
A PubMed-Wide Associational Study of Infectious
Diseases
Vitali Sintchenko1,2,3*, Stephen Anthony1, Xuan-Hieu Phan1, Frank Lin1, Enrico W. Coiera1

1 Centre for Health Informatics, University of New South Wales, Sydney, New South Wales, Australia, 2 Centre for Infectious Diseases and Microbiology, Sydney Medical

School, The University of Sydney, Sydney, New South Wales, Australia, 3 Institute of Clinical Pathology and Medical Research, Westmead Hospital, Sydney West Area

Health Service, Sydney, New South Wales, Australia

Abstract

Background: Computational discovery is playing an ever-greater role in supporting the processes of knowledge synthesis. A
significant proportion of the more than 18 million manuscripts indexed in the PubMed database describe infectious disease
syndromes and various infectious agents. This study is the first attempt to integrate online repositories of text-based
publications and microbial genome databases in order to explore the dynamics of relationships between pathogens and
infectious diseases.

Methodology/Principal Findings: Herein we demonstrate how the knowledge space of infectious diseases can be
computationally represented and quantified, and tracked over time. The knowledge space is explored by mapping of the
infectious disease literature, looking at dynamics of literature deposition, zooming in from pathogen to genome level and
searching for new associations. Syndromic signatures for different pathogens can be created to enable a new and clinically
focussed reclassification of the microbial world. Examples of syndrome and pathogen networks illustrate how multilevel
network representations of the relationships between infectious syndromes, pathogens and pathogen genomes can
illuminate unexpected biological similarities in disease pathogenesis and epidemiology.

Conclusions/Significance: This new approach based on text and data mining can support the discovery of previously
hidden associations between diseases and microbial pathogens, clinically relevant reclassification of pathogenic
microorganisms and accelerate the translational research enterprise.

Citation: Sintchenko V, Anthony S, Phan X-H, Lin F, Coiera EW (2010) A PubMed-Wide Associational Study of Infectious Diseases. PLoS ONE 5(3): e9535.
doi:10.1371/journal.pone.0009535

Editor: Igor Mokrousov, St. Petersburg Pasteur Institute, Russian Federation

Received November 26, 2009; Accepted February 11, 2010; Published March 10, 2010

Copyright: � 2010 Sintchenko et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: We acknowledge the financial support from the Australian Research Council (LP0667531), National Health and Medical Research Council and the
Cerebral Palsy Institute. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: vitali.sintchenko@sydney.edu.au

Introduction

The rapid accumulation of scientific information continues to

challenge our capacity to synthesise a collective view of knowledge

in different disciplines, and hinders discover of anomalies that are

unexplained or not congruent with current theories [1,2].

Uncovering such anomalies can be a potent catalyst to translational

research and recently computational discovery has shown promise

in supporting these processes of knowledge synthesis and anomaly

detection [3]. Text mining the scientific literature offers an

opportunity to discover new relationships currently hidden within

individual publications, literally ‘joining the dots’ across interdisci-

plinary collections [4]. For example, our current understanding of

disease phenomena is inherently multi-layered, including phenome,

genome, proteome and biochemical pathways [5]. The systematic

association of genes and phenotypes has been a fruitful approach in

biomedical knowledge discovery [6,7,8] and several information

retrieval systems have been proposed to assist researchers in the

field of human genetics and basic microbiology [9-15]. Such

systems rely on the mining of MEDLINE text [9,10] or employ a

similarity-based inference of disease genes [11,12]. However, they

focus primarily on either molecular level host-pathogen interactions

[13–15] or pathway analysis [16] and do not link the characteristics

of pathogens to clinical syndromes, which significantly limits their

value for translational research. Others have undertaken uncon-

strained searches of this space, without reference to available

biological knowledge that could direct the search for meaningful

relationships [6].

In this study we develop approaches to find and quantify

existing but hidden relationships between clinical syndromes and

individual pathogens in order to detect meaningful associations

across multiple scales. This knowledge involves different types of

biomedical entities (e.g., genes, pathogens, drugs) and events

(syndromes and diseases), which can be expressed using standard

terms or as relationships among such objects [17]. We believe

infectious diseases can act as an illustrative example of the broader

potential for multi-scale text association studies in biology and

translational research.

