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Abstract

Background: For diagnosis of neuropsychiatric disorders, a categorical classification system is often utilized as a simple way
for conceptualizing an often complex clinical picture. This approach provides an unsatisfactory model of mental illness,
since in practice patients do not conform to these prototypical diagnostic categories. Family studies show notable familial
co-aggregation between schizophrenia and bipolar illness and between schizoaffective disorders and both bipolar disorder
and schizophrenia, revealing that mental illness does not conform to such categorical models and is likely to follow a
continuum encompassing a spectrum of behavioral symptoms.

Results and Methodology: We introduce an analytic framework to dissect the phenotypic heterogeneity present in
complex psychiatric disorders based on the conceptual paradigm of a continuum of psychosis. The approach identifies
subgroups of behavioral symptoms that are likely to be phenotypically and genetically homogenous. We have evaluated
this approach through analysis of simulated data with simulated behavioral traits and predisposing genetic factors. We also
apply this approach to a psychiatric dataset of a genome scan for schizophrenia for which extensive behavioral information
was collected for each individual patient and their families. With this approach, we identified significant evidence for linkage
among depressed individuals with two distinct symptom profiles, that is individuals with sleep disturbance symptoms with
linkage on chromosome 2q13 and also a mutually exclusive group of individuals with symptoms of concentration problems
with linkage on chromosome 2q35. In addition we identified a subset of individuals with schizophrenia defined by language
disturbances with linkage to chromosome 2p25.1 and a group of patients with a phenotype intermediate between those of
schizophrenia and schizoaffective disorder with linkage to chromosome 2p21.

Conclusions: The findings presented are novel and demonstrate the efficacy of this approach in detection of genes
underlying such complex human disorders as schizophrenia and depression.
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Introduction

Emil Kraepelin’s descriptions of psychiatric diagnoses at the

turn of the 20th century were groundbreaking and remain

influential to this day. Kraepelin’s dichotomous classification of

manic-depressive insanity (bipolar disorder) and dementia praecox

(schizophrenia) provides a simple way for conceptualizing an often

complex clinical picture and has been extended to include a

categorical classification system utilized for a vast array of

psychiatric illnesses [1]. The validity of such a categorical classifi-

cation system has been challenged, as providing an unsatisfactory

model of mental illness [2,3,4,5]. In clinical practice, many

patients with psychiatric illness do not conform to a prototypical

diagnostic category. Findings emerging from many psychiatric

research areas and in particular psychiatric genetics are not

consistent with the traditional categorical model. For example,

family studies reveal notable familial co-aggregation between

schizophrenia and bipolar illness and between schizoaffective

disorders and both bipolar disorder and schizophrenia [6,7,8].

This points to the arbitrary nature of diagnostic boundaries that do

not reflect the underlying pathology. Further, linkage and

association studies demonstrate shared genetic susceptibility in
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schizophrenia and bipolar disorder. This has been shown through

systematic whole-genome linkage analyses that have identified

linkage to common chromosomal regions [6,7], as well as

candidate gene studies whose variants were shown to be associated

with both schizophrenia and bipolar disorder [6].

Additionally, the categorical diagnostic model does not

adequately accommodate atypical or sub-clinical cases[5]. For

example, cases with a mixture of psychotic and affective symptoms

are not clearly assigned to the categories of schizophrenia, bipolar

disorder or major depression in research into treatment and

pathogenesis. Patients with schizoaffective illness represent such

cases. Indeed, to date only a single genetic linkage study has been

conducted on such a common disorder, and the findings support

the potential existence of specific susceptibility loci to psychosis

with features of both schizophrenia and bipolar disorder [9].

Compelling evidence is also observed from association studies of

cases with a mixture of features from the categorical prototypes

that likely constitute distinct yet potentially more homogeneous

disease entities. Of note are two candidate disease gene studies.

The Neuregulin 1 gene was first reported in studies of

schizophrenia within the Icelandic population [10], which also

has a risk haplotype that was found to confer the greatest risk in

bipolar disorder with mood-incongruent psychotic features and

schizophrenia with mania. This haplotype was found to have little

effect in cases without both mania and mood-incongruent

psychotic features[11]. Also, variations in the D-amino acid

oxidase activator gene have been reported to potentially increase

susceptibility to episodes of mood disorders in patients suffering

from both bipolar disorder and schizophrenia[11].

The limitations of the existing categorical model with arbitrary

diagnostic boundaries and hierarchical diagnostic definitions that

do not allow for presence of the spectrum of sub-clinical symptoms

have impeded progress in psychiatric genetic research. An

alternative model is the suggestion that psychiatric disorders are

related as part of a continuum of psychosis [3]. A continuum

would represent patients with exclusively psychotic and affective

symptoms at the extreme ends of the spectrum and those with a

mixture of these symptoms (as with schizoaffective disorder)

intermediate along this spectrum. In this view, psychiatric

disorders represent the extreme variants of personality traits in

the general population with ‘‘normal’’ including those who do not

meet standards for a medically relevant diagnosis, though do

possess symptoms of these disorders [12]. As such, direct

examination of the individual’s behavioral symptoms without

regard to diagnostic category might be more informative for

determining the relationship of disease states in different patients

and the identification of genetic factors contributing to these

behavioral symptoms. The search for such genetic factors must be

conducted at multiple phenotypic levels to allow for the possibility

of both local effects (affecting a subset of patients) and global effects

(affecting the majority of patients with the disorder).

We present an analytical framework for detection of genetic

factors contributing to specific subsets of behavioral symptoms.

