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Abstract

Background: Solving a task with insight has been associated with occipital and right-hemisphere activations. The present
study tested the hypothesis if sleep-related alterations in functional activation states modulate the probability of insight
into a hidden abstract regularity of a task.

Methodology: State-dependent functional activation was measured by beta and alpha electroencephalographic (EEG)
activity and spatial synchronization. Task-dependent functional activation was assessed by slow cortical potentials (SPs). EEG
parameters during the performance of the Number Reduction Task (NRT) were compared between before sleep and after
sleep sessions. In two different groups, the relevant sleep occurred either in the first or in the second half of the night,
dominated by slow wave sleep (SWS) or by rapid eye movement (REM) sleep.

Principal Findings: Changes in EEG parameters only occurred in the early-night group, not in the late-night group and
indicated occipital and right-hemisphere functional alterations. These changes were associated with off-line consolidation of
implicit task representations and with the amount of SWS but they did not predict subsequent insight. The gain of insight
was, however, independently associated with changes of spectral beta and alpha measures only in those subjects from the
two sleep groups who would subsequently comprehend the hidden regularity of the task. Insight-related enhancement of
right frontal asymmetry after sleep did not depend on sleep stages.

Significance: It is concluded that off-line restructuring of implicit information during sleep is accompanied by alterations of
functional activation states after sleep. This mechanism is promoted by SWS but not by REM sleep and may contribute to
attaining insight after sleep. Original neurophysiologic evidence is provided for alterations of the functional activation brain
states after sleep. These alterations are associated with a decrease in controlled processing within the visual system and
with an increase in the functional connectivity of the right hemisphere, and are supported by SWS in the first half of the
night.
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Introduction

There are two general cognitive strategies that people use to solve

problems. The first is the analytic strategy or ‘search’. It involves

systematic conscious evaluation of intermediate problem states [1].

The second strategy involves insight [2–3]. Insight is the sudden

awareness of the solution to a problem with little or no conscious

access to the processing leading up to that solution [4–5].

Evidence suggests that the tendency to use analytic or insight

strategies may be modulated by basic modes of information processing

differing in the extent to which attention is focused on task-specific

elements. Insight has been related to a tendency toward diffuse

rather than focused (selective) attention. Less focused attention is

suggested to decrease the strength of task-specific representations

(close associations) and to increase task-irrelevant input (remote

associations) whose activation may facilitate access, retrieval, and

awareness of non-prepotent solutions thus promoting insight [6–

7]. Insight strategy has also been associated with hemispheric

asymmetry. Behavioural [6,8], electrophysiological [9], and

neuroimaging [9–11] studies suggest a special role for the right

hemisphere activation in solving problems with insight.

Sleep and Insight
By using the Number Reduction Task (NRT) [12–13] it has been

demonstrated that sleep may lead to insight [14]. The NRT is a

complex cognitive/procedural learning task where subjects trans-

form in each trial a given digit string into a new digit string according

PLoS ONE | www.plosone.org 1 February 2010 | Volume 5 | Issue 2 | e9442



to two simple transformation rules in order to determine a certain

digit as the ‘‘solution digit’’ to the trial [12–15]. The NRT has two

levels of organization, overt and covert. As detailed in Methods and

illustrated in Fig. 1A,B, each trial of the NRT consists of a string of

several digits (stimulus string). At the overt level, subjects have to

process the digits and produce consecutive responses following two

operational rules, which creates the response string (Fig. 1A). The

covert level of NRT organization is that unmentioned to the

subjects, all strings are generated according to an abstract regularity

according to which the last three responses in a response string

always mirror symmetrically the preceding three responses, so that

the second response in each trial is identical to the final solution

(Fig. 1A,B, the abstract code is presented by ABCDDCB). This

regularity is abstract because the actual digit strings and responses

change from trial to trial (Fig. 1B). This regularity can be discovered

and applied consciously thereafter reducing the number of required

responses from seven to two, which indicates generation of explicit

knowledge about the NRT structure and is a marker of insight [15].

Notably, in the NRT, implicit knowledge about the hidden

regularity also can be acquired. This implicit learning has been

verified by the speeding of responses that can be predicted relative to

those that cannot be predicted by that regularity (as indicated in

Fig. 1A) although the subjects remain unaware of the presence of

any structure [13,15–18].