Results

Mapping the Infectious Disease Universe
A total of 12,631 pairs of infectious disease syndrome and

pathogen names were identifiable in 589,694 individual articles
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(6.2% of the total pool of abstracts in NCBI PubMed [8]). The top

twenty associations by frequency of co-occurrence and their

strengths of association are reported in Table S1 (Supporting

Online Material-SOM). Co-occurrence was measured by the

frequency with which any two entities - pathogens, infectious

disease syndromes, and so on - are found in the title or abstracts of

individual published, peer-reviewed manuscripts stored in

PubMed. Names were based upon a standardized hierarchy of

pathogens and syndromes (see SOM for detail). The domain of

infectious diseases was then represented as a 2x2 matrix of

associations between pathogens and clinical syndromes (Fig. 1).

Each line in this ‘heat map’ visualises the pattern of syndromes

linked to a single microorganism, or the pattern of microorganisms

linked to a syndrome of interest (Fig. 2 and Figures S1, S2).

Evaluation of our text mining algorithms demonstrated high levels

of retrieval accuracy (e.g., 100% recall, 89.3% precision and an F

measure of 94.3 for syndrome-pathogen associations; Table S2).

Dynamics of Literature Deposition
Temporal trends in the co-occurrence of syndromes and

pathogens were explored (Fig. S3). Pathogen-syndrome associa-

tions were time-stamped by publication date to illuminate the rise

and fall of topics in infectious disease research. While the

landscape in the last decades of the 20th century has been

dominated by reports related to HIV and Escherichia coli (the ‘‘work

horse of bacterial genomics’’), new trends are emerging.

Specifically, respiratory tract infections due to viruses and bacteria

and sepsis, bacteremia and wound infections have been reported

in PubMed with greater frequency in the last decade than any

other topic apart from HIV-related research. Specific examples of

Figure 1. Systematic mining of publicly available biomedical text combines literature mining and the genome analysis of associate
genes and phenotypes. Words describing infectious disease related syndromes, names of pathogens and names of individual genes obtained
from [32,33] and CMR database are retrieved from PubMed abstracts [31]. Syndrome-pathogen and microbial genus-syndrome word pairs with a
point-wise mutual information (PMI) scores, respectively, greater than 20 and 5 suggestive of informative associations which are visualized as ‘heat
maps’. (A) Initial representation of raw counts of PMI scores for all pairs of syndrome-genus name of a pathogen. (B) Preferential co-occurrence of
specific syndromes and pathogen names is emphasized by hierarchical clustering. (C) ‘Doppler’ map of syndrome-pathogen associations revealing
clusters of increased interest, which are judged by the rapid growth in the number of publications. An example of highly clustered pathogen
Mycobacterium is then explored further by building the heat map of associations between syndromes and the list of individual Mycobacterium
species, then by zooming into the heat map of associations between the list of syndromes and individual genes of Mycobacterium tuberculosis H37Rv.
Individual genes not mentioned in the searched collection of abstracts were not included in the heatmap. Clusters of associated syndromes and
pathogens include many previously known relationships.
doi:10.1371/journal.pone.0009535.g001

Landscape of Infections
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‘hot topics’ included clinical syndromes caused by coronaviruses

and hepatitis associated with the Ureaplasma infection. Further-

more, the use of timelines facilitates the detection of emerging

infectious disease syndromes from the PubMed corpus. For

example, the co-occurrence frequency of West Nile virus and

‘encephalitis’ syndrome exceeded its expected historical levels in

2000 and peaked in 2006, and the pairing of terms ‘‘Chikungunya

virus’’ and ‘‘arthritis’’ emerged in 2007 (Fig. S4).

Zooming in from Pathogen to Genome Level
This associational space of clinical syndromes and pathogen

genus names was next extended to visualise ‘syndrome-pathogen-

species’ and ‘syndrome-pathogen-gene’ associations. 1119 and 757

gene names have been located in annotated genomes of

Mycobacterium tuberculosis H37Rv and Staphylococcus aureus

MRSA252, respectively (http://cmr.jcvi.org/tigr-scripts/CMR/

CmrHomePage.cgi). Individual genes of Staphylococcus aureus were

cited in 1890 abstracts or 10.8% of papers in which S. aureus was

mentioned alongside infectious disease syndromes. Similarly, locus

names and gene names of Mycobacterium tuberculosis were mentioned

in abstracts of 340 articles or 7.3% of PubMed abstracts in which

M. tuberculosis co-occurred with disease phenotypes. Figure 3

provides a snapshot of two levels of this associational landscape:

