
Phosphorylation of Human Tristetraprolin in Response to
Its Interaction with the Cbl Interacting Protein CIN85
Vishram P. Kedar1, Martyn K. Darby1¤, Jason G. Williams2, Perry J. Blackshear1,3*

1 The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America, 2 Protein

Microcharacterization Core Facility, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America, 3 Departments

of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America

Abstract

Background: Tristetraprolin (TTP) is the prototype member of a family of CCCH tandem zinc finger proteins and is
considered to be an anti-inflammatory protein in mammals. TTP plays a critical role in the decay of tumor necrosis factor
alpha (TNF) mRNA, among others, by binding AU-rich RNA elements in the 39-untranslated regions of this transcript and
promoting its deadenylation and degradation.

Methodology/Principal Findings: We used yeast two-hybrid analysis to identify potential protein binding partners for
human TTP (hTTP). Various regions of hTTP recovered 31 proteins that fell into 12 categories based on sequence similarities.
Among these, the interactions between hTTP and CIN85, cytoplasmic poly (A) binding protein (PABP), nucleolin and heat
shock protein 70 were confirmed by co-immunoprecipitation experiments. CIN85 and hTTP co-localized in the cytoplasm of
cells as determined by confocal microscopy. CIN85 contains three SH3 domains that specifically bind a unique proline-
arginine motif (PXXXPR) found in several CIN85 effectors. We found that the SH3 domains of CIN85 bound to a PXXXPR
motif located near the C-terminus of hTTP. Co-expression of CIN85 with hTTP resulted in the increased phosphorylation of
hTTP at serine residues in positions 66 and 93, possibly due in part to the demonstrated association of mitogen-activated
protein kinase kinase kinase 4 (MEKK4) to both proteins. The presence of CIN85 did not appear to alter hTTP’s binding to
RNA probes or its stimulated breakdown of TNF mRNA.

Conclusions/Significance: These studies describe interactions between hTTP and nucleolin, cytoplasmic PABP, heat shock
protein 70 and CIN85; these interactions were initially discovered by two-hybrid analysis, and confirmed by co-
immunoprecipitation. We found that CIN85 binding to a C-terminal motif within hTTP led to the increased phosphorylation
of hTTP, possibly through enhanced association with MEKK4. The functional consequences to each of the members of this
putative complex remain to be determined.
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Introduction

The cellular response to physiological and environmental

stimuli involves regulation of gene expression at multiple levels.

Although transcription is a major site of control, post-transcrip-

tional mechanisms also play pivotal roles in regulating gene

expression. RNA translation and mRNA degradation are

dependent on specific cis-acting sequences and trans-acting factors

[1,2], and expression of the trans-acting regulatory proteins is

controlled at multiple levels.

A crucial level of control is exerted at the level of mRNA decay

in the case of the pro-inflammatory polypeptide tumor necrosis

factor alpha (TNF), one of whose regulators is the CCCH tandem

zinc finger protein tristetraprolin (TTP; also known as ZFP36,

NUP475 and GOS24) [3]. However, the precise mechanisms by

which TTP controls TNF mRNA stability are unclear, with

various data supporting roles for the proteasome, the exosome,

and RNA processing-bodies (P-bodies). TTP, through its CCCH

tandem zinc finger (TZF) domain, first binds to the AU-rich

element (ARE) of the TNF transcript with high affinity to a nine

base sequence, UUAUUUAUU, that is repeated several times in

the TNF mRNA 39-untranslated region (UTR) [4,5,6]. RNA

binding is followed by deadenylation and ultimately transcript

decay [7,8,9,10,11,12,13]. The other three mammalian TTP

family members, ZFP36L1 (also known as TIS11B, BRF1, ERF1,

and CMG1) [14], ZFP36L2 (also known as TIS11D, BRF2, and

ERF2) [15], and ZFP36L3 [16,17] share TTP’s ability to

accelerate the deadenylation and decay of ARE-containing

transcripts in cell transfection studies and in cell-free dead-

enylation assays.

TTP is subject to many modes of regulation, including its

agonist-stimulated induction at the transcriptional level, nucleo-

cytoplasmic shuttling, interactions with cellular proteins, and

phosphorylation. In an attempt to identify some of the protein
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binding partners that might influence TTP’s activities, we

conducted an extensive yeast two-hybrid screen, using full-length

human TTP and its fragments as ‘‘baits’’. Human TTP (hTTP)

fragments bound to regions of 31 proteins that fell into 12

categories based on sequence characteristics. One novel hTTP

binding protein identified by this technique was the adaptor

protein human Cbl-interacting protein CIN85, also known as

Ruk, SETA or SH3KBP1 (SH3-domain kinase binding protein 1).

CIN85 is known to associate with Cbl [18], Src family kinases

[19], p85 phosphatidyl inositol-3 (PI-3) kinase [20] and MEKK4

[21]. The amino-terminus of CIN85 contains three SH3 domains

known to mediate protein–protein interactions by binding to

unique proline-rich motifs. CIN85 is thought to participate in

many important cellular processes including T-cell activation,

kidney function, apoptosis in neuronal cells and endocytosis, in

part by regulating receptor tyrosine kinase (RTK) signaling [22].

We found that binding of CIN85 to hTTP occurred at a proline-

rich motif that was not found in mouse TTP or in the other human

TTP family members; surprisingly, this binding led to increased

phosphorylation of hTTP at serine residues in positions 66 and 93.

Results

Results of Two Hybrid Screen
In an automated two-hybrid screen, full-length hTTP was found

to be self-activating; consequently, a series of protein fragments

was expressed. In some cases, screens for possible hTTP

interacting proteins were performed in the presence of ARE-

RNA fragments derived from the TNF mRNA sequence.

Human TTP fragments were screened against three separate

activation domain libraries, derived from human spleen, brain,

and from a mixture of breast and prostate cancer cell lines. Thirty-

one hTTP fragments were fused with the Gal4 DNA binding

domain. Of these constructs, eight containing amino-terminal

amino acids 1–50 were self-activating; however, eight others,

typically containing the TZF domain, were successful in

recovering interacting proteins. The amino acid sequences of

these interactors were analyzed for identification as described [23].

In total, 31 ‘‘prey’’ interactors were identified that comprised

multiple fragments identified in several separate screens. These

potential interactors fell into 12 different protein categories based

on specific motifs in their sequences. A list of the potential

interactors focused on in this paper is shown in Table 1. These

proteins included other TTP family members, several types of

RNA binding proteins, RNA helicases, the CCR4-NOT1 dead-

enylase, and proline-rich domain containing proteins.

Co-Immunoprecipitation of hTTP with Potential
Interacting Proteins

We selected four potential TTP binding partners, cytosolic poly

(A) binding protein (PABP/PABPC1), nucleolin, heat-shock

protein 70 (HSP70), and CBL-interacting protein 85 (CIN85)

(Table 1), for further validation using co-immunoprecipitations

between hTTP and epitope-tagged candidate proteins in HEK

293 cells. Endogenous, untagged nucleolin co-immunoprecipitated

with Flag-tagged or HA-tagged hTTP (Fig. 1D, lanes 2, 4 and 5),

but not with extracts from cells transfected with plasmids encoding

HA- and Flag-tagged empty vectors (Fig. 1D, lane 1). We also

tested nucleolin binding to cytoplasmic PABP, which we also

identified as a potential interactor with hTTP (Table 1) and

confirmed by co-immunoprecipitation in the present study (Fig. 1F,

lane 4). Nucleolin was pulled down both by hTTP alone and by

PABP alone when they were each immunoprecipitated with anti-

Flag antibody (Fig. 1D, lanes 2 and 3), and by pulldown of hTTP

when it was co-expressed with PABP (Fig. 1D, lane 4). These

results suggest that nucleolin can form complexes with hTTP and

PABP individually, as well as with the complex formed when they

are expressed together. The hTTP did not bind to the negative

control protein, human MARCKS (Fig. 1F, lane 5).

