasticity; ZS: Zhong and Sternberg [10]. (A) The

total quantity of information available for MRSP genes with the

ZS approach and with our approach. The three sets of boxplots

correspond to MRSP genes with predicted interactions in this

study only, in the ZS study only and in neither study, respectively.

(B) Types and total quantity of information available for MRSP

genes with the ZS approach and with our approach. Each column

corresponds to a gene and a black entry indicates that there is

information for the gene of the type specified (to the left) by the

row (except for the row labeled ‘‘Total quantity of information’’).

The ZS approach separates the information from three organisms:

Saccharomyces cerevisiae (Sc), Drosophila melanogaster (Dm) and Caenor-

habditis elegans (Ce). The information types (i.e. attributes) of this

study are described in the Results and Methods. For each

approach, there is also a row indicating the total quantity of

information (scaled between 0 and 1), where white and black

indicate zero and maximal information, respectively. The

heatmap in the middle illustrates the number of interactions

predicted for each gene by the different approaches, where a

greater intensity of red corresponds to a greater number. gdi-1 is

highlighted in green.

Found at: doi:10.1371/journal.pone.0010624.s004 (1.22 MB

TIF)

Figure S4 Different methods for estimating the P value

associated with a Pearson correlation value measuring the

coexpression of two genes in the Kim et al. dataset [14]. The

grey bars indicate the empirical P values associated with bins of

correlation values. The t-distribution (blue line) and Fisher’s Z

transform (red line) methods do not produce P values that match

the empirical trend closely. In contrast, the fitted normal

distribution approximates the empirical distribution well (green

line).

Found at: doi:10.1371/journal.pone.0010624.s005 (0.14 MB TIF)

Figure S5 The dependencies between the predictive gene pair

attributes as defined by a learned Bayesian network. See the

Methods for how the Bayesian network was derived.

Found at: doi:10.1371/journal.pone.0010624.s006 (0.13 MB

TIF)

Figure S6 The interaction of gdi-1 with unbalanced heterozygotes

of aspm-1(ok1208). The mean penetrance/expressivity of the Emo

phenotype in wild-type (wt) or unbalanced aspm-1(ok1208) hetero-

zygotes (aspm-1(ok1208) +/2), submitted to either egfp or gdi-1

RNAi, is shown. The error bars correspond to 6 one standard

error over three independent experiments. (*) indicates a statistical

difference between wt and aspm-1(ok1208) +/2 animals submitted

to gdi-1(RNAi) (P#0.05, see Methods).

Found at: doi:10.1371/journal.pone.0010624.s007 (0.08 MB

TIF)

Figure S7 Validity of the normality assumption for the

application of Student’s t-tests to phenotype measurement data.

The bars represent the empirical distribution of scaled phenotype

values induced by gdi-1(RNAi) treatment (see Text S1). Each red

line is a fitted normal distribution.

Found at: doi:10.1371/journal.pone.0010624.s008 (0.11 MB

TIF)

Table S1 Genetic interactions hand-curated from the literature.

Found at: doi:10.1371/journal.pone.0010624.s009 (0.05 MB

XLS)

Table S2 Performance of genetic interaction predictors.

Found at: doi:10.1371/journal.pone.0010624.s010 (0.02 MB

XLS)

Table S3 Signaling pathway genes curated from the C. elegans

literature.

Found at: doi:10.1371/journal.pone.0010624.s011 (0.05 MB

XLS)

Table S4 Curated set of mental retardation and synaptic

plasticity genes and their C. elegans orthologues (204 genes).

Found at: doi:10.1371/journal.pone.0010624.s012 (0.04 MB

XLS)

Table S5 Epistasis coefficients of experimentally tested genetic

interactions.

Found at: doi:10.1371/journal.pone.0010624.s013 (0.03 MB

XLS)

Table S6 Epistasis P values of experimentally tested genetic

interactions.

Found at: doi:10.1371/journal.pone.0010624.s014 (0.02 MB

XLS)

Table S7 AIC values of 63 logistic regression models that use

different combinations of the gene pair attributes.

Found at: doi:10.1371/journal.pone.0010624.s015 (0.03 MB

XLS)

Table S8 Genotypes of C. elegans strains used in this study.

Found at: doi:10.1371/journal.pone.0010624.s016 (0.02 MB

XLS)
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