the distribution of syndromes most frequently associated with

different species of Mycobacteria and the selection of syndromes

found to be linked to different genes in the M.tuberculosis H37Rv

genome. These associations between individual genes and

syndromes both recapitulate already known links but also generate

new testable hypotheses that could reveal novel mechanisms of

microbial virulence. For example, the role of molecular chaper-

ones encoded by the dnaA gene in macrophage evasion has been

reported after our experiment was completed [18]. Another gene

identified in the study - the cell division protein gene (fts) - has been

recently chosen as a new target for drug discovery [19]. These

observations suggest further attention should be paid to the role of

outer membrane protein A gene (ompA), - ‘‘a molecular Swiss army

knife’’ [20], - in tuberculous pneumonia, as well as to the effects of

the potassium uptake system, regulated by the M.tuberculosis trkB

gene, in the pathogenesis of tuberculous retinitis (Fig. 3) [21].

Other examples of the knowledge rediscovery included associa-

tions between infectious disease syndromes and phoP [22], aroA

[23] and htrA genes [24].

Discovery of New Associations
The set of syndromes co-occurring with individual microorgan-

isms can be thought of as a disease signature for each pathogen

(Fig. 4). The diversity of such pathogen signatures may allow them

to be used for syndromic surveillance of pathogens [17]. These

relationships were identified using point-wise mutual information

scores (PMI) and then used to construct a pathogen similarity tree,

which has several interesting features (Fig. 5). A subset of bacteria

including staphylococci, streptococci and Pasteurella together with

Figure 2. Associations between individual Mycobacterium species and infectious disease related syndromes.
doi:10.1371/journal.pone.0009535.g002

Landscape of Infections
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Pneumocystis were clustered together reflecting their association

with invasive disease. These high-grade extracellular pathogens

appeared to neighbour opportunistic bacteria such as Klebsiella

and Enterococci, which are characterised by a relatively low

propensity to cause disease but a more aggressive behaviour in

situations when they reach unprotected sites (blood, tissues) or

when the host immune system is defective. In contrast, the

majority of virulent viruses such as Retroviridae, Picornaviridae

and Myxoviridae, along with Mycobacteria, Legionella and

Chlamydia, were clustered with other pathogens characterised

by intracellular mechanisms of microbial survival and attack. The

virulence potential of individual pathogens appears proportional to

the distance from the root of the tree (Fig. 5).

We also generated syndrome-pathogen, syndrome and pathogen

networks to identify highly connected syndromes and pathogens

(Fig. 6). The top 30 most connected nodes by syndrome and by

pathogen are reported in Table S3. The four most connected

syndromes and pathogens were, respectively, ‘‘pneumonia’’,

‘‘enteritis’’, and ‘‘peritonitis’’ and ‘‘abscess’’ as well as ‘‘Retro-

viridae’’, ‘‘Staphylococcus’’, ‘‘Herpesviridae’’ and ‘‘Streptococcus’’

(Table S3, and Fig. S5). Networks of pathogens at the species level,

and networks of individual genes in microbial genomes linked to

infectious disease syndromes, were also constructed (Fig. 7). For

example, genes involved in DNA repair (e.g., recA (Rv2737)),

synthesis of outer membrane proteins and drug resistance

mechanisms (e.g., gyrA (Rv0006), rpoB (Rv0667)) were most

frequently cited in relation to infectious disease syndromes.

Discussion

We describe a new system that we expect to improve the

discovery and assessment of infectious diseases, with broader

potential for biomedicine. Rather than engaging in a ‘model-free’

approach to text mining adopted by others, where the frequencies

of all words are analysed irrespective of their meaning, we have

only mined those associations directly related to the discovery task

at hand. The use of multilevel representations enables the

construction of ‘zoomable’ associational maps with multiple views.

Patterns for particular pathogens can be zeroed in on by moving

from the initial high-level of microbial genus to the species

taxonomy level, and subsequently onto the individual genome

level (Fig. 1C).