The association between Flag-hTTP and HSP70 was confirmed

when the cell lysate was immunoprecipitated using anti-Flag

antibody and probed with an anti-HSP70 antibody (Fig. 1H, lane

2), confirming HSP70 as a binding partner of hTTP under these

conditions. However, although CIN85 was identified in the two

hybrid screen as a potential interactor with hTTP, the same anti-

Flag immunoprecipitation did not pull down detectable endoge-

nous CIN85 (Fig. 1G, lane 2), prompting further investigation

using overexpression of CIN85 protein. We have been unable to

detect endogenous CIN85 expression in HEK 293 cells, either by

western blotting, using CIN85 antibody HQ-17 (Sigma) (data not

shown) or by northern blotting (see below).

Interaction of Human TTP and CIN85
We investigated a possible association between these two

proteins by transfection and co-immunoprecipitation (Fig. 2A).

The association of hTTP with PABP was used as a positive

control, with the MARCKS protein used as negative control.

Binding of hTTP to CIN85 (Fig. 2A2, lane 4) and to PABP

(Fig. 2A2, lane 6) was readily detected in anti-Flag immunopre-

cipitations. Unexpectedly, the migration of hTTP appeared to be

retarded after co-immunoprecipitation with CIN85 (Fig. 2A2,

compare lanes 4 and 6), raising the possibility that there might be

Table 1. Potential protein interactors with hTTP.

hTTP (aa #) Library (human) Interactor (Accession #) Interactor (aa #) Function

150–326,
223–326.

Brain/Spleen CIN85 (NP_114098.1) 4–264, 4–450. CBL-interacting protein: Endocytosis, signaling,
apoptosis. etc.

90–180 Breast/Prostate cancer Nucleolin (NP_0053722) 375–692 rDNA transcription, rRNA maturation, ribosome
assembly and nucleocytoplasmic transport.

90–180 Spleen PABPC1 (NP_002559) 100–309, 236–399, 99–422,
178–466, 79–400, 95–408.

Translational initiation, mRNA stabilization and
nucleocytoplamic shuttling.

90–180 Breast/Prostate cancer PABPC1 (NP_002559) 1–246, 187–482. Translational initiation, mRNA stabilization and
nucleocytoplasmic shuttling.

90–180 Spleen HSP70 (NP_005337.2) 11–416 Participates in ubiquitin- proteasome pathways.

Amino acid (aa) residue numbers for hTTP were from GenBank RefSeq NP_003398.1. The aa residues shown for potential hTTP-interacting proteins are from the RefSeq
numbers listed in the ‘‘Interactors’’ column in the table.
doi:10.1371/journal.pone.0009588.t001

Tristetraprolin and CIN85
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increased phosphorylation of hTTP under these conditions. When

the co-immunoprecipitation was performed instead with the anti-

HA antibody followed by immunoblotting with the anti-Flag

antibody, both CIN85 and PABP were pulled down as hTTP

binding partners (Fig. 2A4, lanes 4 and 6). There was no apparent

binding of TTP to MARCKS (Fig. 2A2 and 2A4, lane 8). These

results confirmed that both PABP and CIN85 could interact with

hTTP under these experimental conditions, and that the

migration of hTTP was apparently retarded after it had been

co-expressed with CIN85.

Association of CIN85 with Other TTP Family Members
We also did not identify CIN85 in other two-hybrid

experiments with human ZFP36L1, human ZFP36L2, or mouse

ZFP36L3 (data not shown). We therefore co-expressed CIN85

with each of these full-length TTP family members in HEK 293

cells and attempted to co-immunoprecipitate these proteins from

lysates expressing both pairs of proteins. Again, hTTP could be

brought down by CIN85 (Fig. 3A2, lane 4) and by PABP (Fig. 3A2,

lane 10) but CIN85 did not pull down hZFP36L1 (Fig. 3A2, lane

6), hZFP36L2 (Fig. 3A2, lane 8) or mouse ZFP36L3 (Fig. 3B3, lane

4). Thus, we found no evidence of an association between CIN85

and the other human TTP family members ZFP36L1 or

ZFP36L2, or between CIN85 and either mouse ZFP36L3 or

TTP. Once again, CIN85 was able to pull down hTTP as a

positive control (Fig. 3B3, lane 6).

Sites of Interaction in hTTP and CIN85
Since in our two hybrid screen two separate hTTP baits

containing C-terminal hTTP sequences identified multiple clones

representing two fragments of human CIN85 (aa 4–264 and aa

40–458), we predicted that the C-terminal region of hTTP was

involved in its binding to the N-terminus of CIN85. The extreme

C-terminus of hTTP contains a potential CIN85 binding site,

represented by the consensus PXXXPR [21,24,25]. We therefore

tested a series of C-terminal deletion mutants of hTTP against full-

length CIN85 in co-immunoprecipitation assays. The names of

these constructs are indicated at the top of the gel lane in Fig. 4A.

We found that removal of five or eight C-terminal amino acids had

no effect on CIN85 binding (Fig. 4A2, lanes 4–6); however,

Figure 1. Co-immunoprecipitation of hTTP with potential
interacting partners. In this and subsequent figures, extracts were
prepared in RIPA buffer from HEK 293 cells transfected with DNA
encoding the HA- and Flag-tagged expression vectors indicated at the
top of each gel lane by the ‘‘+’’ sign. Total DNA transfected was 5.0 mg
per 100 mm petri dish. For each western blot shown, the immunopre-
cipitating antibody (IP) and the subsequent immunoblotting antibody
(IB) are indicated to the left of each panel, as are the positions of
protein molecular weight standards. The immunoreactive protein
species are indicated by the labeled arrows to the right of each blot.
Each immunoprecipitation used 1 mg of cellular lysate protein as the
starting material. In some cases, the blots are of whole cell lysates (WCL)
(50 mg of total protein per lane) instead of from immunoprecipitations
to confirm expression of the respective protein in the lysates prior to
immunoprecipitation. In addition to the epitope-tag antibodies
indicated, western blotting in this case also used antibodies to
endogenous nucleolin (NCL), CIN85, and HSP70. See the Results section
for additional details.
doi:10.1371/journal.pone.0009588.g001

Figure 2. Interaction of TTP and with PABP and CIN85.
Abbreviations and other details are as described in the legend to Fig. 1.
doi:10.1371/journal.pone.0009588.g002

Tristetraprolin and CIN85
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removal of either 14 (aa 1–313, Fig. 4A2, lane 3) or 37 (aa 1–290,

Fig. 4A2, lane 2) C-terminal amino acids in hTTP, in both cases

removing the PXXXPR motif, completely eliminated the binding,

suggesting that this PXXXPR motif is critical for forming the

complex with CIN85. Equivalent expression of the various mutant

forms of hTTP is documented in Fig. 4A1 (lanes 2–6).

In a separate two hybrid screen conducted using fragments of

mouse TTP (mTTP) as baits, we did not identify CIN85 as an

mTTP interactor (data not shown). Mouse TTP also failed to bind

CIN85 in the co-immunoprecipitation assay (Fig. 4E, lane 6). Since

CIN85 did not bind to mouse TTP or to the other human TTP

family members (Fig. 3A and B), we aligned the C-terminal

sequences of these proteins, and found that the intact PXXXPR

domain did not occur in mouse TTP, but did occur in all other

mammals for which sequence was available (Fig. 4B). That this was

not an artifact of a mouse sequencing error was confirmed by

alignment of the mouse C-terminal protein sequence with ESTs in

GenBank, which demonstrated at least nine mouse ESTs with

identical translated sequence to that shown in Fig. 4B. We also could

not find intact PXXXPR motifs elsewhere in the mouse protein.

We next attempted to define which region of CIN85 was

responsible for binding to hTTP. In its N-terminal region, CIN85

contains three Src homology 3 (SH3) domains, SH3A, SH3B, and

SH3C. The region around amino acid 400 is proline rich, and the

extreme C-terminus contains a coiled-coil domain. The details of a

series of Flag-tagged expression constructs in which some of these

domains were deleted are summarized schematically in Fig. 4C.