This approach is a paradigm shift from traditional genetic analytic

methods, where the genetic analyses are performed within given

pre-defined diagnostic categories. In contrast, in this approach,

individuals are grouped into a hierarchical network based on

shared behavioral symptoms without regard to the diagnostic

category to which they had originally been assigned. This form of

behavioral clustering is highly flexible allowing for both separation

and overlap of clinical symptoms within diagnostic categories.

Genetic linkage and association tests can then be preformed using

the individual groupings from clustering of individuals with an

observed set of symptom profiles. In this way, the genetic

determinants underlying a specific cluster of symptoms that define

a clinical sub-phenotype may be detected. This framework was

especially developed for analysis of data from genetic studies of

neuropsychiatric disorders with a wide spectrum of clinical

symptoms. With this in mind, we applied this method to analysis

of schizophrenia data, where we demonstrate the efficacy of this

approach in refining the findings from a previous schizophrenia

genome scan [13]. As a proof of principle, we also used a

published simulated dataset from the Genetic Analysis Workshop

14 [14] that was designed to model the genetic influences on a

complex psychiatric disorder.

Materials and Methods

Ethics Statement
The recruitment and diagnosis of patients and their family

members are described elsewhere [13]. In brief, this clinical cohort

was previously examined and published using the behavioral and

genetic data utilized in this study in a genome scan of

schizophrenia [13]. As described previously [13] subjects were

recruited from five geographic centers beginning in 1985: 213

families from the United States (based at Stony Brook, N.Y.), 50

from the United Kingdom (Oxford), 33 from Italy (Milan), 11

from Chile (Santiago), and two from Belgium (Leuven). Recruit-

ment included catchment area screening, recruitment by health

professionals at hospital and outpatient facilities, and advertise-

ment through organizations which support families of mentally ill

individuals. Written consent was obtained from all participants in

the study after receiving an explanation of the study procedures

and their implications. Consent was obtained using the same

procedures in all five countries, and each center was granted

approval with Single Project Assurance status by the Office of

Protection From Research Risks of the U.S. Department of Health

and Human Services. This study was conducted according to the

principles expressed in the Declaration of Helsinki. Individual

Institutional Review Board approval from the institutions to which

the authors are affiliated were not obtained as this was a reanalysis

of a previously published de-identified dataset.

Samples and Subjects
Simulated Data (GAW14). The GAW14 data was designed

to model the genetic influences on a complex psychiatric disorder

[14]. The made-up disorder termed Kofendred Personality

Disorder (KPD) could be subcategorized into three distinct

latent phenotypes denoted as P1, P2, and P3. These latent

phenotypes were in turn defined by 12 behavioral traits labeled a-

to-l. The genetic architecture of this disorder involves four disease

gene loci D1, D2, D3, and D4 (Figure 1A). The genes interact in

an epistatic fashion together with two modifier genes, D5 and D6

(Figure 1B). For the purposes of evaluating our methodology we

assumed that the latent phenotypes were unknown, instead all

analyses were based directly on the 12 behavioral traits.

In each population the families were ascertained based on the

following criterion assuming a family contains at least one latent

phenotype in order to be considered for inclusion in the study: for

the Aipotu population at least two family members must have

either P1, P2 or P3; for the Karangar population at least two

family members must have P2 or P3; for the Danacaa population

at least two family members must have P1. In this way, 100

families were ascertained from each population, constituting a

single replicate (Replicate #1 was used in this study). A total of

300 families were analyzed, consisting of 2,077 individuals of

which 781 were affected with KPD and 1,296 were unaffected. All

genotype data for the 10 simulated chromosomes were examined,
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with 416 microsatellite markers approximately 7.5 centimorgans

(cM) apart.

Real Data (Schizophrenia). Reviewing the findings from

the genome scan, we identified those chromosomes with

moderate to significant linkage evidence[13]. The schizophrenia

study included 1,779 subjects with probands and their relatives,

who were previously examined and assigned to one of the

following major diagnostic categories: schizophrenia, major

depression, depression not otherwise specified, schizoaffective

disorder, bipolar disorder, schizotypal personality disorder,

psychosis not otherwise specified, or unaffected according to

DSM-IV criteria [13] (with some individuals having been

assigned an unknown diagnosis). Families with at least two

members with diagnosis of schizophrenia were included in the

study. In addition, 178 behavioral symptoms, as part of a

Lifetime Symptom Checklist, were scored from the combined

structured interviews, family informant information and medical

records [15] across 1,779 individuals including both patients and

family members. From these 178 behavioral symptoms, 158 were

utilized in this study comprised of 154 dichotomous traits and

four traits with four states (absent and minimally, moderately and

severely affected). We then focused our efforts in analyzing these

chromosomes in an effort to identify subsets of behavioral

symptoms that may strengthen previous linkage findings, which

were strictly based on major clinical diagnoses. To this end, 91

microsatellite markers were identified for this analysis (39 markers

on chromosome 2, 30 markers on chromosome 10 and 22

markers on chromosome 22).

Algorithm for Behavioral and Genetic Network Analysis
The hierarchical behavioral network representing phenotypic

relatedness is obtained through the use of a character-based

analysis. This approach optimizes the change of behavioral traits,

where a change is defined by the loss (1R0) or gain (0R1) of the

presence of a behavioral trait as the network is traversed from one

individual to another[16]. This scoring system allows for the

separation of clinical symptoms within diagnostic categories and

for overlap between diagnostic categories. The structure of this

network is then utilized to create increasingly more inclusive or

nested sets of individuals based on phenotypic similarity each of

which is tested via traditional linkage and/or association analyses.