To demonstrate the power of this approach we suggest a more

clinically relevant alternative to the traditional evolutionary

classification of pathogens, based upon their clinical syndrome

associations. The initial metrics used to develop such a taxonomy

may also be useful for building clinical risk assessment and decision

support systems. Our approach readily separated pathogens

Figure 3. Landscapes of tuberculosis. Examples of species (A) and genome level (B) views of the tuberculosis landscapes with the selection of
associations that suggest new hypotheses for testing. Peaks represent counts of co-occurrences of concepts. The table provides examples of
associations between individual genes of M. tuberculosis H37Rv and syndromes (re)discovered in the experiment.
doi:10.1371/journal.pone.0009535.g003

Landscape of Infections
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capable of causing the broad spectrum of syndromes (e.g.,

Staphylococcus spp, Streptococcus spp, Mycobacterium spp) from microor-

ganisms responsible for a limited range of conditions (Arcanobacter-

ium, Gemella, Wuchereria). Interestingly, co-occurrence counts and

PMI scores detected different phenomena with the latter

identifying non-trivial associations. Examples of the most fre-

quently detected associations include ‘‘hepatitis + Picornaviridae’’,

‘‘ulcer + Helicobacter’’, ‘‘neuroretinitis + Bartonella’’ (well known

– a validation of the method), ‘‘epididymoorchitis + Brucella’’ (an

unexpected finding confirmed by literature follow-up) (Table S1).

Hierarchical clustering illuminates syndromes and specific path-

ogens that are more frequently associated with viral infections such

as hepatitis, encephalopathy, myocarditis and uveitis.

This visualization approach thus permits the integration of

different frames of reference to support hypothesis testing and

generation. Such knowledge integration should help the search for

strategic and tactical targets for scientific enquiry. For example, it

can guide the prioritization of microbial sequencing. Currently,

there are two schools of thought about the use of high-throughput

gene sequencing in microbiology. One relies on the systematic

sequencing of individual representatives for every phylogenetic

node of the microbial Tree of Life [25]. The other argues that the

focus should be switched from indiscriminate microbial analysis to

the sequencing of classes of microbes of high relevance to human

health, industry or the environment. However, no specific

strategies for selecting such high-relevance species of microorgan-

isms have been offered, despite the large publicly available datasets

of microbial genomes. The accelerating pace of genomic

sequencing and the increasing number of genes addressed in

single studies and in high-throughput experimentation means that

this corpus is growing. New approaches to extracting key findings

and linking them to genes are therefore urgently needed.

Figure 4. Syndromic signatures quantify differences between pathogens. Radar chart scale reflects the frequencies of co-occurrence of
individual pathogen genus names and infectious disease syndromes.
doi:10.1371/journal.pone.0009535.g004

Landscape of Infections
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A comparison of the distributions of highly cited pathogens in

our study and fully sequenced microbial genomes reveals many

gaps between the microbial genomes considered for full sequenc-

ing and those pathogens which are clinically relevant or cause

high-burden diseases with epidemic potential (Fig. S6). It seems

that geneticists focus either on pathogens with relatively short or

well-characterized genomes such as viruses or E. coli. Viral

genomes have attracted much sequencing effort with scores of

different viruses representing Picornaviridae, Retroviridae and

Caliciviridae already fully sequenced. The overrepresentation of

viruses among the pathogens with completely sequenced genomes

is likely to in part be a reflection of the relative ease of sequencing

of them, given their genome size. Yet equally important pathogens

representing Neisseria, Staphylococci and Streptococci and some

epidemic parasites remain under-sequenced. The relative impor-

tance or degree of clinical and public health relevance of a

pathogen can be expressed as a function of citation frequency (a

proxy for importance) and of the relative frequency of syndromes

co-occurring with this pathogen (Fig. S7). Such an information

theoretic approach may have merit for prioritizing sequence

analyses. However, confounding factors such technological

advances that affect publication and molecular database volumes

will add ‘noise’ to the analysis of temporal trends.

A key insight into computationally identifying nontrivial

associations is that one has to consider one-to-many relationships

when exploring biological entities. Such relationships can be

captured and visualized by associational networks [26]. Network

data structures are amenable to computational analyses which

may help to uncover non-obvious properties of nodes and

relationships between them. Networks of relationships suggest

common mechanisms of disease between pathogens sharing

common syndromes. Such analyses could provide new insights

in the pathology of infectious diseases. Network topography can

also imply biological similarity in disease epidemiology and is

especially relevant for our understanding of polymicrobial

infections. Therefore the indirect relationship and close proximity

of Retroviridae with Mycobacterium nodes as well as Herpes simplex

virus, Staphylococcus and Picornaviridae nodes in the network

topology are of interest. It is likely that generating networks of

microbial genes common to such clusters will offer specific insights

about the rationale for higher-level syndrome-pathogen networks.