Each of these deletion constructs was then separately co-expressed

with full length HA-tagged hTTP. The results from immunopre-

cipitations performed on cell lysates expressing these protein

fragments are summarized in Fig. 4D and 4F. These data

demonstrated that hTTP could bind to all of the N-terminal

CIN85 fragments carrying various combinations of the three SH3

domains (Fig. 4D2, lanes 2–6, 8), and to individual SH3 domains

(Fig. 4F, lanes 1–3), but not to the C-terminal half of CIN85 that

lacked any of the SH3 domains (Fig. 4D2, lane 7). These results

suggest that the binding of CIN85 to hTTP is mediated by the

interaction of the SH3 domains of CIN85 to the PXXXPR motif

located within the C-terminus of hTTP.

In order to further test whether the first proline in the PXXXPR

motif of hTTP is necessary for its binding to CIN85, we changed

the first proline in this motif to valine (P309V). We also replaced

the corresponding threonine with proline (T302P) in mTTP to

recreate the human PXXXPR motif. These expression plasmids

were then transfected into HEK293 cells, and co-immunoprecip-

tations on the resulting lysates were performed using antibodies

against HA or Flag, as described above. As expected, WT hTTP

and CIN85 were co-immunoprecipitated by anti-HA or anti-Flag

antibodies (Fig. 4E3 and 4E4, lane 4 in each case), whereas WT

mTTP did not bring down CIN85 (Fig. 4E3, lane 6). Mutating the

first P in the human PXXXPR motif (P309V) eliminated the

binding of hTTP to CIN85 (Fig. 4E3, lane). Creation of the

PXXXPR motif in mTTP (T302P) permitted the binding of

mTTP to CIN85 (Fig. 4E3, lane 7). The roughly equivalent

expression of the mutant proteins was demonstrated in Fig. 4E1.

PABP was found to associate with both hTTP and mTTP when it

was tested as a positive control (Fig. 4E3, lanes 8 and 9,

respectively). Neither hTTP nor CIN85 was co-immunoprecipi-

tated by empty vector negative controls (Fig. 4E3, lanes 2 and 3).

As before, hTTP expressed in the presence of CIN85 was found to

migrate more slowly than hTTP not expressed with CIN85

(Fig. 4E1, compare lanes 2 and 4). This retarded migration

disappeared in the case of the non-binding TTP mutant P309V

(Fig. 4E1, lane 5), but was present in the newly binding-competent

mouse T302P mutant (Fig. 4E1, lane 7). When the hTTP in the

lysates was dephosphorylated with CIAP, the hTTP protein

migrated to a position roughly corresponding to its predicted size

of approximately Mr 34,000 (Fig. 4E1, lane 10).

These results demonstrate that the PXXXPR motif is

responsible for hTTP’s binding to CIN85, and that the presence

of this intact motif in either human or mouse TTP results in its

retarded migration in SDS gels after co-expression of CIN85.

Human TTP Forms a Complex with MEKK4 and CIN85
Because of the possible increase in hTTP phosphorylation that

occurred upon co-expression with CIN85, we evaluated the

possibility that mitogen-activated protein kinase kinase kinase 4

(NP_005913.2; synonyms: MEKK4 kinase, MAP3K4; FLJ42439;

PRO0412; KIAA0213; MAPKKK4; MTK1; JNK/p38 MAP

kinase kinase kinase MEKK4), a known binding partner and

Figure 3. Association of CIN85 with hTTP family members.
Abbreviations and other details are as described in the legend to Fig. 1,
with the exception of Panel 3B1, which shows an immunoblot of the
whole cell lystate probed with anti-Flag antibody.
doi:10.1371/journal.pone.0009588.g003

Tristetraprolin and CIN85
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effecter of CIN85 [18,21], could form a complex with hTTP in the

presence or absence of CIN85. Confocal microscopy of HEK 293

cells transfected with plasmids expressing hTTP, CIN85, and

MEKK4 proteins showed that hTTP and CIN85 were at least

partially co-localized in the cytoplasm (Fig. 5A), as were CIN85

and MEKK4 (Fig. 5B). We next tested the possibility of

associations among the proteins by co-immunoprecipitation.

When an HA-MEKK4 immunoprecipitation was blotted with

an anti-Flag antibody, then Flag-hTTP was readily detected

(Fig. 6A2, lane 6), demonstrating that that hTTP could associate

with MEKK4 directly. These results were supported by the ability

of Flag-hTTP to bring down HA-MEKK4 (Fig. 6A4, lane 6). An

additional experiment demonstrated that HA-MEKK4 brought

down Flag-labeled wild-type hTTP, as well as the T302P mutant

form of hTTP (data not shown). As expected from previous results

in the literature [21], Flag-CIN85 was found to co-immunopre-

cipitate with HA-MEKK4 (Fig. 6A2, lane 7; Fig. 6A4, lane 7).

When all three proteins were expressed together, anti-HA-

MEKK4 could bring down both Flag-CIN85 and Flag-hTTP

(Fig. 6A2, lane 7), and Flag-hTTP and CIN85 could bring down

HA-MEKK4 (Fig. 6A4, lane 7). These results demonstrate that

both hTTP and MEKK4 can associate with CIN85, and hTTP

can associate with MEKK4, in separate two-protein complexes; in

addition, the three proteins appear to be able to form three-protein

complexes with each other. As before, none of these proteins was

found to bind non-specifically when co-expressed with empty

vectors (Fig. 6A2, lane 2; Fig. 6A4, lane 3).

Co-Expression with CIN85 Results in Retarded Migration
of hTTP

TTP is known to be heavily phosphorylated [8,10,26,27,28,

29,30,31,32,33,34]. In previous experiments, we observed that

Figure 4. Sites of interaction in hTTP and CIN85. In A, Flag-CIN85 was co-expressed with various C-terminal truncated forms of HA-hTTP, as
indicated at the top of the figure. Abbreviations and other details are as described in the legend to Fig. 1. In B is shown a ClustalW alignment of the
putative PXXXPR CIN85 binding motif near the C-terminus of hTTP aligned with the C-termini of TTP from various vertebrate species, as well as with
the TTP family members ZFP36L1 and ZFP36L2 from human. The sequences shown are derived from the following GenBank accession numbers:
human TTP (NP_003398.1), mouse (NP_035886.1), rat (NP_579824.2), chimpanzee (XP_001136016), rhesus (XP_001086084.1), horse (CD536523.1),
sheep (NP_001009765.1), cow (NP_776918.1), dog (XP_541624.2), pig (DY419026), Xenopus tropicalis (Xtrop) (NP_001106542.1) and Xenopus laevis
(Xlaev) (NP_001081884.1) The putative CIN85 binding PXXXPR motif in human and other mammalian TTPs (but not mouse) is boxed. This motif is also
not present in the orthologues from the two frog species. The typical PXXXPR motif is also not present in the in the C-termini of the other human TTP
family members ZFP36L1 (NP_004917) and ZFP36L2 (NP_008818). In C are shown schematic representations of full-length CIN85 and its truncations.
The names of various truncations of CIN85 and their amino acid positions are indicated on the left. Positions of the Src homology domains 3 (SH3) A,
B and C) are indicated in light grey boxes; the proline rich region (P- rich) is shown as a darker grey box; and the C-terminal coiled-coil region is shown
as a black box. The ability of each construct to bind hTTP is indicated on the right. The data supporting this diagram are shown in D and F, with the
transfected plasmids shown at the top of the blot, and with other aspects of the western blots as described in the legend to Fig. 1. Panel 3
documents the expression of full-length hTTP in each WCL (50 mg/lane). In E are shown data from mutations in the PXXXPR motif in hTTP, and the
corresponding sequence in mouse TTP. Abbreviations and other details are as in the legend to Fig. 1.
doi:10.1371/journal.pone.0009588.g004

Tristetraprolin and CIN85
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TTP expressed in HEK293 cells appears on SDS gels as multiple

bands of approximately Mr 47,000, which collapses with phospha-

tase treatment to its predicted size of Mr 34,000 [26,27,28,35]. As

shown above, when hTTP was co-expressed with CIN85, the hTTP

protein had an apparently greater Mr than the protein expressed

alone, or expressed with another binding partner such as PABP

(Fig. 2A2, lanes 4 and 6, Fig. 4D3, lane 2, Fig. 4E1, lanes 4 and 7,

and Fig. 6A1, lane 4), suggesting that hTTP is hyper-phosphory-

lated in response to its interaction with CIN85. This result was seen

in many independent experiments (Fig. 6B3, lanes 2, 4 and 8).