Sleep studies have found that more than twice as many subjects

gained insight into the hidden regularity at retest in Wagner et al. ’s

study (2004) [14] if they had slept after the initial training than if

they had not. To account for this result, Wagner et al. (2004)

considered off-line memory consolidation and re-organization as

the principal mechanism promoted by sleep. This is in accordance

with evidence that sleep supports the consolidation of both explicit

and implicit memories (revs. [19–25]).

However, about 20% of the individuals can solve the NRT

directly with insight even when no periods allowing memory

consolidation are inserted between learning and retest sessions

[14,16–17,26]. Also, in the NRT study of Yordanova et al. (2008)

[16], the level of pre-sleep implicit knowledge was not a factor that

absolutely determined whether insight would be developed across

subsequent sleep, since half of the subjects who gained explicit

insight into the hidden NRT rule after sleep had not acquired

Figure 1. Experimental design of the study. (A) Schematic presentation of the number reduction task (NRT). Black arrows present the
consecutive steps in NRT task performance (e.g., the first two numbers 1 and 9 in the stimulus string lead to response 4 (R1), then the same response
(4) is compared with the next number from the stimulus string (1) leading to response 9 (R2), and so on). The final result is the last response (R7)
marked with SOLUTION which is followed by Enter. According to their predictability during NRT processing, responses are divided into two response
types: R2 to R4 – unpredictable and R5 to R7 – predictable. (B) Examples of trials demonstrating the abstract mirror structure of response strings (BCD
- DCB) that characterizes each response string independently of the order of digits (1,4,9) comprising the string. (C) The experimental protocol. NRT
pre-sleep and post-sleep sessions are marked for the two sleep groups (Early-NG and Late-NG). Hatching bars present the time period of EEG
recording. Blue shadings during EEG recordings present the time windows used to extract 35 artifact-free epochs/sweeps for analysis.
doi:10.1371/journal.pone.0009442.g001
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implicit knowledge before sleep. Thus, memory re-organization

may be an important but not an absolute predictor of insight.

Instead, insight solutions in tasks with solving verbal anagrams

have been shown to be preceded by specific functional activation

states of the brain [27–28]. The tendency to use insight strategies

can be therefore modulated by individual activation traits [29] as well

as by ongoing functional activations of the brain promoting attentional

diffusion and right-lateralized hemispheric asymmetry [27–28].

The aim of the present study was (1) to explore if sleep

modulates functional activation states that may support differen-

tially (either positively or negatively) insight into the rule of the

NRT, and (2) to analyze the role of sleep stages, slow wave sleep

(SWS) and rapid eye movement (REM) sleep, in these processes.

To assess functional activation states, brain electric (EEG) signals

were recorded and analyzed while subjects from two sleep groups

(early-night and late-night) performed the NRT before and after a

retention period of 3 hours full of SWS in the early half of the

night or of REM sleep in the late half of the night [30–34] –

Fig. 1C.

EEG Markers of Insight: Hypotheses of the Present Study
In the present study, activation patterns are defined as state-

dependent and task-dependent. A state-dependent activation creates a

neural environment maintaining similar processing conditions for

different task elements for a certain period of time. A task-dependent

activation is controlled by executive brain systems and selectively

enhances or inhibits region-specific networks to optimize tran-

siently the processing of task-specific elements. Here, it was tested

if markers of state-dependent activations known to promote the

insight mode of processing associated with diffuse visual attention

at occipital regions and with right-hemisphere activation

[9–10,27–28], would appear after sleep such as to induce insight

also in the NRT. Another question was if such activations would

emerge as non-specific functional states, or they might be

determined by task-specific information. To evaluate the effects

of task-specific information, comparisons were made between the

processing of different response types in the NRT, i.e., between

responses that can or cannot be predicted by the hidden regularity.

The assumption was that state-dependent functional activations

would be information-nonspecific and should not differentiate

task-specific material. The following electrophysiological param-

eters were used to address these issues:

Alpha and beta EEG oscillations. Prior research suggests

that functional brain states underlying different strategies of

problem solving can be assessed by alpha (alpha-1, 7–10 Hz and

alpha-2, 10–13 Hz) and beta (14–18 Hz) EEG oscillations.