An important capability of network representations is their

Figure 5. Clinically relevant reclassification of pathogens. Maximum parsimony tree represents the distance matrix of associated syndromic
signatures.
doi:10.1371/journal.pone.0009535.g005
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capacity to relate entities of one dimension (e.g., syndromes) to

entities from another dimension (pathogens) (see Fig. 6 and Fig.

S4). Our approach explores the power of conducting large-scale

association studies in text, and does not address finer detailed

semantic issues such as negation, speculation, and context-

dependent relations. Further work on the identification of

Figure 6. Associational network representation of syndrome-pathogen relationships. (a) Hypothetical network of syndromes and
pathogens with edges representing the number of co-occurences in the text (mixed syndrome-pathogen network). (b) Hypothetical network of
syndromes linking syndromes that co-occur with the same pathogens (syndrome only network); the length of the edge is inversely proportional to
the number of shared pathogens. (c) Hypothetical network of pathogens linking pathogens that co-occur with the same syndromes (pathogen only
network); the length of the edge is inversely proportional to the number of shared syndromes. Syndrome-pathogen (d), syndrome (e) and pathogen
(f) networks built from text mining experiments; the size of a node represents the number of citations. The most highly connected nodes are in the
middle. The edge per node distribution for each network is shown in respective graphs (g, h, i). Specific subsets of networks and lists of the most
connected nodes can be found in SOM.
doi:10.1371/journal.pone.0009535.g006

Landscape of Infections
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semantic relationships should increase the effectiveness of text

mining for hidden associations and potentially distinguish

‘negative’ associations. Natural language processing techniques

such as semantic role labelling can identify predicates and their

corresponding semantic arguments, leading to the uncovering of

specific relations between entities, such as causation, expression,

translation, and regulation [5,8]. This level of semantic analysis

should provide an opportunity to investigate more complex

relations by employing inference techniques over the networked

relationships that are discovered.

Figure 7. Associational networks of syndromes and pathogens. Examples of associational networks of syndromes (A), pathogens (B) and
genes of an individual species (C). Node size depics the number of citations. Edge distance between two nodes is inversely proportional to the
number of pathogens (A), syndromes (B and C) shared by concepts of nodes. The thickness of an edge is proportional to the normalised number of
co-occurrences. Minimum number of co-citations with other pathogens for each entity in the network A to be included in this network was 15. The
individual species gene associational networks (B) are presented using M.tuberculosis H37Rv genome as an example. Gene names and gene locus
numbers are presented.
doi:10.1371/journal.pone.0009535.g007

Landscape of Infections
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Two points are worthy of note. First, we have demonstrated the

rediscovery of biomedical associations directly from publicly

available repositories. Such explorations of ‘‘hidden public

knowledge’’ have previously made predictions that were later

confirmed by experimentation [27,28]. Many applications exist for

this approach, in fields ranging from biomedicine to systems

biology, where significant gaps in knowledge still exist despite an

abundance of data [13,28,29]. The future success of these

applications depends heavily on the development of infectious

disease ontologies that establish hierarchies for search entities and

further improvements in the accuracy of text mining classifica-

tions. Second, the genomic layer provides a biological context for

the visualisation and interpretation of data, and serves as a

gateway to information stored in public databases (genome map

viewers such as Gbrowse) [30], GMOD [31] and biochemical

pathway databases such as KEGG [32], which can be visually

explored from our maps. However, there are important differences

between our approach and studies that have focused on finding

pathways within metabolic networks using specific enzyme and

substrate names. First, such studies often rely on mining full text

articles and/or curated databases [6,13,33], whereas we only use

article abstracts. Secondly, our approach couples associations

between disease phenotypes and pathogens on three levels

(disease-microbial genus, disease-microbial species and disease-

microbial genome). Our system should encourage researchers to

leave their ‘disease ghettoes’ and break interdisciplinary barriers

by linking entities that have been historically studied by different

sub-disciplines of virology, mycology, parasitology, mycobacter-

iology, immunology and dermatology, among others.