Similar retarded migration was seen when hTTP and CIN85 were

co-expressed with MEKK4 (Fig. 6B3, lane 10).

Co-Expression of CIN85 with hTTP Results in Increased
Phosphorylation of hTTP at Serine Residues 66 and 93

Since the co-expression of hTTP with CIN85 produced an

increase in the apparent Mr of hTTP on SDS/PAGE, suggesting

increased phosphorylation, we analyzed the phosphorylation state

of hTTP using FLAG-affinity-purified protein from HEK 293 cells

expressing FLAG-hTTP alone or Flag-hTTP and HA-CIN85

together. Analyses for phosphopeptide identification were per-

formed using a variety of mass spectrometric, affinity and

chromatographic techniques including ESI-MS and MS/MS as

well as metal oxide affinity chromatography and reverse-phase

liquid chromatography. After phosphopeptides were identified, LC-

ESI-MS runs of hTTP digests from cells with and without co-

expression of CIN85 were performed in efforts to estimate relative

amounts of phosphorylation at each of the identified sites. We

identified two phosphopeptides, SCGWVPPPPGFAPLAPR and

LGPELSPSPTSPTATSTTPSR (serines in bold type represent the

phosphorylated residues), in which the site of phosphorylation could

be unambiguously assigned to Ser 66 and Ser 93, respectively. We

identified a third phosphopeptide, QSISFSGLPSGR (serines in

italics represent the residues at which the phosphorylation could be

occurring), that contained a single phosphorylation, but we could

not determine whether the phosphorylation occurred on Ser 184 or

Ser 186. Overall coverage of the protein was approximately 50% for

the hTTP-only sample, and ,40% for the hTTP plus CIN85

sample. Phosphorylation at Ser 66 was increased several-fold in the

presence of CIN85 (Fig. 7A) and moderately at Ser 93 (Fig. 7B). The

additional site at either Ser 184 or Ser 186 did not appear to be

affected by the co-expression of CIN85 (Fig. 7C). We previously

identified Ser 66 and Ser 93 as potential phosphorylation sites for

PKCm and p38 protein kinase, respectively, as predicted by (http://

scansite.mit.edu) (Cao et al., 2007). Evaluation of these and the

other sites by a variety of programs (http://bioinformatics.lcd-

ustc.org/PPSP/; 22 http://www.cbs.dtu.dk/services/NetPhosK/;

http://scansite.mit.edu/) suggested that Ser 66 could in addition be

a site for MAPKAP kinase 2, and that Ser 93 could also be a site for

cyclin-dependent kinase 5.

Although the extent of phosphorylation in the peptide

QSISFSGLPSGR does not appear to change in response to

CIN85 co-expression, to our knowledge neither Ser 184 nor Ser

186 has been previously characterized as phosphorylated. The

same predictive programs used for Ser 66 and Ser 93 suggest that

phosphorylation of Ser 186 could represent a site for AMP-

dependent kinase, calcium calmodulin dependent kinases, MAP-

KAP kinase 2 and MAP kinase kinase kinase. Meanwhile, Ser 184

is predicted to be a potential site for MAP kinase kinase kinase,

protein kinase A, and various protein kinase C isoforms.

Figure 5. Localization of hTTP and MEKK4 with CIN85 in cultured cells. In A, HEK 293 cells were transfected with plasmids for the expression
of HA-hTTP (red) and Flag-CIN85 (Green), or (B) HA-MEKK4 (red) and Flag-CIN85 (green). The cells were stained with primary antibodies, either an anti-
HA polyclonal or anti-Flag monoclonal, followed by the secondary antibodies Alexa 594 anti-rabbit (red) or Alexa 488 anti-mouse (green),
respectively. Nuclei (blue) were stained with DAPI. The cells were visualized and images obtained by confocal microscopy. The merged images of two
protein signals, indicating areas of apparent co-localization, are shown in yellow.
doi:10.1371/journal.pone.0009588.g005
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Effect of CIN85 on hTTP Binding to an RNA Probe
The RNA binding activity of hTTP is essential for initiation of

mRNA decay. To determine whether there was any effect of the

interaction between CIN85 and hTTP on RNA binding of hTTP,

we performed RNA gel shifts using cytosolic extracts containing

varying concentrations of hTTP alone or together with CIN85,

using a TNF-based ARE RNA probe containing four clustered

UUAUUUAUU motifs (residues 1309–1332, GenBank accession

number NM_013693.2) [8]. Incubation of this probe with a

cytosolic extract prepared from HEK 293 cells transfected with

vector alone (BS) revealed the formation of at least one faint band

representing interactions of the RNA probe with an endogenous

293 cell protein (Fig. 8A, lane 2; arrow points to the non-specific

complex). An extract from cells transfected with the HA-hTTP

expression construct was diluted with an otherwise identical

extract from cells transfected with vector alone that contained the

identical concentration of protein; the percentage of this combined

extract that contained the TTP-containing extract is indicated at

the top of the Fig. 8A. A sample containing 100% hTTP-

expressing lysate produced a single, broad, dark hTTP-ARE

complex (Fig. 8, lane 3). Lysates expressing decreasing proportions

of hTTP exhibited less binding overall, with at least two hTTP-

ARE complexes becoming visible (lanes 5–7). The identical

experiment was repeated in the presence of a constant amount

of CIN85 (Fig. 8A, lanes 9–14). CIN85 alone did not appear to

bind significantly to this probe (Fig. 8A, lane 14), nor did it appear

to alter the binding of the various concentrations of hTTP (Fig. 8A,

lanes 9–11). We confirmed that these complexes contained HA-

hTTP by supershift analysis with the anti-HA and anti FLAG

antibodies (Fig. 8B). Flag-CIN85 alone did not form a complex

with the ARE probe (Fig. 8B, lane 4), as confirmed by the absence

of a supershift when the same extract was incubated with the anti-

FLAG antibody (Fig. 8B, lane 6). In extracts containing both HA-

hTTP and Flag-CIN85, the anti-HA antibody caused a supershift

of the hTTP-probe complex (Fig. 8B, lane 8), whereas the anti-

FLAG antibody did not cause a supershift (Fig. 8B, lane 9). Fig. 8C

documents the immunoreactive expression of both epitope-tagged

proteins; each lane contained five times more hTTP and CIN85 as

in Fig. 8A (lane 3 for hTTP alone), Fig. 8A, lane 9 (hTTP and

CIN85 together), or Fig. 8A, lane 14 (CIN85 alone).

