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Abstract

In developing liposomes for in vivo use, it is important to design the liposomes to have optimal in vivo kinetics, and it is also
necessary to identify optimal high-throughput production conditions for these liposomes. Previous work has not definitively
established the general relationship between liposomes’ configuration and composition, and their in vivo kinetics. Also, no
straightforward method exists to calculate optimal liposome high-throughput production conditions for specific liposome
compositions. This work presents first-principles quantitative correlations describing liposomes’ in vivo drug leakage and
vascular mass transfer kinetics. This work further presents a simple quantitative model relating specific liposome
compositions to ideal high-throughput production parameters. The results have implications for the identification of
promising liposome compositions via high-throughput screening methodologies, as well as the design and optimization of
high-throughput reactors for liposome production.
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Introduction

Many drugs are attendant with significant systemic risks and

side effects. To allow these drugs to achieve the treatment ideality

of maximal efficacy and maximal specificity, it is necessary to use a

targeted drug carrier to deliver and release the drugs specifically at

the right time and at the right location [1].

Closed phospholipid vesicles (i.e., liposomes) are widely used as

targeted drug carriers to deliver and release drugs in appropriate

amounts at specific times and specific locations in the body.

Existing liposomes exhibit undesirable in vivo characteristics

including intrinsic destabilization, drug leakage, immunogenicity,

and short plasma half-life [2]. Hence, research toward developing

better liposomes is of significant importance.

Liposomes with optimal in vivo characteristics can be developed

with knowledge of potential liposome compositions’ in vivo kinetics.

The in vivo kinetics of some liposome compositions have been

characterized by experimental studies [3]. However, for rapid high-

throughput screening of potential liposome compositions, it would

be ideal to have broadly valid correlations allowing the prediction of

liposomes’ in vivo kinetics for many different liposome compositions.

Also, it is important to identify optimal high-throughput

industrial liposome production conditions for liposome composi-

tions of interest. While efficient industrial production conditions

have been experimentally identified (mostly through trial and

error) for some liposome compositions [3], it would be ideal to

have a broadly valid quantitative model allowing the prediction of

optimal production conditions for many different liposome

compositions.

This work presents generally valid quantitative models describ-

ing liposomes’ high-throughput production and predicting lipo-

somes’ in vivo drug leakage and vascular mass transfer kinetics for

many liposome compositions.

Results

Encapsulated drug leakage from multilamellar liposome
vesicles (MLVs)

Drug leakage from a widely used type of liposome, multi-

lamellar liposomes (MLVs), is inherently minimized relative to

drug leakage from one-layer, or unilamellar, liposomes due to

MLVs’ basic configuration (Figure 1 – artist’s rendition of a cross

section of a spherically symmetric, homogeneous, drug-encapsu-

lating MLV). Via the general species conservation equation [4],

drug leakage over time from a spherically symmetric, homoge-

neous, drug-encapsulating MLV can be described by the following

series:
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C = concentration of a given drug in a MLV

C0 = initial (immediate post-loading) concentration of the drug

in the MLV

D = diffusivity of the drug in the MLV

kC = mass transfer coefficient of the drug

R = radius of the MLV

t = elapsed time

Here, the term ‘‘homogeneous’’ is used to refer to the drug

particles being evenly mixed with the lipid molecules throughout

the MLV.

Vascular mass transfer
A critically important issue associated with using liposomes in

biological systems is the question of how the liposomes migrate in

the bloodstream (Figure 2). From the general linear momentum

conservation equation [4]–[6], the mass transfer of liposomes (of

any type) in a blood vessel as a function of axial position can be

described as:
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Cb = bulk liposome concentration in a vessel

Co = initial (inlet) liposome concentration

kc = mass transfer coefficient of the liposomes in the bloodstream

km = mass transfer coefficient of the liposomes in the vessel wall

kt = mass transfer coefficient of the liposomes in the tissue space

= dynamic pressure in the vessel

R = radius of the blood vessel

m = dynamic viscosity of the blood

U = mean velocity of fluid flow in the vessel

High-throughput continuous tubular reactor (CTR)
production rate

A highly efficient method for producing large quantities of drug-

encapsulating liposomes rapidly comprises using a continuous flow

reactor that can be run indefinitely as long as adequate quantities

of reagents are supplied [7]. For these CTRs, a mole balance

equation [8] can be used to develop a set of differential equations

governing the liposome synthesis reaction. For example, for drug-

encapsulating liposomes with targeting moieties (e.g., liposome-

surface receptors), the synthesis reaction can be represented as

follows, based on experimental measurements [9]–[11] of typical

numbers of targeting moieties/receptors, drug particles, and lipid

molecules per liposome (Figure 3):
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80000 Lipid (LIP) (s)?Liposome (DEL) (l)