As such, the nesting of individuals based on the structure of the

behavioral network allows for the identification of genetic loci that

have both local and global influences on clusters of symptoms.

Each group of individuals, defined by the nesting group derived

from the behavioral network structure, is then considered as a

candidate behavioral endophenotype (or a candidate phenotypic

model) that is adopted for subsequent genetic linkage or

association testing. If significant evidence for linkage or association

is detected for a particular behavioral endophenotype, the

symptom profile of that group can then be examined to identify

those symptoms shared by the majority of individuals. Since the

behavioral network algorithm maximizes the traits that individuals

close to one another on the network share, the majority of

individuals in a group with significant linkage or association are

likely to all share one or more behavioral traits in common. In this

way, relationships between specific endophenotypes and genotypes

may be established.

The character-based algorithm described here, which generates

a behavioral network based on individual symptoms, accounts for

phenotypic heterogeneity. The goal is to identify genetically

meaningful phenotypic groups. Since an optimal arrangement of

shared behavioral symptoms was used to build the phenotypic

network, the symptoms defining a phenotypic group of interest can

easily be determined. As phenotypic groups are analyzed at

multiple, increasingly inclusive levels, genetic loci that show

linkage or association within small or large groups of individuals

with particular symptoms can be detected (denoted as local or

global affects respectively). This provides a direct means of

detecting genetic loci that can potentially modulate behavioral

symptoms.

Specifically, our algorithm consists of four distinct components

including (1) estimating a behavioral network, (2) nesting of the

behavioral network into inclusive groups/clades[17], (3) perform-

ing genetic analysis, and (4) evaluating statistical significance of

behavioral symptoms (see Figure 2 for an outline of the algorithm,

and Figure S1 for an example of network estimation). The

statistical evaluation of behavioral symptoms involves comparing

symptom distributions of individuals belonging to a given nested

group to the symptom distribution within the diagnostic category

to which they were assigned. To this end, we adopt a likelihood-

based approach to test for significant differences in the symptom

distributions in these groups. The likelihood ratio test is formulated

as follows,

Figure 1. Genetic model and analysis of the GAW14 dataset. (A) Graphical representation of the genetic model used in the GAW14
simulation. D1-to-D4 are the major disease-causing loci while D5 and D6 are modifier loci that influence disease penetrance if the disease genotype is
present. P1-to-P3 are latent phenotypes and a-to-l are sub-clinical phenotypes both caused by the disease loci, as seen by the connecting lines. The
letters ‘‘A’’ and ‘‘B’’ associated with the latent phenotype reflect identical phenotypes, which are caused by different underlying loci or acted upon by
modifier loci. (B) Graphical representation of the network showing relationships of behavioral phenotypes in the GAW14 dataset using a majority rule
consensus tree. There are three key groupings referred to as clades 0_21, 0_4, and 0_1, which define the phenotypic groups P1, P2 and P3, and the
unaffecteds respectively. The group shaded in blue, labeled 0_21 (P1), denotes the clade containing individuals who have the latent phenotype P1.
The group in red labeled 0_4 (P2+P3) is defined in a similar manner. Finally, the group in green labeled 0_1 represents the unaffected individuals. The
high level ratchet based tree search employed in the network generation procedure will not always resolve subtle differences within clades. Given
that half of the individuals in clade 0_4 share certain traits, additional analyses within this clade were conducted to further refine the latent
phenotypes. The clade 0_4 depicts the majority rule consensus tree resulting from a tree search within this clade. The expansion of clade 0_4
demonstrates the improved resolution of this clade as well as the separation of the latent phenotypes by the presence of trait b in P3 and the
absence of trait b in P2. Specifically, the clade labeled in yellow is defined by the absence of trait b defining phenotype P2 and the clade labeled in
blue have symptom b present defining phenotype P3. (C) A histogram plot for all sub-clinical traits present in the primary clades defined in part B.
The x-axis represents the traits, each with three bars for each clade, and the y-axis represents the proportions of individuals with the presence of the
trait. Within these clades, the proportions of individuals with each of the behavioral traits were examined and found to concur with the simulated
models relating the behavioral traits with the latent phenotypes. In clade 0_21, 100% of individuals in this group have the traits b, e, f, and h, which
define the P1 latent phenotype. The clade 0_4 is not as clearly resolved, where 100% of individuals share the behavioral traits c-to-h, but only fewer
than 50% possess the traits b and k. This is because clade 0_4 defines the latent phenotypes P2 and P3 that are separated by only one behavioral trait
(b) and share 6 traits in common (c-to-h). Finally, clade 0_1 contains most of the unaffected individuals not in clades 0_4 or 0_21 and is not defined by
any one specific or subset of behavioral trait(s).
doi:10.1371/journal.pone.0009714.g001
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L~{2 ln
L H0ð Þ
L HAð Þ~{2 ln

max
P1, P2

L p1, p2~p3~p4ð Þ

max
P1, P2, P3

L p1, p2, p3~p4ð Þ :