Enhanced occipital beta has been associated with an excitatory

mechanism of selective attention [35–36]. In contrast, enhanced

occipital alpha has been related to an inhibitory gating mechanism

regulating the intake of information in task-irrelevant visual areas

[37–42]. Accordingly, increased posterior alpha is accompanied by

less efficient visual perception, in contrast to decreased posterior

alpha leading to improved perception [43–47]. Most recent data

indicate that the inhibitory mechanisms associated with enhanced

posterior alpha support primarily the continuous maintenance of

optimal activation level for target processing, whereas facilitatory

processes reflected by alpha decrease subserve transient activations

for target anticipation [41]. Although the exact functional

significance of alpha dynamics is currently being elucidated (e.g.,

refs. [38–39,48]), a consistent finding relevant to the present study

is that subjects tending to solve problems analytically had

increased occipital beta (i.e., greater focused visual attention

associated with more neural activity to task-specific information)

and increased occipital alpha-2 (more inhibition of brain areas

processing non-attended visual information) than subjects tending

to solve problems with insights [28]. In addition, the insight

strategy was accompanied by hemispheric asymmetry in alpha-1

activity indicative for a greater right- than left-hemisphere

excitability [27–28,49]. If sleep supports the insight mode by

modulating functional activation states, less occipital beta and less

occipital alpha-2 EEG activity, as well as less alpha-1 activity over

the right hemisphere can be expected during NRT performance

after sleep than before sleep. Also, if induced by functional brain

states and being information-nonspecific, these effects would not

differ between unpredictable and predictable items.

Spatial synchronization. Increased functional activation

induces facilitated communication among functionally relevant

cortical regions [50–55]. Specifically, spatial synchronization in

the theta frequency range (4–7 Hz) has been found to reflect long-

range connectivity between distant cortical regions [52–53]. If

sleep supports insight-related brain states, a stronger synchro-

nization would emerge within occipital and within right-

hemisphere regions after than before sleep, with this patterns

being again similar for unpredictable and predictable items in the

NRT.

Slow EEG shifts. Slow potentials (SPs) appear as positive or

negative DC shifts of the ongoing EEG during task processing

lasting up to several seconds [17,56–57]. It has been demonstrated

that negative SPs index functional activation of cortical regions

involved in controlled task processing [57–58]. Most recent fMRI

research conducted in combination with SP analysis has confirmed

that the topography of the slow waves reveals the pattern of

controlled activation (higher excitability) and deactivation (reduced

excitability) of underlying cortical modules [59–60]. SPs were

measured here to characterize task-dependent transient activations

after sleep and their associations with functional brain states at

occipital and right-hemisphere regions. A detailed topography

analysis of SPs from the same task and sample is presented

elsewhere [18]. To separate the effects of SWS and REM sleep, the

procedure of night-half comparison was applied [16].

A summary of the analytic design, parameters and insight-

promoting effects being tested in the present study are presented

schematically in Table 1.

Materials and Methods

Ethics Statement
This research was approved by the ethics committee of the

University of Lübeck, Lübeck, Germany. Informed written

consent was obtained from all subjects prior to the study.

Subjects
The sample reported in the study of Yordanova et al. (2008)

[16] (see also ref. [18]) was used for the present analysis. Fifty-five

healthy students (18–28 year old) without any history of sleep

disturbances or psychiatric or neurological disorders participated

in the experiments. All subjects spent an adaptation night in the

sleep laboratory including placement of electrodes. Subjects were

paid for their participation and gave informed written consent

prior to the study, which was approved by the local ethics

committee. From this data set (29 subjects from the early-night

group and 26 subjects from the late-night group reported in ref.

[16]), 4 subjects from the early-night group and 3 subjects from the

late-night group were excluded because of lacking or low-quality

EEG records during NRT performance before or after sleep.

Thus, for the present analysis a total of 48 subjects were used for

statistical comparisons (25 from the early-night group and 23 from

the late-night group).

EEG Functional States & Sleep
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Task
The task is illustrated in Fig. 1A. It was the same version of the

NRT as described previously in ref. [14]. On each trial, a different

string of eight digits was presented. Each string was composed of the

digits 1, 4, and 9. For each string, subjects had to determine a digit

defined as the final result of the task trial (Solution). This could be

achieved by sequentially processing pairs of digits from left to right

according to two simple rules: (1) The ‘‘identity rule’’ states that the

result of two identical digits is the same digit (e.g., 4 and 4 gives 4, see

Fig. 1A – Response 5, R5). (2) The ‘‘difference rule’’ states that the

result of two non-identical digits is the remaining third digit (e.g., 1

and 9 gives 4, see Fig. 1A – R1-R4, R6-R7).