Co-Expression of CIN85 with hTTP Does Not Affect
Destabilization of TNF mRNA

To determine whether co-expression of CIN85 with hTTP

affected the latter’s ability to promote destabilization of a TNF-

based RNA transcript, we used a co-transfection assay described

previously [8]. When cells were transfected with a TNF-based

‘‘target’’ expression plasmid alone, the transcript was detected as a

single band (Figs. 9A1 and 9A2, lanes 2 and 8). When a low

concentration of transfected hTTP plasmid DNA was used (5 ng

per plate; Figs. 9A1 and 9A2, lane 3), TNF mRNA accumulation

was decreased to ,10 to 20% of that of control, as quantified by

Phosphorimager scanning. This decrease in mRNA levels was

accompanied by the appearance of a smaller species of mRNA

transcript, which first became apparent at 5 ng of DNA (Figs. 9A1

and 9A2, lane 3) but was more evident at 50 ng (Figs. 9A1 and

9A2, lane 4). Most of the TNF transcript was in this smaller form,

considered to be the deadenylated form, with increasing amounts

of transfected hTTP DNA, beginning at 50 ng (Figs. 9A1 and

9A2, lane 4) through all higher concentrations used (Figs. 9A1 and

9A2, lanes 5 and 6). However, as shown previously, the total TNF

transcript accumulation increased substantially at higher concen-

trations of DNA to reach a maximum of around 200% (Fig. 9B) of

that of control at 500 ng of transfected hTTP DNA, a

phenomenon we have attributed to protection of the deadenylated

species of RNA by high concentrations of TTP [8]. This is

considered to be a non-physiological artifact from high TTP

concentrations. When the hTTP expression plasmid was co-

transfected with the expression plasmid for CIN85, there was

essentially no effect on this dose-response curve (Figs. 9A1 and

9A2, lanes 8 to 12). Endogenous CIN85 mRNA was undetectable

by this northern analysis (Fig. 9A4, left panel, lanes 1–6). The

phosphorimager values from the TNF mRNA northern blot

Figure 6. Interaction between hTTP and both MEKK4 and
CIN85. In A, tagged expression constructs of MEKK4, CIN85 and hTTP
were co-transfected in pairs (lanes 1 to 7) or together (lane 8) with or
without empty vectors. Abbreviations and other details are as described
in the legend to Fig. 1. In B are shown whole cell lysates, demonstrating
the protein expression from the various expression plasmids or empty
vectors, as well as the apparent shift in the Mr of hTTP when co-
expressed with CIN85.
doi:10.1371/journal.pone.0009588.g006
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shown in Fig. 9A2 are graphically shown in Fig. 9B. The

expression of hTTP and CIN85 mRNAs is shown in Figs. 9A3 and

9A4, as well as the expression of the endogenous GAPDH mRNA

(Fig. 9A5) used as a gel loading control.

Discussion

The anti-inflammatory and cytokine mRNA regulator TTP is

an immediate-early gene that is induced by stimuli such as growth

factors and mitogens [36,37]. It is an mRNA binding protein that

can promote rapid degradation of mRNA by first binding to AU-

rich elements in the mRNA, often in the 39-untranslated region,

and then stimulating deadenylation and ultimately the decay of the

target transcript [3,38,39,40,41,42,43]. TTP activity can be

regulated at many levels: gene expression; mRNA stability;

nucleocytoplasmic shuttling; phosphorylation; protein binding;

and others. Both TTP and the pro-inflammatory cytokine TNF

can be induced in macrophages by environmental stimuli such as

lipopolysaccharides, and by TNF itself; TTP can, in turn, promote

the downregulation of TNF by directly targeting its transcript [40].

TTP has long been known to be phosphorylated, in some cases

in response to external stimuli; this modification has been shown in

some reports to impair its ability to stimulate mRNA decay

[28,30,31,32,44,45,46,47]. TTP activity is also thought to be

regulated by binding proteins, including Ccr4, Dcp, Xrn1 [48],

MK2 [31], 14-3-3 [49], RISC components Ago/eiF2C [50],

nuclear pore protein Nup214 [51] and PP2A [33]. However, a

thorough knowledge of TTP’s protein binding partners will be

important for a complete understanding of its physiological

regulation.

We have begun to identify potential TTP-interacting proteins

using a series of yeast two-hybrid screens. As described here, this

method uncovered direct physical interactions between human

TTP (hTTP) and CIN85, the cytoplasmic polyA-binding protein

PABP (PABPC1), nucleolin, and HSP70, in addition to 27 other

proteins belonging to various protein classes. Since the N-terminal

region of hTTP was self-activating in the two-hybrid system, most

interactors were recovered with bait peptides encompassing

hTTP’s TZF domain and its C-terminal proline-rich region.

The interactors were recovered from three separate screens using

three different activation domain libraries, derived from human

spleen, human brain, and from a mixture of human breast and

prostate cancer cell lines. As reported here, CIN85 was recovered

by binding to C-terminal fragments of hTTP, whereas the TZF

domain identified cytosolic PABP, HSP70 and nucleolin.

Although the focus of this paper is on the interaction between

TTP and CIN85, the other interactions validated may be of

physiological importance. Nucleolin is a major nucleolar protein

involved in the regulation of ribosome biogenesis, control of

organization of nucleolar chromatin, nucleogenesis [52] and

nucleocytoplasmic transport [53]. Its significance as a binding

partner of TTP is not clear, although TTP is known to be a

nucleocytoplasmic shuttling protein [54,55,56]. HSP70 and its

family members mediate the folding of newly translated proteins in

the cytosol and organelles [57,58] and also have been reported to

promote ARE-mediated mRNA decay [59,60]. The heat-shock

proteins can stimulate the production of certain cytokines (TNF,

IL-1, IL-6 and IL-12) and have been reported to possess potent

immunoregulatory functions [61,62].

The PABP proteins comprise a small nuclear isoform and a

conserved set of at least three functional proteins: Cytosolic PABP

(PABP1 or PABPC1), inducible PABP (iPABP, or PABPC4), and

PABP3 (PABPC3). In our screens, PABPC1 (NP_002559) was

identified and confirmed as a direct binding partner of TTP, even

in cellular lysates depleted of RNA by RNAse digestion. PABP

apparently bound to the TZF domain of TTP, using its C-terminal

region, in both the presence and absence of co-transfected ARE-

containing RNA. Interestingly, certain non-RNA binding mutants

of TTP could still interact with PABP in co-immunoprecipitation

experiments, despite the fact that the TZF domain is thought to be

the RNA binding domain. PABP is a nucleocytoplasmic shuttling

protein [63] that can function both as inhibitor of mRNA

deadenylation and as an enhancer of translation by simultaneously

binding to poly(A) tails of cellular mRNAs and to the eukaryotic

translation initiation factor 4G (eIF4G). This interaction allows for

the formation of circular mRNA loops by providing sites of

interaction for PABP and eIF4E [64,65], and ultimately promotes

both mRNA stability and protein translation. These studies

suggest that TTP not only functions in the mRNA deadenylation

and decay processes previously known to be affected by PABP, but

may also be involved in the mRNA translation events influenced

by PABP. As suggested previously by Wilusz et al., 2001 [66] it is

possible that a physical interaction between TTP, already bound

to its target mRNA, and PABP, could lead to dissociation of PABP

from the poly(A) tail, making the tail more accessible to 39-59

exonucleases and thus accelerated decay.

In the two hybrid screens, two fragments of hTTP (aa 150–325

and aa 223–326) from the C-terminal region pulled out several

partial prey clones of CIN85, corresponding to the N-terminal

fragments aa 4–264 and aa 4–450. The interaction of human TTP

with CIN85 was validated in co-immunoprecipitation experiments

in HEK293 cells. Binding of full-length CIN85 to TTP required an

intact C-terminal PXXXPR motif in the TTP protein, a motif

shown to interact with the N-terminal SH3 domain of CIN85.

Surprisingly, mouse TTP (mTTP), as well as other human and

mouse members of the TTP family (hZFP36L1, hZFP36L2, and

mZFP36L3), all lack this sequence. They also failed to bind to

CIN85 in the two-hybrid screen or in the co-immunoprecipitation

assays. However, when we replaced the threonine in the corres-

ponding sequence in mTTP with proline (T302P), to recreate the

human PXXXPR motif, it permitted the binding of mTTP to

CIN85. Moreover, changing the first proline in this motif to valine

(P309V) in hTTP eliminated the binding of hTTP to CIN85. These

results suggested that CIN85 binding is specific to human TTP

among the human TTP family members, and does not occur

normally in the mouse. However, the PXXXPR binding motif is

present in TTP in all other mammals tested, including rat.