The likelihoods for the null and alternative hypotheses (H0

and HA respectively) are straightforward, where L H0ð Þ! p1ð Þx1

1{p1ð Þn1{x1 p2ð Þx2 1{p2ð Þn2{x2 assuming p2 = p3 = p4 with cor-

responding maximum likelihood estimates of p̂p1~x1=n1;

p̂p2~ x2zx3zx4ð Þ= n2zn3zn4ð Þ. Similarly, L HAð Þ! p1ð Þx1

1{p1ð Þn1{x1 p2ð Þx2 1{p2ð Þn2{x2 1{p3ð Þn3{x3 assuming p3 = p4

with corresponding maximum likelihood estimates of p̂p1~x1=n1;

p̂p2~x2=n2 ; p̂p3~ x3zx4ð Þ= n3zn4ð Þ. Note, xi is the number of

individuals with symptoms in group i and ni is the total number of

individuals in group i. Here p is the probability of the presence of a

behavioral trait for any of four possible groupings, such that p2 is the

probability of observing a given trait in the clinical diagnostic group

that does not overlap with the clade, and p3 is that trait’s probability

in the clade of interest that does not overlap with the major

diagnostic group. p4 is the probability of trait overlap between p2 and

p3, and p1 is the probability of the trait in individuals that are not in

any of the previously noted groups. The null hypothesis (H0) assumes

that the trait probability distribution for the individuals in the clade

and the clinically defined diagnostic group (as well as the overlap) are

the same (i.e., p2 = p3 = p4). Whereas, the alternative hypothesis (HA)

assumes that the probability of the trait is not the same (i.e.,

p2?p3 = p4). For the boundary conditions where one group is

contained within the other, for HA p2 is compared to p4, while for H0

they are equal. The situation is similar in the case of no overlap

between categories where p2 and p3 would be the key parameters.

The likelihoods thus formulated are evaluated for each trait of

interest and assessed via the likelihood ratio test at the parameter’s

maximum likelihood estimates. Furthermore, for assessment of

statistical significance, empirical p-values were estimated using

10,000 permutations of the data.

Data Analysis
Generating a network from the behavioral symptoms of

individuals in the dataset involves examination of the entire ‘‘tree

space’’. This requires that all possible network configurations, which

group individuals with respect to their shared symptom profiles

must be enumerated and evaluated. This is not computationally

feasible. Instead we used a heuristic ratchet search algorithm that

has been developed for applications of exceptionally large datasets

[18]. The ratchet search algorithm assumes that there are islands of

Figure 2. Pipeline of Algorithm for Behavioral and Genetic Analysis. a Templeton, A. R., Boerwinkle, E., Sing, C. F. 1987. A cladistic analysis of
phenotypic associations with haplotypes inferred from restriction endonuclease mapping. I. Basic theory and an analysis of alcohol dehydrogenase
activity in Drosophila. Genetics 117(2):343–351. b Lipscomb DL. 1992. Parsimony, homology and the analysis of multistate characters. Cladistics (8):45–
65.
doi:10.1371/journal.pone.0009714.g002
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local optimality in the search space for the shortest network [19],

that is, a network with an arrangement of individuals and their

shared symptoms that minimize the number of character state

changes. However, such heuristic algorithms typically produce

multiple equally parsimonious trees. A solution to this problem is to

adopt a majority rule consensus tree, where a resolution among

individual nodes on the tree is arrived at if it is supported by the

majority of trees in the tree space. In this application, 51% is the

minimum allowable support. For this analysis, all parsimony based

ratchet searches were conducted using TNT v 1.0 [20]. All trees

were visualized and all symptoms were mapped onto trees using

MACCLADE v 4.08 [21]. To improve our tree resolution for a

specific clade, we performed a tree search using the SPR branch

swapping in PAUP v 4.0b10 [22].

The behavioral networks thus generated were examined and

nested groups/clades were identified for genetic analysis. Since the

datasets considered consist of family data, we performed genetic

linkage analysis using the program MILINK from the LINKAGE

software package [23,24]. Heterogeneity LOD scores (HLOD)

were computed based on an admixture likelihood model that

jointly tests for linkage and heterogeneity (i.e., the maximum

HLOD is compared with the log-likelihood under a null

hypothesis of ‘‘no linkage and no heterogeneity’’ rather than with

the maximum homogeneity LOD) [25,26]. Linkage analyses were

performed on those clades that were comprised of individuals from

at least 40 families. This clade constraint was applied, a priori,

before conducting the linkage analyses. This limited the number of

tests performed for small samples with potentially little power to

detect linkage. Of all nested groups considered, 6 clades met this

criteria in the simulated dataset and 39 clades in the schizophrenia

dataset. For each nested clade, LOD scores maximized over

multiple models were calculated with corresponding estimated

empirical p-values adjusting for the testing of multiple phenotypic

and genotypic models as well as multiple marker loci. LOD scores

were calculated under models of both homogeneity (LOD) and

heterogeneity (HLOD)[26]. Four genetic models were considered

including (1) a fully penetrant dominant model (Dom-1) and

disease allele frequency of 0.01, (2) fully penetrant recessive model

(Rec-1) and disease allele frequency of 0.09, (3) a dominant model

with 55% penetrance (Dom-2) and phenocopy rate of 0.0005, and

disease allele frequency of 0.01, and (4) a recessive model with

55% penetrance (Rec-2), phenocopy rate of 0.0005, and disease

allele frequency of 0.09. The first two models (Dom-1 and Rec-1),

though the simplest and perhaps overly optimistic, were chosen

because they provide the greatest power to detect linkage [27].

The latter two models (Dom-2 and Rec-2) were based on a

previously published analysis of this schizophrenia dataset[28]. In

the absence of any knowledge regarding the mode of inheritance

of the disease, as is typically the case for complex diseases,

application of a limited set of simple genetic models have been

shown to work well when testing for linkage [29].