The 1, 2, and 3 keys on the PC numeric pad were labeled

accordingly 1, 4, and 9 and served as response keys. The entered

responses appeared on the screen and remained there until the end

of the trial, thereby forming a response sequence below the

stimulus sequence. To produce the first response, comparisons are

made between the first and the second digits from the stimulus

string (Fig. 1A – R1). After processing the first two digits,

comparisons are made between this result (appearing in the

response string) and the next digit from the stimulus string, then

between the result of this new processing and the next digit, and so

on (Fig. 1A). Thus, applying the two rules, subjects generated a

string of seven responses, with the last one (R7) indicating the final

result (Solution) to be confirmed by pressing the ‘‘Enter’’ key on

the numeric pad. The time for any single response was limited to

4 s and to a total of 12 s for all responses until pressing ’’Enter’’.

Pressing the ’’Enter’’ key was followed by a change of color of the

entered final response on the screen, from red to blue (Fig. 1A –

R7-Enter). After another 1-s period, feedback was provided. In

case of a correct final result, all digits on the screen, in addition to

the final one, changed their color to blue, whereas the red German

word ‘‘Wrong’’ appeared on the screen in case of an incorrect

solution. The screen was cleared after another 0.5 s, and the next

trial started.

Instructions stated that only the final result was to be

determined for each trial and this could be done at any time.

Importantly, unmentioned to the subjects, all strings were

generated according to the same underlying regularity, which, if

discerned, allowed an early determination of the solution.

Specifically, as shown on Fig. 1B, all response sequences had the

form ABCDDCB (with A, B, C, and D representing one of the

digits 1, 4, or 9), i.e. the last three responses always mirrored the

preceding three responses, so that the second response in each trial

coincided with the final solution. Thus, when gaining insight into

this regularity, participants abruptly cut short sequential respond-

ing by pressing the ’’Enter’’ key already after the second response,

whereupon the trial was finished and the next trial started. Note

that this regularity is abstract because the actual digit strings and

responses changed from trial to trial. Thus, discovery of the rule

cannot simply be based on repetition of the same digits or the same

finger movements in all trials.

Reaction times (RTs) were measured continuously during task

performance, separately for each response in the response string.

RT of the first response (R1) was measured as the time from string

appearance to the first key press. The RTs of the other responses

(R2, R3, R4, R5, R6, R7, Enter) were measured as the time

between the previous and the current key press.

Experimental Procedure
The experimental design is presented in Fig. 1C. Subjects were

tested individually in a sound-attenuated room. As in the previous

study of Wagner et al. (2004) [14], subjects performed a pre-sleep

session of initial practice comprising of 3 task blocks and a post-

sleep retest session of 10 task blocks, with 30 trials in each block.

Insight was automatically identified by the program when at least

24 correct short-cuts within the same block occurred, in which

case the task was terminated. Initial practice was preceded by

extensive standardized instructions given on the computer screen,

which included a short block of 10 task trials. To assure correct

understanding of the ‘‘identity’’ and ‘‘difference’’ rule, this block

was repeated as long as the subject performed the 10 trials without

mistake. To investigate the effects of different sleep phases, the

interval between initial training and retest was filled with three

hours of sleep either in the early night, containing high amounts of

SWS, or in the late night, containing high amounts of REM sleep

(Fig. 1C).

In the early-night group (Early-NG), subjects reported to the

laboratory at about 21:00 h. After placement of electrodes, they

performed the three blocks of initial training (including preceding

computer-guided instructions) at about 22:00 h and thereafter

went to bed at about 23:00 h. After three hours of sleep in the

early night they were awakened to perform the 10 blocks of NRT

retesting. Subjects in the late-night group (Late-NG) reported to

the laboratory at about 22:00 h and, after placement of electrodes,

first slept for three hours in the early night before performing the

initial training at about 2:30 h. Then, they slept again for another

three hours in the late night (about 4:00 h – 7:00 h), followed by

retesting in the morning. In all conditions, sessions also included

performance in a short simple choice-response task unrelated to

the present study, taking place immediately before and after sleep

(i.e. after initial NRT training and before NRT retesting).

Subjects were only awakened from light sleep stages 1 or 2 to

avoid cognitive disturbances that can occur after awakenings from

Table 1. Functional modes promoting insight: summary of analytic design and parameters.