In this study, binding of CIN85 to hTTP did not appear to alter

the binding of hTTP to an ARE-containing RNA probe, nor did it

alter the effect of TTP on the stability of a TNF-based mRNA

probe. One possibility is that binding of TTP to CIN85 may affect

the function of CIN85. For example, CIN85 can regulate the

activity of the protein kinase MEKK4, by alleviating auto-inhibition

Figure 7. Phosphorylation sites in hTTP co-expressed with CIN85. Panels A, B, and C are extracted ion chromatograms (EICs) for residues 66–
82 (A), 83–103 (B), and 183–194 (C) generated from nanoLC-ESI-MS runs derived from tandem MS data of ions m/z 915.4, m/z 1083.5, and m/z 658.5,
corresponding to the phosphorylated peptides 66–82, 83–103, and 183–194, respectively (Data/Fig. not shown). The normalized responses
demonstrated in the EICs are an estimation of the abundance of the ion of interest. The currents from the non-phosphorylated peptides are
represented as solid lines, and the ion currents attributed to the phosphorylated forms of the same peptides are shown as dashed lines. Duplicate
technical replicates yielded similar results.
doi:10.1371/journal.pone.0009588.g007
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and permitting auto-phosphorylation, resulting ultimately in the

activation of protein kinase pathways such as the p38 MAP kinase

pathway, involving MKK3, MKK4 and MKK6, and the JNK

pathway, through MKK7 or MKK4 [21,67,68]. MKK4 and

MKK7 can phosphorylate and activate JNK, whereas MKK3 and

MKK6 can phosphorylate and activate the p38 MAPK [67].

Figure 8. Effect of co-expressed CIN85 on hTTP binding to an RNA probe. Cytosolic extracts of HEK293 cells transfected with vector alone
(BS), or vectors expressing HA-hTTP alone and Flag-CIN85 alone, were used in RNA gel shift analysis, using a 59 biotin-labeled TNF-ARE based RNA
probe. In A, protein extracts of containing decreasing amounts of HA-hTTP incubated in the presence or absence of a constant concentration of
FLAG-CIN85 were incubated with 0.6 ng of the RNA probe. The migration positions of the hTTP-ARE complexes, the non-specific complexes seen in
the HEK 293 cell extract alone, and the RNA probe alone, are all indicated with arrows to the right of Fig. 8A. In B, 2 mg of cellular protein from FLAG-
CIN85 expressing cell extracts was incubated with or without HA-hTTP or FLAG-hTTP (1.6 mg) in the presence or absence of the respective epitope
tag antibodies. Arrows to the right of the panel are the same as in A, except for the addition of an arrow pointing to the hTTP supershifts. In C,
immunoblots were performed using 10 mg of cellular protein from the same extracts, demonstrating expression of the epitope-tagged proteins.
doi:10.1371/journal.pone.0009588.g008
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Figure 9. Effects of co-expression of CIN85 on hTTP-promoted destabilization of a TNF mRNA. In A, a CMV-driven mouse TNF-encoding
plasmid was co-transfected into HEK 293 cells (lanes 2–6, 8–12) with either vector alone or with the indicated amounts of an hTTP expression
construct in the presence or absence of 2 mg of a CIN85 expression construct. Total cellular RNA was harvested 24 h later, and used for northern
blotting. Each lane was loaded with 10 mg of total RNA. Lanes 1 and 7 were from mock-transfected HEK 293 cells. Lanes 2 and 8 were from cells
transfected with vector alone (BS+; 5 mg/plate). Lanes 3–6, were from cells co-transfected with CMV.mTNF (1 mg) and CMV.hTTP.tag (0.005, 0.05, 0.1,
and 0.5 mg/plate, respectively). Lanes 9–12 were from cells co-transfected with CMV.mTNF (1 mg) and CMV.CIN85.tag (2 mg) and CMV.hTTP.tag (0.005,
0.05, 0.1 and 0.5 mg/plate, respectively). Vector was also added as needed to make the total amount of co-transfected plasmids 5 mg/plate in each
case. As indicated, the northern blots were probed with either a 32P-labeled mTNF cDNA probe (panels 1 and 2, duplicate experiments), an hTTP
probe (panel 3), a CIN85 probe (panel 4) or a GAPDH probe (panel 5). Film exposure was 4 h and 7 h, respectively, for panels, A1 and A2 for filters
hybridized with an mTNF probe. All other filters were exposed to films for 7 h. The two parallel lines labeled TNF indicate the two species of TNF
mRNA discussed in the text. The positions of the 18S rRNA are indicated. In B are shown the phosphorimager values for both species of TNF mRNA as
a function of various TTP plasmid amounts, transfected with or without the CIN85 vector. The graph in B is from a single experiment, but is
representative of three similar experiments.
doi:10.1371/journal.pone.0009588.g009
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Through these pathways and others, MEKK4 is a major mediator

of oxidative and environmental stress such as osmotic shock, UV

irradiation, wounding, and exposure to inflammatory factors

[21,67,68,69]. MEKK4 can also bind to TNF-receptor-associated

factor (TRAF4) in TNF receptor signaling cascades, and to MAPK

in cytokine signaling [67]. CIN85 can also activate other kinases,

including Src family kinase-Cbl, activated receptor tyrosine kinases

(RTKs), and the p85a subunit of phosphatidylinositol 3-kinase (PI3-

K p85a) [18,20,70,71,72,73].

One interesting finding from this study is that the interaction of

hTTP with CIN85 led to an increase in TTP phosphorylation;

specific residues whose phosphorylation was increased following

CIN85 binding included Ser 66 and Ser 93. Strikingly, the

electrophoretic shift resulting from this phosphorylation occurred

when CIN85 binding activity was restored in mTTP, with the

T302P mutation, and the electrophoretic shift was lost from hTTP

after mutating the CIN85 binding site. This increase in hTTP

phosphorylation upon CIN85 binding led us to investigate the

possibility that a CIN85-activated protein kinase might be

involved in a three-way complex with hTTP. This was indeed

the case, since both hTTP and MEKK4 appeared to associate

with CIN85 in separate two-protein complexes, and hTTP was

found to associate with MEKK4 in the absence of exogenous

CIN85. The three proteins together appeared to form a three-

protein complex. Interestingly, the interaction of hTTP with

MEKK4 in the absence of CIN85 did not appear to lead to the

same enhanced phosphorylation of hTTP, suggesting that CIN85

binding is required for these phosphorylation events to occur.

Binding of hTTP by CIN85 may increase the phosphorylation

of hTTP by several possible mechanisms, including (1) altering the

conformational structure of TTP to make it a better kinase

substrate; or (2) recruiting protein kinases to the vicinity such as

MEKK4. This mechanism remains to be worked out. Also unclear

is the effect of this binding and increased phosphorylation of hTTP

on its activity or function. In our assays, the hyperphosphorylated

hTTP appeared to bind relatively normally to an ARE-containing

RNA probe, and to promote normally the destabilization of a

TNF transcript-based, ARE-containing RNA probe in the co-

transfection assays. These relatively crude assays cannot rule out

minor effects on quantitative aspects of these hTTP activities. It

may be that the hyper-phosphorylation of hTTP at these serine

residues affects hTTP’s intrinsic stability in cells, or its interactions

with other proteins. These and other possibilities will require

further investigation.

Materials and Methods

Yeast Two Hybrid Screening
Automated two-hybrid screening using ProNet technology was

performed by Myriad Genetics, Salt Lake City, UT, as previously

described [74,75]. To construct ‘‘bait’’ plasmids expressing hTTP

or its fragments fused to the yeast Gal4 DNA binding domain,

fragments of hTTP of approximately 150 to 300 base pairs in length

that spanned the entire protein coding region of hTTP were

amplified by PCR, and were transformed together with Gal4 DNA

binding domain vector DNA into a yeast strain with a mating-type

locus designated MAT (MATa trp1-901 leu2-3,112 ura3-52 his3-200

ade2 gal4D gal80) and selected on -Trp plates. Self-activating clones

were identified by mating with empty activation domain vector in a

MATa strain (MATa trp1-901 leu2-3,112 ura3-52 his3-200

gal4Dgal80 LYS2:GAL-HIS3 GAL2-ADE2 met2::GAL7-lacZ)

and were eliminated in the process.