Several limitations and challenges to our global exploration of

the collection of available papers in Medline should be

acknowledged. First, literature-wide association studies are open

to publication bias [8,9,28,33] and our findings confirm the high

proportion of papers addressing a limited number of high-visibility

infectious diseases such as HIV and tuberculosis. Second, the

importance of the quality of terminology lists cannot be overstated.

In this study, we have deliberately narrowed our focus to common

infectious disease syndromes avoiding entities describing the

individual symptoms of diseases or pathological findings, such as

‘stridor’ or ‘epidermoplasia’, for example. Thus, we have

potentially limited the quality of our search output. Increasing

the complexity of terminology lists would further enhance the

power of analyses. Third, the specificity of the names of syndromes

may be lower than the specificity of names of genes or enzymes

because of the nature of molecular and clinical data [28]. The

relationship between a disease phenotype and a pathogen may

sometimes be ambiguous as disease phenotypes often reflect

universal pathobiology and the spectrum of clinical presentations

at different time-points in the natural history of a disease.

However, our findings support recent observations [6,33] that

such phenotypes can still be useful for text mining. It is likely that

further classification of phenotypes enriched by new standard

ontologies and disease outcome entities [34] may improve this

perceived specificity of disease phenotypes. Equally, because

related terms appear with such high frequencies, they should

often be easily resolved because of their tendency to statistically

cluster.

There is a growing demand for an integrated ‘helicopter view’

of research information to enable more targeted and balanced

research priority assessment and monitoring. Techniques that

capture diversity and illuminate commonalities across different

domains are likely to enhance our capacity for hypothesis

generation and integrative research. Might this process diminish

the role of bench-top discoveries in the future? Quite the contrary:

scientists may use processes such as these to help focus on

interesting phenomena and explain their meaning more rapidly.

Our findings should thus facilitate a system science approach to

biomedicine.

Materials and Methods

Data Sources
The 2009 MEDLINE/PubMed Baseline Distribution [35] with

17,764,826 citations, which includes 9,569,350 citations with

abstracts, was utilized as the data source. A list of syndromes

associated with infectious diseases (108 items) was modified from the

National Cancer Institute (NCI) Metathesaurus Taxonomy (http://

nciterms.nci.nih.gov/NCIBrowser/Dictionary.do) and from the

SNOMED-CT (see Table S4 for detail). Names of infectious

diseases syndromes or diseases uniquely associated with specific

pathogens such as malaria, tuberculosis, dengue, psittacosis etc were

excluded from the list. A list of microbial pathogens was compiled

from the NCBI GenBank taxonomy database [36] and indexes of

two authoritative reference texts in clinical microbiology and

infectious diseases [37,38]. The pathogen list (Table S5) included

facultative and opportunistic pathogens of humans representing

viral, prokaryotic and eukaryotic facultative and opportunistic

pathogens (241 items) [39]. Lists of gene names or genomic locus

names were downloaded from files of fully sequenced genomes

available from the Comprehensive Microbial Resource (CMR)

(http://cmr.jcvi.org/tigr-scripts/CMR/CmrHomePage.cgi). We

thus identified 1119 Mycobacterium tuberculosis genes that listed both

a gene symbols and locus identifiers. For example, the M. tuberculosis

H37Rv genome contained 1476 such gene symbols.

Text Mining and Discovery of Associations
Each PubMed abstract was indexed for each mention of a

syndrome, pathogen or gene name in our lists, using the full-text

indexing capabilities of the Postgres Database Management

system. The SPECIALIST lexicon [34] supported detection of

variants in syndrome and pathogen nomenclature (e.g., M.tuber-

culosis; M. tuberculosis), spelling (e.g., hemolytic-uremic syn-

drome; haemolytic-uremic syndrome; diarrhoea; diarrhea etc) and

clinical abbreviations (e.g., toxic shock syndrome toxin; tst; TSST;

Methicillin resistant Staphylococcus aureus; (MRSA); Shiga-toxin

Escherichia coli; STEC etc). Word stemming was employed to

allow approximate matches and increase recall (e.g. ‘‘Black Creek

Canal virus’’ matched variants such as ‘‘Black Creek Canal (BCC)

virus’’ and ‘‘Black Creek Canal virus (BCCV)’’).