To account for multiple testing, we estimated empirical p

values, allowing for multiple phenotypic and genetic models, as

well as multiple marker loci tested. To this end, we randomly

assigned genotypes to the founders within each family while

conditioning on the observed allele frequency and intermarker

distances in the data and then mating individuals within families

according to the pedigree structure using the program SIMU-

LATE [30]. In this way, 100 randomized replicates of the data

were generated. These replicates were used to estimate both the

model-based and the global empirical p-values. The model-based

p value (pM) is evaluated by recording the number of times a

maximum LOD score from a replicate exceeds the maximum

LOD score from that of the observed data, across all genetic

models within each clade (phenotypic model) and therefore

corrects for the testing of multiple genetic models and marker

loci tested for a particular phenotypic model. The global p value

(pG) is calculated by making comparisons to the maximum LOD

scores from randomized replicates across all genotypic and

phenotypic models (clades) and marker loci tested. This approach

accounts for multiple testing of all combinations of genetic-

phenotypic models as well as genetic markers tested.

Results

Simulated Data (GAW14)
Behavioral traits from all family members were analyzed to

generate a behavioral network. The network correctly grouped the

three latent phenotypes, as shown in Figure 1C. Within these

groups, referred to as clades, the proportions of individuals with

each of the behavioral traits were examined and found to concur

with the simulated models relating the behavioral traits with the

latent phenotypes (Figure 1C). Furthermore, genetic linkage

analysis of these key clades identified the major disease loci

contributing to KPD. In contrast to the findings observed from

conducting a traditional genome scan (where KPD is used as the

major diagnosis for defining affectedness), the observed linkage

signals from this analysis were more significant (with the exception

of one locus), and combinations of loci contributing to specific

latent phenotypes were identified (Table S2). This analysis

indicates that our algorithm is able to identify the genetic factors

underlying each of the latent phenotypes. Indeed, this degree of

resolution in detecting the contribution of genetic loci to specific

sub-phenotypes in a complex trait model is not attainable using

existing approaches.

Real Data (Schizophrenia)
Analysis of schizophrenia samples identified four distinct

behavioral groups (clades) with corresponding evidence for genetic

linkage. The salient clinical features of these groups were similar to

major depression and schizophrenia with two groups resembling

‘‘depression’’ (clades 6_4 and 4_28) and two ‘‘schizophrenia’’ (clades

6_6 and 6_1). These clades can be represented in a behavioral

network (Figure 3). In this network representation, the most

inclusive nesting level contains two clades (8_0 and 8_1) that

encompass the four clades noted above, where these clades

become smaller and less inclusive as the network is traversed from

left to right (Figure 3). In this way, individuals with shared

behavioral symptoms are grouped through successive nesting

levels, in that specific symptom(s) are shown to define specific

clades (Figure 3). The significance of these specific symptom

profiles was further evaluated (Figure 4). Those behavioral

symptoms that were observed in .70% of the individuals within

each clade were identified, and the relative proportion of these

symptoms were compared to the assigned diagnostic categories.

Specifically, those symptoms that occur in a significantly greater

number of individuals in the clade under consideration were

compared to the diagnostic category (of e.g., depression or

schizophrenia) to which the majority of the individuals in the

clade were assigned. In this way, statistically significant symptom

profiles were identified that characterize each clade (Figure 4).

The depression group depression6_4 is characterized by the

symptom ‘‘difficulty concentrating’’ (Figure 4), since the majority

of individuals belonging to this clade share this symptom. In

contrast, the second clade, depression4_28 is characterized by a

spectrum of symptoms, that include ‘‘trouble getting to sleep’’,

‘‘trouble staying asleep’’ and ‘‘early morning wakening’’, and

‘‘severely poor adaptation to school with poor scholastic perfor-
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mance’’. Such symptoms appear in significantly greater proportions

of individuals in these clades than those with the assigned diagnosis

of major depression (Figure 4). Further, these individuals belong to

mutually exclusive groups accounting for 83 of the 139 patients with

major depression in the total dataset (Table 1), identifying two

depression sub-phenotypes with distinct symptom profiles.

Linkage analysis of these depression clades provided significant

evidence for linkage on chromosome 2 (Table 1). Individuals with

behavioral symptoms in each of the depression groups were

designated as affected and their family members who did not share

these defining symptoms were designated as unaffected for

consideration in the linkage analyses. We observed significant

linkage signal for the depression6_4 clade with loss of concentration

as the defining symptom on chromosome 2q35 (heterogeneity

LOD score HLOD = 4.07 at marker D2S2248). We also observed

suggestive evidence for linkage on 2q13 for the second

depression4_28 clade (HLOD of 2.86), where the dominating

symptoms were those of sleep disturbances. Comparatively,

analysis of families in the total dataset using the diagnosis of

major depression to define affectedness yielded lower linkage

signals. In fact, the maximal linkage signal overlapped with the

same chromosomal region identified by the depression4_28 clade,

with a lower score (HLOD = 2.6 with ’alpha = 1 at marker

D2S160; Figure S2). The next highest linkage signal was 5

centiMorgans (cM) away from our strongest finding with the

depression6_4 clade with a substantially lower LOD score

(HLOD = 2.1 and alpha = 0.45 at marker D2S126; Figure S2).

Taken together, these results may indicate the presence of two

distinct candidate loci influencing the symptoms defining these two

groups, since the clades contain two mutually exclusive groups of

individuals with potentially stronger, more homogeneous signal

resulting from such refinement of phenotypes.