Several different ‘‘prey’’ libraries encoding potential TTP-

interacting proteins were used. These were constructed from

poly(A)+ RNA derived from the following sources: Mixed human

breast cancer and prostate cancer cell lines, in a library containing

approximately 80 million clones; a normal human spleen library of

11 million clones; and a normal human brain tissue library of 60

million clones. In each case the library was cloned downstream of

the Gal4 activation domain (residues 768–881). MATa baits were

mated with MATa prey and selected on -Trp, -Leu, -His, -Ade

plates. His and Ade selections were used to isolate bait/prey

interactions. DNA extracted from yeast colonies was used to

transform E. coli, and bait plasmids were recovered through

kanamycin selection and prey plasmids by ampicillin selection.

Plasmids were re-transformed into yeast, and interactions were

confirmed by liquid b-galactosidase assays. The prey clones were

identified by DNA sequencing. DNA encoding an ARE-contain-

ing RNA derived from TNF ARE RNA (bp 1341–1364 of

GenBank accession number NM_000594.2) was cloned down-

stream of ADH and CYC1 promoters in a plasmid with a URA3

auxotrophic marker gene. Yeast carrying ‘‘bait’’ and RNA

expression plasmids were selected on –Trp, -Ura plates and

screened as above.

Plasmid Constructs
The epitope tag derived from influenza virus hemaglutinin

protein [76] was fused to the last amino acid of hTTP cDNA by

the PCR primer-overlapping mutagenesis technique and sub-

cloned into the HindIII site of vector CMV.BGH39/pBS+ to

generate HA-hTTP as described [8]. Full-length cDNAs for

human CIN85, ZFP36L1, and ZFP36L2 were sub-cloned into

CMV.BGH39/BS+ and modified with amino-terminal RGS-6His-

tags and carboxyl-terminal epitope tags, either HA or FLAG, by

insertion of oligonucleotide linkers into HindIII and ApaI digested

CMV.BGH39/BS+ to create vectors pCMV-FLAG-BGH39 and

pCMV-HA-BGH39, respectively. Restriction endonuclease

BamH1 and XbaI sites were inserted into pCMV-BGH39. A

cDNA clone for CIN85 (clone ID 3906722) was obtained from the

I.M.A.G.E. consortium through Open Biosystems (Huntsville,

AL). The mouse ZFP36L3 (pFlag-muL3) has been described [17].

Expression constructs of HA or FlagTagged Poly-A binding

protein (PABP) (GeneBank accession number BC015958) were

created by RT-PCR using total cellular RNA from HeLa cells

(ATCC catalog number CCL-2) as a template for reverse

transcription and were cloned into the Asp718 and XbaI restriction

sites of CMV.BGH39/BS+. Expression plasmids for mouse HA-

TTP and the plasmid construct CMV.mTNF-a have been

described [8]. The C-terminal deletion expression constructs of

HA-hTTP, namely, HA-hTTP 1-322, HA-hTTP 1-319, HA-

hTTP 1-313, and HA-hTTP 1-290, were kindly provided by Dr.

Wi S. Lai in our laboratory and were similarly generated by PCR

using human WT HA-hTTP as a template and sub-cloned into

the HindIII site of the vector CMV.BGH39/pBS+ as described

above [8]. Expression plasmids HA-hTTP/P309V and HA-

mTTP/T302P were generated by using WT HA-hTTP and

WT HA-mTTP respectively, in a kit from QuickChange Site-

Directed Mutagenesis (Stratagene, La Jolla, CA). Correct

sequences of all plasmid inserts were confirmed by dRhodamine

Terminator Cycle Sequencing (Perkin-Elmer Life Sciences,

Boston, MA).

An HA-MEKK4 expression plasmid was a gift from Dr. Gary

Johnson, University of North Carolina at Chapel Hill, NC, and

has been described [77]. Expression plasmids for Flag-CIN85 and

its deletion constructs have been described [18] and were gifts

from Dr. Sachiko Kajigaya, National Heart, Lung and Blood

Institute, National Institutes of Health, Bethesda, MD. The

expression plasmid HA-MARCKS (pBS-CMV/H80K-HA) was
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constructed by subcloning a 1.04 kb ECOR1/HindIII cDNA

fragment of human MARCKS containing the entire protein

coding region with an attached HA-tag into the ECOR1/HindIII

sites of pBS-CMV. The glyceraldehyde-3-phosphate dehydroge-

nase (GAPDH) cDNA has been described [40].

Cell Transfections, Immunoprecipitations and Western
Blotting

HEK 293 cells (ATCC catalog number CRL-1573) were

maintained in Minimum Essential Medium (MEM; Invitrogen)

supplemented with 10% fetal bovine serum, 100 U/ml penicillin

and 100 mg/ml streptomycin. Transient transfection was per-

formed using a standard CaPO4 procedure as described [8].

Briefly, 0.2 – 0.5 mg of plasmid DNA was transfected together with

carrier pBluescribe SK- (pBS) DNA to make a total of 5 mg per

100 mm dish. Sixteen h after the addition of DNA, cells were

washed twice with MEM at 37uC, and replenished with fresh

complete medium.

After a further 24 h of incubation, cells were washed twice with

ice-cold phosphate-buffered saline (PBS), and all liquid was

removed by aspiration. Cells were lysed by direct addition to the

culture dish of 600 ml/10 cm dish of one of two buffers. The first

was a radioimmunoprecipitation assay (RIPA) buffer (150 mM

NaCl, 1% (v/v) nonidet P-40 (NP-40), 0.5% (w/v) sodium

deoxycholate, 0.1% (w/v) sodium dodecyl sulfate, 50 mM Tris-

HCl, pH 7.5) supplemented with protease inhibitors (0.2 mg/ml

leupeptin, 0.2 mg/ml pepstatin and 0.5 mM 4-(2-Aminoethyl)

benzenesulphonyl fluoride (ICN Biochemicals, Costa Mesa, CA)).

Cell debris and buffer were scraped from the plate on ice and

extracted for a further 30 min by tumbling at 4uC. Extracts were

clarified by centrifugation at 100,0006g for 45 min at 4uC. NP-40

extracts were prepared as follows: Cells were scraped from 10 cm

dishes, combined and sedimented at 6006g for 3 min at room

temperature. PBS was aspirated and cells were gently resuspended

in a second buffer, NP-40 hypotonic lysis buffer (0.2% (v/v) NP-40,

10 mM KCl, 3 mM MgCl2, 10 mM Hepes-NaOH, pH 7.6)

supplemented with protease inhibitors as above, and incubated on

ice for 15 min. Complete lysis was confirmed by light microscopy of

cells exposed to trypan blue. Extracts were clarified by centrifuga-

tion at 22,0006g for 15 min at 4uC, the KCl concentration was

adjusted to 50 mM, and glycerol was added to a final concentration

of 10% (v/v). All extracts used in immunopurification assays were

treated with RNase. None of the extracts used in this study was

frozen prior to immunoprecipitation. Remaining extracts were

stored at –80uC for immunoblotting.

For immunoprecipitation, 1 mg of cellular protein in 1 ml of

extract in RIPA buffer was incubated at 4uC with 4 mg (20 ml) anti-

FLAG (Sigma, St. Louis, MO) or anti-HA (F-7, Santa Cruz

Biotechnology, Santa Cruz, CA) monoclonal antibody overnight,

and then added to 100 ml (packed volume) protein A Sepharose 4B

beads (Pharmacia, Uppsala, Sweden) and mixed on a rotator (BD,

Franklin Lakes, NJ) for 3 to 4 h at 4uC. Beads were washed by

centrifugation at 10006g for 1 min 3 times with 1 ml of lysis

buffer. SDS sample buffer was added directly to the beads.