DIFFUSE VISUAL ATTENTION RIGHT HEMISPHERE ACTIVATION

FUNCTIONAL MECHANISMS EEG CORRELATES PARAMETER INSIGHT PROMOTING EFFECT PARAMETER INSIGHT PROMOTING EFFECT

STATE-DEPENDENT

ACTIVATION

EEG oscillations Occipito-parietal beta
power Occipito-parietal
alpha-2 power

Decrease Decrease Fronto-parietal alpha and
beta power in the RH and
in the LH

Decrease in the RH

SPATIAL CONNECTIVITY Spatial synchronization Occipito-parietal phase-
synchronization (PLV)

Increase Phase-synchronization
in the RH and in the LH

Increase in the RH

TASK-DEPENDENT

ACTIVATION

Slow cortical potentials Occipito-parietal SP
amplitudes

Positivization of negative
SPs

SP amplitudes in the
RH and in the LH

More negativity in the RH

SP, slow cortical potential, PLV, phase-locking value (spatial synchronization), RH, right hemisphere, LH, left hemisphere.
doi:10.1371/journal.pone.0009442.t001
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SWS or REM sleep. As an additional control, subjective levels of

sleepiness, activation, boredom, concentration, and motivation

were assessed on 5-point scales immediately before and after each

session of initial training and retest [14].

After NRT retesting, subjects filled in a questionnaire related to

their explicit knowledge of the task structure (beginning with open

questions, followed by closed questions) as well as possible

strategies used during task performance. An additional behavioral

test comprised a speeded task in which 15 different strings were

presented and subjects had to indicate the final result to each string

within 2 s after string presentation.

Sleep EEG Recording and Analyses
Sleep was recorded polysomnographically, including EEG

recordings from the left and right central sites (C3, C4), horizontal

and vertical EOG, and EMG from chin electrodes. Sleep stages

S1, S2, S3, S4, and REM sleep were classified in 30-second epochs

according to ref. [61]. SWS was calculated as the sum of time

spent in sleep stages S3 and S4.

Task-Related EEG Recording and Analyses
During the NRT performance, EEG was recorded continuously

from 28 scalp electrodes located on positions AF3, AF4, F7, F3,

Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1,

CP2, CP6, P7, P3, Pz, P4, P8, PO3, PO4, and Oz according to the

10–20 International system. The vertical electrooculogram

(VEOG) was recorded from electrodes placed above and below

the left eye. The horizontal electrooculogram (HEOG) was

recorded from electrodes attached to the outer canthi of the eyes.

All electrode sites were referenced to linked mastoids. EEG and

EOG signals were amplified by using a Neuroscan Synamps, with

impedances maintained below 10 kOhms. EEG and EOG were

filtered within the pass-band 0.03–70 Hz and sampled with a

frequency of 250 Hz. Times of EEG recording are illustrated on

Fig. 1C by hatching bars.

Data processing was performed with Brain Vision Analyzer

software (Brain Products GmbH, Gilching, version 1.05). EEG

traces were visually inspected for gross EOG and EMG artifacts.

Contaminated trials were discarded along with records exceeding

650 mV. Slight horizontal and vertical eye movements preserved

in the accepted trials were corrected by means of a linear

regression method for EOG correction [62]. In all analyses

described in the following, for evaluation of EEG changes during

task execution, 30 EEG segments were collected for two conditions

(end of pre-sleep practice and immediately after sleep, see Fig. 1C,

fading-blue bars).

EEG analysis. Segments with a length of 800 ms were

collected before each response (R1, R2, …, R7). Segments were

tapered by Hanning windows with a length of 20% from the epoch

boundaries. By using a fast Fourier transform (FFT), the power

spectrum was obtained, with a frequency resolution of 0.977 Hz.

Single spectra were averaged and mean values were calculated for

each single frequency from 2 to 18 Hz and for the frequency bands

alpha-1 = 7210 Hz, alpha-2 = 10213 Hz, and beta = 14218 Hz.

Statistical analyses were performed for each frequency band. In

order to normalize distributions, a log10-transform was applied to

the data (e.g., ref. [63]).

Spatial phase-locking. EEG segments of 1600 ms centered

at the moment of response production (R1, R2, …, R7) were used

for analysis. Before the estimation of phase-synchronization, to

achieve a reference-free evaluation, the current source density

(CSD) at each electrode position was obtained by applying the

spherical Laplace operator to the voltage distribution on the

surface of the scalp [64]. This procedure was characterized by

the following parameters: order of splines m = 4, and the

maximum degree of the Legendre polynomials n = 10, with a

precision of 2.7225 [65].

Time-frequency transforms were obtained by the application of

complex-valued Morlet wavelets [66], which are Gaussian in both

the time and frequency domains. Complex Morlet wavelets w can

be generated in the time domain for different frequencies, f,

according to the equation:

w t,fð Þ~Aexp {t2
�

2s2
t

� �
exp 2ipftð Þ,

where t is time, A~ st

ffiffiffi
p
p

ð Þ{1=2
, st is the wavelet duration, and

i~
ffiffiffiffiffiffiffiffi
{1
p

.