The schizophrenia groups also revealed intriguing symptom

profiles. The schizophrenia6_6 clade was characterized by language

disorder symptoms such as circumstantial speech and excess

details, and aggressive and violent tendencies (Figure 4). The

schizophrenia6_1 clade was composed mainly of individuals with the

major diagnoses of schizophrenia or schizoaffective disorder with

symptoms including loss of concentration, pressure of speech, low

mood, suicidal ideation and psychomotor retardation (Figure 4).

Individuals belonging to this clade have symptoms more

characteristic of those with the diagnosis of schizoaffective disorder

even though the majority of these individuals had the diagnosis of

schizophrenia (56% schizophrenia vs. 32% schizoaffective). This

group is enriched with language disorder and hallucination

symptoms resembling schizophrenia and depressive symptoms

resembling schizoaffective disorder. This is a clear demonstration

of the overlap between and difficulty in separating these two so

called clinically distinct diagnostic categories.

Linkage analysis of these schizophrenia clades provided

suggestive evidence for linkage (Table 1). We observed a novel

linkage finding with schizophrenia6_6 clade on chromosome 2p25

(HLOD of 2.19 and alpha = 0.66 proximal to marker D2S168).

This linkage peak is approximately 66 cM from the peak LOD

score of 2.99 reported previously [13] from linkage analysis of the

same samples with the diagnosis of schizophrenia or schizoaffec-

tive disorder. Linkage analysis with the schizophrenia only

diagnosis resulted in substantial improvement of the LOD score

rising to 5.13 in the same region when only those with

schizophrenia were considered as affected [31]. The analysis of

the schizophrenia6_1 clade yielded maximal linkage signal on

chromosome 2p21 (HLOD of 2.42 and alpha = 1 at marker

D2S2298; no evidence for linkage was observed at this locus in the

comparative analysis with diagnosis of schizophrenia or schizoaf-

fective disorder for affectedness (Table 1). These findings are

unique to each schizophrenia clade with a relative distance of

19 cM between the most significant loci from each clade,

underscoring our ability to detect potential linkage to distinct

genetic regions due to the refinement in the phenotypic definitions.

Finally and most importantly, the present study also illustrates

that behavioral symptoms follow a continuum of psychosis and

extend into normal personality traits. This is best illustrated by clade

Figure 3. Nested structure of the network showing only the five clades that exhibit significant findings from the schizophrenia
dataset. From left to right are the most to least inclusive nesting levels. The most inclusive nesting level, 8, divides the tree into three parts, clades
8_0, 8_1 and 8_2. The five clades found to have suggestive to significant linkage (4_28, 5_15, 6_1, 6_4, 6_6) are shaded with colors that are
consistently used to represent them in the text. More inclusive nesting levels that encompass these five clades are also shown; however, nesting
levels below level 8 that have no significant linkage findings are not shown. Clades with individuals who have a greater proportion of affective
symptoms are grouped more closely together (4_28, 6_4). The clade with a greater proportion of positive symptoms typical of schizophrenia is
grouped by itself (6_6), while the clade with both affective and positive symptoms is grouped between the two (6_1), and the clade with individuals
with minimal symptoms is grouped by itself (5_15).
doi:10.1371/journal.pone.0009714.g003

Behavioral Symptom Genetics

PLoS ONE | www.plosone.org 7 March 2010 | Volume 5 | Issue 3 | e9714



Behavioral Symptom Genetics

PLoS ONE | www.plosone.org 8 March 2010 | Volume 5 | Issue 3 | e9714



5_15, which has no defining symptom profile and encompasses a

collection of individuals from many diagnostic categories with the

largest represented group being the unaffecteds. Many of these

individuals have very few symptoms, which is why they cluster more

closely with the unaffected individuals. However, closer examina-

tion of their symptom distribution revealed that approximately 57%

of all individuals carry at least one symptom of a personality

disorder (data not shown), including paranoid, schizoid, schizotypal

and borderline traits (with significant evidence for linkage, HLOD

of 3.4 proximal to D2S391 approximately 4 cM from the peak

LOD in schizophrenia6_1 clade see Table S1). This result captures

the notion of a continuum of psychosis. As expected, unaffected

family members of the mentally ill often share some symptoms with

their affected family members.

Discussion

In this study, we have developed an analytical framework for the

characterization of behavioral symptoms with shared genetic

contribution. This method is a departure from the traditional

approaches to analysis of neuropsychiatric disorders in that it does

not rely on a priori assignment of individuals to specific diagnostic

categories. We have demonstrated the effectiveness of this

approach in identifying the genetic factors involved in the etiology

of complex phenotypic models using simulated data. Application

of this method to our schizophrenia data revealed groupings of

patients whose characteristic symptoms are novel with potential

involvement of gene(s) contributing to these symptoms. With this

method, we further refined previous linkage findings in this

dataset, providing improvements in the linkage results by limiting

potential phenotypic heterogeneity. Analysis of individuals with

shared behavioral symptoms is a powerful and straightforward

approach to identify the genetic factors underlying such symptom

profiles and will lead to discovery of endophenotypes that are likely

to be more biologically meaningful than standard diagnostic

categories.