Western blotting was performed using 50 mg of protein in cellular

extracts mixed with a 1/5 volume of 56SDS sample buffer, boiled

for 3 min, and then loaded onto SDS–10% PAGE gels. Western

blotting was performed by standard techniques. Membranes were

incubated in Tris-buffered saline–0.5% Tween 20 with either

polyclonal antiserum HA.11 (1:2,500), or with anti-FLAG antibod-

ies directly coupled to horseradish peroxidase, as appropriate. In

some instances, other rabbit polyclonal antibodies were used,

including anti-nucleolin (C23, Santa Cruz Biotech. Inc., Santa

Cruz, CA), anti-HSP70 (K-20 from Santa Cruz) or anti-CIN85

(HQ-17, Sigma). Incubation of membranes with secondary anti-

bodies and development were as described elsewhere [39].

Immunofluorescence and Confocal Microscopy
For immunostaining, cells were cultured on glass cover slips

(Ted Pella Inc; Redding, CA) and transfected with the FLAG- or

HA-tagged constructs using the Fugene 6 reagent (Roche Applied

Science). Two days after transfection, cells were washed twice with

PBS and fixed with 3.7% (v/w) formaldehyde for 10 min at room

temperature, permeabilized with 0.5% (v/v)Triton X-100, and

stained with mouse anti-FLAG monoclonal antibody M2 (Sigma)

and rabbit anti-HA polyclonal antibody Y-11 (Santa Cruz

Biotechnology), followed by fluorescein isothiocyanate-labeled

goat anti-mouse secondary antibody Alexa Fluor 488, or

rhodamine-conjugated goat anti-rabbit secondary antibody Alexa

Fluor 594 (Invitrogen), as appropriate. The stained cells were

mounted with DAPI-VECTASHIELD mounting medium with 49,

6-diamidino-2-phenylindole (Vector Laboratories) to visualize the

nuclei. Stained proteins were visualized by confocal microscopy

using a FluoViewTM laser scanning epi-fluorescence Olympus

FV1000 microscope.

Northern Blotting
For northern analysis, HEK 293 cells were transfected as

described above. Twenty-four hours after the removal of the

transfection mixture, total cellular RNA was harvested using the

illustra RNAspin mini RNA isolation kit (GE Healthcare,

Buckinghamshire, UK). Northern blots were prepared as de-

scribed elsewhere [8]. Blots were hybridized to a randomly

primed, a-32P-labeled mTTP cDNA [8] or a ,1-kb NarI-BglII

fragment of mTNF cDNA. Some blots were also hybridized

with an a-32P-labeled glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) cDNA probe [40] or with a 570-bp PCR product

(nucleotides 634–1203; GenBank accession number NM_031892)

of a CIN85 cDNA [18].

RNA Electrophoretic Mobility Shift Assay
Cytosolic extracts (2 mg of protein) prepared from HEK 293

cells transfected with vector alone, or with expression constructs

driven by the CMV promoter, were incubated with 0.6 ng of 59

biotin-labeled human TNF-ARE probe (Invitrogen Corp, CA) at

room temperature for 20 min in 20 ml of lysis buffer (without

protease inhibitors) containing 10 mM Hepes (pH 7.6), 40 mM

KCl, 2.5% (v/v) glycerol and 3 mM MgCl2. Heparin and yeast

tRNA were added to final concentrations of 2.5 mg/ml and 50 ng/

ml, respectively, for an additional 10 min. RNA not associated with

protein was digested with 100 U of RNase T1 for 20 min at room

temperature; the reaction mixture was then loaded onto a 6%

nondenaturing acrylamide gel and subjected to electrophoresis at

160 V for 90 min, in 0.4 X Tris-borate-EDTA buffer. Gels were

transferred to Biodyne B nylon membranes (0.45 mm) (Thermo

Scientific, IL) in 0.4 X Tris-borate-EDTA buffer at 80 V for 1 hr.

Unbound probe and RNA-protein bound signals were detected

using a stabilized streptavidin-HRP conjugate antibody in a

chemiluminescent nucleic acid detection module kit (Thermo

Scientific, IL), per the manufacturer’s instructions, and exposed to

BIOMAX MR films from Kodak.

Dephosphorylation of hTTP
Some samples of hTTP lysates overexpressed in HEK 293

cells were dephosphorylated with calf intestinal alkaline phospho-

tase (CIAP) (Invitrogen Corp., Carlsbad, CA) as described

previously [35].
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Analysis of Phosphorylation Sites in hTTP
For in gel digestion of proteins, phosphorylation sites from

eluted samples of hTTP from HEK-293 cells overexpressing Flag-

hTTP alone, or Flag-hTTP and HA-CIN85 together, were

analyzed by performing MALDI-MS and ESI-MS on hTTP

tryptic peptides that were extracted from the polyacrylamide gels.

In brief, clarified supernatants of cell lysates in RIPA buffer were

subjected to a Flag-peptide affinity column, and hTTP was eluted

using 3XFlag peptides as per the manufacturer’s instructions

(Sigma). Gel bands were excised manually and digested with

trypsin (Promega) for 8 h in an automated fashion with a Progest

robotic digester from Genomic Solutions. Resulting peptides were

lyophilized and then resuspended in 35 ml of 0.1% formic acid.

For phosphopeptide enrichment, TiO2 tips (Glygen) were

employed using essentially the manufacturer’s recommended

protocol.

A variety of MS and affinity techniques were employed in efforts

to identify sites of phosphorylation on hTTP. ESI-MS (see below)

was performed on hTTP peptides that were from solution digests

or extracted from polyacrylamide gels with and without MOAC

enrichment. Candidate phosphorylated peptides determined by

automated database searching were manually validated. Once

sites were identified, nanoLC-ESI-MS experiments were per-

formed on hTTP digests in efforts to obtain information on the

relative extent of phosphorylation at the identified site using

approaches essentially as described [78].

NanoLC-ESI-MS and MS/MS analyses were performed on

hTTP digests using an Agilent 1100 nanoLC system on-line with

an Agilent 6340 ion trap mass spectrometer with the Chip Cube

Interface. Briefly, 20 ml of hTTP digest were loaded onto an

Agilent C18 chip (75 mm643 mm) followed by a 15 min wash of

5% acetonitrile, 0.1% formic acid. Peptides were eluted by

applying a linear gradient from 5% acetonitrile, 0.1% formic acid

to 50% acetonitrile, 0.1% formic acid to the column over 45 min.

This was followed by a 5 minute gradient from 50% acetonitrile,

0.1% formic acid to 95% acetonitrile, 0.1% formic acid and then a

10 minute hold at 95% acetonitrile, 0.1% formic acid. The mass

spectrometer was used in the positive ion, standard enhanced

mode and included settings of a mass range from 200 to 2200 m/

z, an ionization potential of 2.1 kV, an ICC smart target of

100000 ions accumulated in the trap or 200 milliseconds of

accumulation, and a 1.0 volt fragmentation amplitude. MS/MS

data were acquired using a data dependent acquisition format,

with the six most abundant ions from each MS scan further

interrogated by MS/MS. The automated switching for MS/MS

required a threshold of 5000 counts.

For automated database searching, peak lists were generated

from the data obtained from each nanoLC-ESI-MS/MS analysis

using the Data Extractor feature of the SpectrumMill software

from Agilent. The resulting extracted data were then searched

against the NCBI non-redundant database using the MS/MS

Search function in the SpectrumMill software. Search settings

included enzyme specificity with up to two missed cleavages

allowed, a precursor ion mass tolerance of 1.5 Da, a product ion

mass tolerance of 1.0 Da, variable methionine oxidation, serine,

threonine, and tyrosine phosphorylation, and a minimum matched

spectral intensity of 70%. Sequence assignments of MS/MS

spectra were manually validated.
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