For analysis, a ratio of f0/sf = 5.5 was chosen, where f0 is the

central frequency and sf is the width of the Gaussian shape in the

frequency domain. The choice of the ratio f0/sf was oriented to

the expected slower phase-locked components present in the

response-related potentials, which had an effect on the shape of

the Morlet wavelet and decreased its decay (e.g., ref. [55]). The

analysis was performed for each single sweep, with central

frequencies varying by 0.5 Hz from 4 Hz to 30 Hz. For different

f0, time and frequency resolutions can be calculated as 2st and

2sf, respectively [67]. st and sf are related by the equation st = 1/

(2psf). The signal in each single sweep was convolved with the

complex Morlet wavelet designated for f0. The Morlet wavelet was

normalized by subtracting the mean value of the baseline period

(800 to 600 ms before key press). The complex phase value was

then computed at frequency f0, for each electrode, each time bin

and each single sweep by dividing the result of the convolution by

the magnitude of this result [67–68].

Subsequently, a phase-locking value (PLV) was computed for

each time-point t and trial j as:

PLVk,l~
1

N

X
e

i rj,k t,f0ð Þ{rj,i t,f0ð Þ
� ������

�����,

where N is the number of single sweeps, k and l are the index for

the pair of electrodes to be compared, and ris the instantaneous

phase of the signal. PLVk,l results in a real value between one

(constant phase difference) and zero (random phase difference).

These values were normalized by subtracting the mean value of

the baseline period (800 to 600 ms before key press) and dividing

by the standard deviation of this time window [68]. This

procedure is similar to the z-score transformation and is known

as a standardizing procedure that allows a reliable comparison

between highly variable data. For this analysis, sweeps obtained

for different response types were pooled together.

Statistical evaluations were performed only for PLV that

significantly differed from random noise. To extract these PLV

measures, a statistical randomization technique was used. The

central epoch between 400 ms before and 400 ms after key press

was divided into eight equal time windows, 100 ms each. For the

respective time window and electrode pair, the PLV mean value

was calculated and compared with the maximal or minimal value

(for evaluation of synchronization and desynchronization accord-

ingly) obtained in the whole epoch resulting from the same set of

single sweeps which were randomly shuffled 200 times [69]. A

statistically significant value was accepted if the measured

parameters were larger (for synchronization) or smaller (for

EEG Functional States & Sleep
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desynchronization) than the respective maximal or minimal values

in the whole epoch after shuffling. This criterion is much more

conservative than used in other studies, in which significance is

accepted if the PLV is above 97.5 percentile of the distribution of

shuffled maximal values (for synchronization) or below 2.5

percentile of the distribution of shuffled minimal values (for

desynchronization, see, e.g. ref. [70]).

Although PLV was computed for all electrode pairs, it was

analyzed statistically for electrode pairs selected to reflect inter-

hemispheric phase relations in occipital regions (PO3-PO4), and

intra-hemispheric phase relations in occipital, parietal, central and

frontal regions within the left and the right hemisphere (PO3-CP5,

PO3-C3, PO3-FC5, PO4-CP6, PO4-C4, PO4-FC6). To reflect

the activation of executive control regions, the phase-locking

between mid-frontal (Fz) and central motor regions (contra-lateral

to the responding hand, C3, and ipsi-lateral, C4) was also analyzed

[50,71]. These were Fz-C3, Fz-C4, C3-C4, and FC5-FC6.

Analysis of slow potentials. SPs were obtained after

extracting 9.5-s EEG epochs triggered by the moment of string

appearance, with a 0.5-s pre-stimulus baseline. As shown in Fig. 2,

for each subject, condition, and electrode, mean values were

measured for 8 consecutive 1-s time windows starting 1.5 s after

stimulus. The choice of this starting point was to avoid stimulus

related phenomena such as P300 or other slow ERP components.

For analysis, difference waves were produced by subtracting pre-

sleep from post-sleep SPs.

Statistical Analyses
In the present experimental design, seven consecutive responses

(R1 to R7) were produced (Fig. 1A) designated as a factor

Response Number (R1 vs. R2 vs. R3 vs. R4 vs. R5 vs. R6. vs. R7).

According to the mirror rule, R2, R3, and R4 represent the

unpredictable responses, and R5, R6 and R7 represent the

predictable responses, thus forming the factor Response Type

(unpredictable vs. predictable). Parameters were subjected to

analysis of variance (ANOVA), as will be detailed.