Co-occurrence of biomedical terms was measured. The title and

abstract recapitulate the content of articles and provide a robust

proxy for the full text [40]. If A is the set of documents that refer to

an entity a, and B is the set that include entity b, then n(A>B)

provides the frequency of co-occurrence [41]. The strength of

association between any two concepts from the lists was measured

by their point-wise mutual information (PMI), defined as the

logarithm of the deviation between the observed frequency of the

terms and of the expected frequency if they were independent

[42,43]:

PMI~log2 P x,yð Þ=P xð ÞP yð Þð Þ

Relative frequency of citations for a pathogen reflects the weight

of this pathogen in the corpus of knowledge and is calculated as

the number of citations for this microorganism divided by the total

number of citations for all pathogens. Relative frequency of co-

occurrence with infectious disease related syndromes is calculated

Landscape of Infections
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by dividing the number of individual pathogen co-occurrence with

infectious disease related syndromes to the total number of

citations for those syndromes.

System Evaluation
Our concept indexing was evaluated by manual review of the

labelling made by our system for 100 abstracts. This collection of

abstracts contained 215 and 108 entities representing pathogens

and syndromes, respectively. Standard information extraction

metrics were then calculated including recall (R), precision (P), and

F-measure [8,43]. Recall is defined as the percentage of the

system’s correct hits or ‘true positives’ compared to all annotated

items, including those that were missed or ‘false negatives’ (TP/

(TP + FN)). Precision is defined as the percentage of true positives

among all the extracted items, including spurious hits or ‘false

positives’ (TP/(TP + FP)). The F-measure is a harmonic mean of R

and P, defined as (2 x R x P/(R + P)). The closer the precision and

recall are, the closer the F-measure score is to a standard average

[44]. The recall, precision and F-measure scores are presented in

Table S2.

Knowledge Space Representation
The indexed abstracts were searched for each co-occurrence of

a syndrome or pathogen, and each occurrence of each unique

pairing counted [6,8]. The search was repeated for Syndromes

against entities representing different layers of knowledge: (1)

Pathogen genus (e.g., Mycobacterium) (2) pathogen species names

(e.g, Mycobacterium tuberculosis), (3) individual species genome (e.g.,

Mycobacterium tuberculosis H37Rv gene symbols), (4) viral pathogens

(i.e. names of viral family and individual human viruses). The

colour or ‘‘heat’’ of a particular pairing was based on the number

of documents that contained the pair. Two versions of matrices

were generated: one based on counts of co-occurrences and

another one based on PMI scores. Either PMI or a logarithmic

scale of counts was used. Hierarchical clustering was next

employed using a standard Euclidean distance measure to

calculate the dissimilarity between rows and columns [45]. Each

row and column is initially assigned its own cluster. The algorithm

successively merges the two most similar clusters based on the

distance function until there is one single cluster.

Time course of publications was represented by Doppler graphs

extracted from the PubMed collection which spanned the years

1913–2008 [33]. For each pair of syndrome and pathogen, we

calculated the total number of abstracts that contained the pair for

a given year, and its median year. We normalised the results with

respect to the growth in annual publication count across PubMed

by placing each pair’s median year into one of five time periods,

each containing one fifth of the cumulative infectious diseases

corpus. The middle quintile corresponded to the median of all

publications. The location of a median of a given pair was then

assigned a hotter value if it was in the top 2 quintiles (postdating

the median of all publications) or a cooler value if it was in the first

two quintiles (predating the total median).

The patterns of syndromes and pathogens were aligned and

maximum parsimony trees were built with BioNumerics 4.0

(Applied Maths, Sint-Martens-Latem, Belgium), which included

the test for confidence intervals by bootstrapping (100 replicates).

Associational Networks of Syndromes and Pathogens
The frequency counts of the co-occurrence of syndrome pathogen

(or gene) pairs were used to generate different networks. Utilising an

interactive tool [http://purl.org/infectious/associations] a number

of associational networks were developed, emphasising the distance

between syndromes as a function of their common pathogens, or the

distance between pathogens, as a function of their common

syndromes. In all views, node size represents the total frequency

of the term appearing in a unique PubMed abstract.