Assuming pseudo-second order kinetics with a large excess of lipid

(LIP) [9]–[11], the governing differential equations are:
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where:

d = CTR diameter

k = reaction rate coefficient

u = feed flow rate in the CTR

Discussion

This work presents first principles quantitative correlations

characterizing the core rate processes associated with the high-

throughput production and in vivo kinetics of (drug-encapsulating)

Figure 1. Encapsulated drug leakage from a MLV (schematic). A
homogeneous, spherically symmetric, drug-encapsulating MLV.
doi:10.1371/journal.pone.0010280.g001

Figure 2. Vascular mass transfer of liposomes (schematic).
Migration of liposomes in a blood vessel. Applicable mass transfer
coefficients are shown.
doi:10.1371/journal.pone.0010280.g002
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liposomes. Specifically, the models describe liposomes’ encapsu-

lated drug leakage kinetics, vascular mass transfer kinetics and

high-throughput production kinetics.

The models can be used to facilitate the high-throughput

screening of drug-encapsulating liposome compositions, configu-

rations, and/or synthesis methods, with modeling data output

employed as a preliminary rapid and low-cost filter in evaluating

many different drug-encapsulating liposome compositions, config-

urations, and synthesis procedures. For example, the models could

be used to screen different drugs to see which drugs, based on

known biophysical properties, could potentially be carried and

delivered effectively by a MLV. Also, the models could be used to

screen different lipid modifications to see what kinds of

modifications (based on known biophysical properties) might

minimize undesired leakage of a particular drug. Other applica-

tions are also possible.

Compositions, configurations, or synthesis methods deemed to

be promising based on the modeling output could then be

further tested and characterized experimentally. Such a

screening methodology is particularly important because past

efforts to identify effective novel compositions, configurations, or

synthesis methods have been limited due to an almost exclusive

reliance on direct experimental testing. High-throughput screen-

ing using these models hence provides a way to test many more

compositions, configurations, and synthesis methods (and

identify more promising candidates) than experimental testing

alone.

Further work may be performed to test and adapt these

models for specific experimental conditions in practice. Also,

future studies could extend these models to cover additional

classes of liposomes and to other biologically relevant micro- and

nanoparticles.

Methods

Species conservation

LCi
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Where:

Ci = molar concentration of species i

Ni = molar flux of species i (using fixed coordinates)

Ri = net rate of formation of species i per unit volume

Assume i is a minor component in a pseudobinary, constant

density, constant diffusivity liquid solution. Then:
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For a spherically symmetric, homogeneous drug-encapsulating

MLV:
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Where:

C = concentration of the drug within the MLV

D = diffusivity of the drug within the MLV

t = elapsed time

Figure 3. Production of liposomes in a CTR. Predicted concentrations of reagents and drug-encapsulating liposomes as a function of reactor
position. Initial conditions used: [TR] = 500 arbitrary units (a.u.); [DRG] = 50000 a.u.; [DEL] = 0 a.u.
doi:10.1371/journal.pone.0010280.g003
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Boundary conditions are:
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kC = mass transfer coefficient of the drug within the MLV
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Which can be simplified upon inspection to:
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Therefore, the final solution is:
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Linear momentum conservation
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For a constant viscosity, constant density, incompressible Newto-

nian fluid:
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= dynamic pressure

Assume fully developed unidirectional flow. Then:
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Further assume steady axisymmetric flow. Then:
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Integrate and apply symmetry condition at r = 0:
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Integrate again and apply no-slip condition at r = R (R = vessel

radius):
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Per species conservation:
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Assume large Péclet number (axial diffusion negligible). Then:
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Where:

C = liposome concentration within the vessel

Integrate over r:
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Where:

Nr = liposome flux

Also:
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A = cross-sectional area of the vessel

Apply the following correlations:
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Where:

Ct = liposome concentration in the tissue at the surface of the

outer vessel wall

Then:
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CTR mole balance

dFj
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Assume low feed flow rate. Then:

dCj

dL
~

rj

u

Where:

Cj = concentration of species j

L = position in reactor

u = feed flow rate
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Assume constant reactor radius and constant flow. Then:
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Where:

A = area of reactor

d = diameter of reactor

Nj = number of moles of species j

r = radius of reactor

V = volume of reactor

Assume pseudo-second order kinetics with large excess of

deposited lipid. Use:
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Where:

d = CTR diameter

k = reaction rate coefficient

u = feed flow rate in the CTR
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