Occipito-parietal spectral EEG. To test the hypothesis of

insight-related markers of visual attention, spectral EEG power values

of alpha-2 (10–13 Hz) and beta (14–18 Hz) activities were analyzed

at the occipital PO3, Oz, and PO4 electrodes for the epoch of

800 ms preceding each response (R1 to R7). The ANOVA design

included two between-subjects variables, Sleep Group (Early-NG

vs. Late-NG) and Processing Strategy (Solvers vs. Non-solvers).

Solvers are the individuals who gained insight to NRT mirror rule

after sleep, in contrast to non-solvers. The within-subjects variables

were Session with two levels (pre-sleep vs. post-sleep), Response

Number with seven levels (R1, R2, …, R7), and Electrode with

three levels (PO3, Oz, and PO4). Out of hypothesis power values of

alpha-1 were subjected to the same analysis.

Asymmetric effects on spectral EEG. To test the

hypothesis of insight-related markers of right vs. left asymmetry,

alpha-1, alpha-2 and beta measures of spectral EEG at frontal and

parietal sites were subjected to a Sleep Group x Processing

Strategy x Session x Response Number x Laterality (right vs. left)

ANOVA. Central and centro-parietal electrodes were not

included in this analysis because of the specific design of the

NRT, which required movements with the right hand and could

induce a motor-related decrease of alpha and beta activity over the

sensorimotor cortical regions of the left hemisphere [72]. Thus,

asymmetry was evaluated by using right and left frontal (F4 and

F3) and right and left parietal (P4 and P3) electrodes. To avoid

confounds from the specific scalp distribution (mainly of alpha

activity predominantly at posterior sites), asymmetry analyses were

done separately for the frontal and parietal locations.

Spatial synchronization. PLV was analyzed for inter-

hemispheric and intra-hemispheric electrodes within the left and

the right hemisphere (see 2.6) for the theta frequency scale

(f0 = 4.92 Hz, approx. band limits 4–7.38 Hz). Because data

distribution deviated from the normal one, statistical analyses were

performed by using nonparametric Wilcoxon-Wilcox test for each

selected electrode pair to evaluate the effects of early and late sleep

and processing strategy.

Slow cortical potentials. Figure 2 shows that SPs had a

characteristic spatial pattern in the NRT, with negative SPs

distributed primarily over the left hemisphere, and positive SPs

distributed over the right hemisphere [18]. Accordingly, relevant

regions of interest (ROI) with electrodes from occipital-parietal

regions, left (LOP) and right (ROP), were used for the evaluation

of occipital SPs. For analysis of hemisphere asymmetry effects, left

and right fronto-temporal (LFT, RFT) and central (LC, RC)

groups of electrodes were used (details in ref. [18]). The mid-

Figure 2. Temporal and spatial characteristics of slow poten-
tials (SPs) in the NRT. Time course of SPs at selected electrodes (top)
demonstrates typical SP topography shown on the map (below).
Positivity upwards. String appears at time 0. The time epochs of
unpredictable response processing R2-R4 is marked in red, the time
epochs of predictable response processing R5-R7 is marked in green.
The overlapping of epochs of unpredictable and predictable response
processing is due to reaction time variability. Normalized amplitude
presented on the map is obtained by means of min-max procedure
across electrodes.
doi:10.1371/journal.pone.0009442.g002
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frontal-central ROI (MFC) was analyzed separately to reflect the

activation regions engaged in controlled executive monitoring.

Statistical evaluation was performed on difference values obtained

by subtracting SPs before sleep from SPs after sleep. The ANOVA

design included two between-subjects variables, Sleep Group

(Early-NG vs. Late-NG) and Processing Strategy (Solvers vs.

Non-solvers), and within-subjects variables, Response Type

(unpredictable vs. predictable) and ROI (LOP vs. ROP, for

assessing occipital effects) or Laterality (left vs. right) x ROI

(fronto-temporal vs. central, for assessing asymmetry effects).

Multiple regression and correlational analyses. Step-

wise multiple regression analyses were carried out. Dependent

variables were only those EEG parameters that manifested

significant sleep-related changes in a direction that was hypo-

thesized to predispose an insight processing strategy. Accordingly,

the normalized rate of change (in per cent) of occipital beta power,

occipital alpha-2 power, right frontal beta power, and right frontal

alpha-1 power were used as dependent variables in separate

analyses. The independent variables were the rate of change after

sleep (in percentage) of each of SP measures for each of the eight

ROIs in each time window.