In the syndrome network, the length of the edge connecting two

syndromes is the inverse of the count of common pathogens. Edge

thickness is the number of exclusive common documents. This

allowed counting of abstracts that contained several different

entities of syndromes and pathogens only once. Thickness was

calculated as follows. Given two syndromes s1 and s2, and two

viruses v1 and v2:

s1 and v1 co-occur in documents X11~ 1,3,4,6f g

s2 and v1 co-occur in documents X21~ 2,3,4,7,9,10f g

s1 and v2 co-occur in documents X12~ 2,4,7f g

s2 and v2 co-occur in documents X22~ 1,4,5,7,8f g

The following example illustrates how edge thickness (T) was

calculated:

T~ (X11unionX21)\(X11intersectionX21)j j

z (X12unionX22)\(X12intersectionX22)j j

~ 1,2,3,4,6,7,9,10f g\ 3,4f gj jz 1,2,4,5,7,8f g\ 4,7f gj j

~ 1,2,6,7,9,10f gj jz 1,2,5,8f gj j

~6z4~10

Heatmaps and plots utilised R [46], 2D networks were

generated with Graphviz (graphviz.org) and graphs were produced

using Cytoscape (version 2.6.1) [47].

Supporting Information

Figure S1 The ‘heat map’ of raw frequency counts for all

pathogens (X-axis) and syndromes (Y axis).

Found at: doi:10.1371/journal.pone.0009535.s001 (0.10 MB TIF)

Figure S2 Associations between syndromes and pathogens.

‘‘Heat maps’’ display syndrome-pathogen association scores (scores

greater than 0 are indicated; negative values are set to 0). All

syndromes and all pathogens contributing to the respective cluster

with at least one high-confidence association were considered.

Found at: doi:10.1371/journal.pone.0009535.s002 (0.17 MB TIF)

Figure S3 Identification of changes in the publication rates by

time stamping of co-occurrences (‘Doppler effects’).

Found at: doi:10.1371/journal.pone.0009535.s003 (0.30 MB TIF)

Figure S4 Detection of the emerging ‘‘pathogen + syndrome’’

associations. This graph illustrates the increase of ‘‘West Nile

virus’’ + ‘‘encephalitis’’ co-occurrence in 2000 which peaked in

2004–2007.
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Found at: doi:10.1371/journal.pone.0009535.s004 (0.07 MB

DOC)

Figure S5 Associational networks of pathogens co-occurring

with infectious diseases syndromes (A - sepsis; B - encephalitis).

The size of each node is proportional to a number of citations.

Minimum number of co-citations with other pathogens for each

entity to be included in the network is 15.

Found at: doi:10.1371/journal.pone.0009535.s005 (0.46 MB TIF)

Figure S6 Relative relevance of pathogens estimated by the

frequency of citations. Relative frequency of citations for a

pathogen reflects the weight of this pathogen in the corpus of

knowledge and is calculated as the number of citations for this

microorganism divided by the total number of citations for all

pathogens. Relative frequency of co-occurrence with infectious

disease related syndromes is calculated by dividing the number of

individual pathogen co-occurrence with infectious disease related

syndromes to the total number of citations for those syndromes.

Found at: doi:10.1371/journal.pone.0009535.s006 (0.07 MB

DOC)

Figure S7 Clinical and public health relevance of the subset of

frequently cited pathogens. The size of each bubble is proportional

to the number of fully sequenced genomes in the respective

microbial genus or viral family (24). Relative frequency of citations

for a pathogen reflects the weight of this pathogen in the corpus of

knowledge and is calculated as the number of citations for this

microorganism divided by the total number of citations for all

pathogens. Relative frequency of co-occurrence with infectious

disease related syndromes is calculated by dividing the number of

individual pathogen co-occurrence with infectious disease related

syndromes to the total number of citations for those syndromes.

Found at: doi:10.1371/journal.pone.0009535.s007 (0.17 MB TIF)

Table S1 Top 20 ‘‘pathogen-syndrome’’ associations by the

strength of association.

Found at: doi:10.1371/journal.pone.0009535.s008 (0.05 MB

DOC)

Table S2 Performance scores on entities and relations in blind

set (100 abstracts).

Found at: doi:10.1371/journal.pone.0009535.s009 (0.03 MB

DOC)

Table S3 Top 30 most connected nodes by syndrome and by

pathogen.

Found at: doi:10.1371/journal.pone.0009535.s010 (0.08 MB

DOC)

Table S4 List of syndromes used in the study.

Found at: doi:10.1371/journal.pone.0009535.s011 (0.03 MB

DOC)

Table S5 List of pathogen names used in the study.

Found at: doi:10.1371/journal.pone.0009535.s012 (0.05 MB

DOC)
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