Our results clearly demonstrate the separation of individuals

with major depression on the basis of whether they exhibit sleep

Figure 4. The spectrum of behavioral symptoms defining the depression and schizophrenia clades. Symptoms present in greater than
70% of individuals with the diagnosis of depression, schizophrenia, or schizoaffective disorder are depicted as filled-in circles with depression (in
blue), schizophrenia (in purple) and schizoaffective (in gray). Significant differences in symptom distributions within clades compared to the
diagnostic categories of depression (Dep), schizophrenia (Schiz), and schizoaffective (Schizaf) are depicted with a ‘‘*’’ (with statistical significance
reported at the 0.05 level). Unfilled circles with a ‘‘*’’ imply statistically significant differences between the clade and diagnostic category but that less
than 70% of individuals in that clade have that symptom. Boxes which encompass the circles in the three columns of depression, schizophrenia and
schizoaffective disorder are shaded when that symptom appears in greater than 70% of the individuals in that diagnostic category. Five symptoms
distinguish the depression4_28 clade from the diagnostic category of depression, which include trouble getting to sleep, trouble staying asleep, early
morning awakening, severe impairment in both childhood and adolescent adaptation to school. The depression6_4 clade is distinguished by one
symptom, mainly difficulty concentrating. These depression clades are mutually exclusive. Further, language disorder symptoms distinguish the
schizophrenia6_6 clade from the diagnostic category schizophrenia (i.e., circumstantial speech and excess details) as well as an increased incidence of
violence and aggression. The schizophrenia6_1 clade is distinguished from both diagnostic categories schizophrenia and schizoaffective disorder by
three symptoms, including thoughts inserted into one’s head that are not one’s own, thoughts stopping or withdrawn, and thoughts being read by
others. However, this clade shares behavioral symptoms characteristic of both of these diagnostic categories.
doi:10.1371/journal.pone.0009714.g004

Table 1. Diagnostic and LOD score statistics for clades.

Depression6__4 Depression4__28 Schizophrenia6__6 Schizophrenia6__1

schizophrenia 4 0 56 56

schizoaffective 9 0 2 32

major depression 40 43 0 0

depression NOS 9 5 1 0

bipolar 11 0 0 2

schizotypal PD 4 3 1 0

psychosis NOS 0 1 2 2

normal 6 5 0 0

unknown 17 7 7 8

number families 64 46 52 77

number individuals 100 64 69 100

Zmax (a) 4.07 (0.86) 2.86 (0.50) 2.19 (1) 2.42 (0.68)

PM #0.01 0.02 0.06 0.02

PG 0.08 0.6 0.79 0.94

marker D2S2248 D2S160 D2S168 D2S2298

model Rec-1 Rec-1 Dom-2 Rec-2

For the four significant depression and schizophrenia clades, the number of individuals from each diagnostic group that are present in each clade and corresponding
LOD scores are reported. The clades are separated into two groups, consisting of individuals with symptoms typical of depression and those with individuals with
symptoms typical of schizophrenia. The maximum LOD score is reported for each clade, maximized over all genetic models and analysis schemes examined. The term
HLOD denotes the maximum heterogeneity LOD score and a is the corresponding heterogeneity parameter. Model refers to the genetic model as described in the text.
PM and PG are the estimated model-based and global empirical p values respectively.
doi:10.1371/journal.pone.0009714.t001
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disturbance symptoms. These physiological symptoms may

distinguish the etiological factors for the disorder in each group.

Further, the separation of the two linkage peaks for major

depression on chromosome 2 based on two primary behavioral

symptoms (i.e., sleep disturbances and difficulty concentrating)

may indicate the identification of two groups of patients whose

symptoms have two distinctly different genetic origins. The

individuals in the group suffering from sleep disturbances appear

to have more severe symptoms during childhood, indicating a

possible prodrome or an earlier age of onset. This increases the

likelihood that these symptoms may have high genetic loading,

consistent with epidemiological studies, suggesting a strong

correlation between the diagnosis of depression and sleep

disturbances [32,33,34]. The second depression group is com-

prised of individuals that have difficulty concentrating, confirming

previous findings [35,36,37]. This group provided the strongest

linkage evidence in our study, where the linkage signal spans the

genomic region containing the gene cAMP responsive element

binding protein 1 (CREB1) which has been implicated as a

candidate gene for depression [38,39].

The most striking schizophrenia finding involved the group of

individuals with language disorders, considered central to the

symptom pathology of schizophrenia [40,41]. It has been

suggested that these symptoms are related to cognitive deficits in

schizophrenia [42]. We observed one group with over 95% of

individuals defined by specific symptoms of language disorders,

such as circumstantial speech and excess details. These could

represent a core set of symptoms for a specific subtype of

schizophrenia with a distinct genetic pathway that might be

targeted with specific pharmacological and cognitive treatments.

While there have been numerous studies reporting linkage to

schizophrenia on chromosome 2 [31,43,44,45,46,47,48,49,50]

none have specifically reported linkage at the sites identified in

the analysis of our two subgroups of schizophrenia patients at

chromosomal regions 2p25.1 and 2p21. The region 2p25.1

contains the gene neurotensin receptor 2, which has an important

physiological role in sensory perception [51]. Additionally, the

region 2p21 contains the gene protein kinase C epsilon, which has

been shown to be involved in neuronal channel activation and

may be involved in emotional learning and memory [52]. These

results demonstrate the efficacy of our approach, however they are

subject to replication in future studies using the wealth of genetic

and behavioral data collected in other linkage and association

studies.

While we grouped individuals based primarily on shared

behavioral symptoms, it is also possible to include physiological

trait measurements, as well as non-genetic or environmental

factors. In future analyses, the relative importance of traits can be

weighted when building the network based on the heritability of

the trait. Traits with high heritability would contribute more to the

structure of the network defining phenotypic relationships. The

analytical procedure is also easily extendable to association studies

using a case-control study design by simply performing association

tests on phenotypic groups instead of linkage analyses. This

method is ideally suited for application to diseases where clinical

heterogeneity of phenotypes is suspected and multiple symptoms

are recorded for study subjects, as is typically the case for most

neuropsychiatric disorders.

Our study shows that reconsideration and refinement of

phenotypic definitions will reveal a myriad of new phenotypic

and genotypic relationships. Although the representation of

behavioral symptoms among individuals is not likely to be

hierarchical, with some genes affecting multiple symptoms and

multiple genes having an effect on an individual symptom, our

method aims to generate hypotheses regarding specific subgroups

of individuals with shared symptoms and to delineate the genetic

basis of such behavioral symptoms. In this way, individuals with

shared symptom profiles will be grouped together and genes with

effects on these symptoms will be detected, generating novel

phenotype-genotype relationships.

Supporting Information

Figure S1 Simplified example of a network representing

relationships between patient’s behavioral phenotypes. This shows

how behavioral symptoms of individuals in the dataset are used to

group patients together into a hierarchical network. (A) Depiction

of eight patients each scored for the presence (1) or absence (0) of

ten behavioral symptoms. (B) Network representing the grouping

of patients based on phenotypic relatedness. Patients who share

more behavioral symptoms in common are grouped together,

where the closest neighbors in a network are binned together into

a more inclusive group (referred to as nesting level).

Found at: doi:10.1371/journal.pone.0009714.s001 (8.21 MB TIF)

Figure S2 Depression LOD score plots. This demonstrates the

separation and amplification of linkage peaks in the two mutually

exclusive depression groups as compared to the overall diagnoses

of depression. The LOD score peak at approximately 122 cM

circled for the depression diagnoses (panel A) is significantly

amplified in the depression4_28 clade (panel B), which also lacks a

LOD score peak at ,218 cM position. In contrast, the

depression6_4 clade shows amplification of the peak at

,218 cM (panel C), corresponding to the second peak for the

depression diagnoses (panel A). Interestingly, the depression6_4

clade lacks the peak at approximately 122 cM, present in the

depression4_28 clade (panels B and C). These two depression

clades are mutually exclusive, indicating a potential separation of

two genetically distinct groups of individuals within the diagnostic

category major depression who can be distinguished phenotypi-

cally by the presence/absence of sleep disturbance symptoms.

Found at: doi:10.1371/journal.pone.0009714.s002 (9.47 MB TIF)

Table S1 Diagnostic and LOD score statistics for clade 5_15.

For this clade, the number of individuals carrying each diagnosis is

provided as well as the number of individuals and families and the

relevant linkage statistics. The maximum LOD score is reported

maximized over all genetic models and analysis schemes examined

with corresponding model parameters. The term HLOD denotes

the maximum heterogeneity LOD score and a is the correspond-

ing heterogeneity parameter. Marker refers to the genetic marker

with the observed maximum HLOD. Model refers to the genetic

model as described in the text. PM and PG are the estimated

model-based and global empirical p-values respectively.

Found at: doi:10.1371/journal.pone.0009714.s003 (0.04 MB

DOC)

Table S2 Linkage Results of Simulated GAW14 Data. Clade

refers to the clades under consideration, Phenotype refers to the

latent phenotypes, HLOD is the maximum heterogeneity LOD

score and a is the heterogeneity parameter, Model refers to the

genetic model as described in the text, and PM and PG are the

estimated model-based and global empirical p-values respectively.

Chromosome is the chromosome on which this peak occurs,

position is the position on the chromosome at which the peak

occurs in cM, and disease locus is the disease locus that it

identifies. Details of the genetic models and analyses as well as the

empirical p-value estimations are given in main text. (A) Linkage

analysis of the clade (0_21) containing the latent phenotype P1

showed strong linkage to the disease gene D1 on chromosome 1,
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which together with D2 define the underlying genetic contribution

for P1. Analysis of clade 0_4 also revealed significant evidence for

linkage with the disease genes D3 and D4 contributing to the

latent phenotypes P2 and P3. However, the disease locus D2 was

not detected in linkage analysis of these clades, which included

individuals who harbored the latent phenotypes of interest. This is

likely due to the fact that the latent phenotypes P2 and P3 are

caused by alternate epistatic interactions between the disease loci

D2 and D3, where for P2 the disease loci D2 has a recessive mode

of inheritance and D3 has a dominant mode of inheritance, and in

contrast for P3 the disease loci D2 has a dominant mode of

inheritance and D3 has a recessive mode of inheritance. As for the

linkage analysis there was no resolution between the phenotypic

groups P2 and P3. Thus, they were analyzed with these opposite

modes of inheritance which coupled with the reduced sample size

resulting from subdividing this group reduced the potential genetic

signal for the disease loci D2. Interestingly, D2 was correctly

localized when the clade containing the majority of the unaffecteds

was examined. The disease locus D2 is the genetic determinant for

traits e, f and h in unaffected individuals, which acts in a dominant

manner with a penetrance of approximately 20%. (B) Whole-

genome scan analysis on the entire dataset using Kofendred

Personality Disorder as the major diagnosis (i.e., used to define

affectedness status). All the major disease loci were also identified

in this analysis, yet with less significant linkage signals. The

exception was locus D2 which had a more significant HLOD score

in this genome scan. (C) The two clades separated by the presence

(P3) or absence (P2) of trait b were examined via linkage analysis,

and loci D1, D2 and D4 were successfully isolated within the

separated phenotypic groups P2 and P3.

Found at: doi:10.1371/journal.pone.0009714.s004 (0.05 MB

DOC)
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