Sleep-related changes of EEG power were correlated by using

Pearson correlation coefficient. The rates of EEG power changes

(alpha-1, alpha-2, beta) at occipital electrodes were correlated with

percentages of different sleep stages (S1, S2, S3, S4, REM sleep,

and waking).

Results

Sleep Analysis
As reported for the slightly larger sample in ref. [16] (cf.

Methods), sleep recordings confirmed the differential distribution

of SWS vs. REM sleep. Subjects in the Early-NG had substantially

more SWS than those in the Late-NG (26.6% vs. 9.6%, F(1/

47) = 24.8, p,0.001), and subjects in the Late-NG, conversely,

had substantially more REM sleep than those in the Early-NG

(21.3% vs. 5.5%, F(1/47) = 80.8, p,0.001). The two groups did

not differ in the proportions of other sleep stages (F(1/47),1.9,

p.0.2).

Behavioural Results
Within the sample used, eight subjects from the Early-NG (32%)

and 5 subjects from the Late-NG (21.7%) gained insight after sleep

(x2(1, n = 48) = 0.6, p = 0.4). Reaction times (RTs) were subjected

to a Processing Strategy (Solvers vs. Non-solvers) x Sleep Group

(Early-NG vs. Late-NG) x Session (pre-sleep vs. post-sleep) x

Response Number (R1 to R7) ANOVA. RTs did not differ

between the two sleep groups (all F(1/44),1.5, p.0.15 for the

main and interaction effects) nor between solvers and non-solvers

(F(1/44),0.4, p.0.7). RT significantly decreased after sleep

(Session, F(1/44) = 9.8, p,0.005; mean RT before sleep = 1085

vs. mean RT after sleep = 1030 ms). This decrease was expressed

for all response numbers (p,0.001 for each simple effect) with

exception of R5 (F(1/44) = 0.4, p = 0.5). Being an immediate

repetition of R4, R5 was the fastest response throughout.

Coefficients of RT variance (CV) were subjected to the same

analysis. No significant effects of Session were found. Yet, only the

solvers manifested a significant increase in CV after sleep,

independently of whether they belonged to the Early-NG or

Late-NG (Session x Processing Strategy, F(1/44) = 9.4, p = 0.005).

Beta and Alpha EEG Power
Occipito-parietal spectral EEG. Figure 3A shows that the

occipital beta power decreased only after early-night sleep (F(1/

23) = 16.5, p,0.0001), but did not change after late-night sleep

(F(1/21) = 0.89, p = 0.3; Sleep Group x Session, F(1/44) = 4.5,

p,0.05). Processing strategy had no effects. Beta power decreased

with advancing string processing (Response Number, F(6/

264) = 61.4, p,0.0001), yet independently of sleep group

(Response Number x Sleep Group, F(6/264) = 0.4, p = 0.8) and

condition (Response Number x Session, F(6/264) = 1.54, p = 0.2).

As illustrated in Fig. 3A, alpha-2 displayed the same effects as

beta. It changed differentially after early- and late-night sleep

(Sleep Group x Session, F(1/44) = 4.4, p,0.05), decreasing after

early-night sleep (Session, F(1/23) = 4.89, p = 0.03), in contrast to

late-night sleep (Session, F(1/21) = 0.053, p = 0.8). No effects of

processing strategy were detected. As also found for beta, alpha-2

power decreased from R1 to R7 (Response Number, F(6/

264) = 48.3, p,0.0001) in each group (Response Number x Sleep

Group, F(6/264) = 1.3, p = 0.4) and sleep condition (Response

Number x Session, F(6/264) = 0.34, p = 0.8).

Alpha-1 power increased after sleep (Session, F(1/44) = 4.58,

p = 0.04) independently of sleep groups and processing strategy,

and manifested the same decrease from R1 to R7 both before and

after sleep (Response Number, F(6/264) = 13.07, p,0.001).

Asymmetric effects on spectral EEG at frontal

recordings. Beta EEG power decreased after sleep in the two

sleep groups (Session, F(1/44) = 22.5, p,0.001; Sleep Group x

Session, (F(1/44) = 1.12, p = 0.3). As demonstrated in Fig. 3B,

sleep-related beta decrease, however, was different for solvers and

non-solvers (Processing Strategy x Session x Laterality, F(1/

44) = 5.5, p = 0.02): beta decrease was significantly greater at the

right (Processing Strategy x Session (F(1/44) = 5.5, p = 0.02) than

at the left frontal site (Processing Strategy x Session (F(1/44) = 1.5,

p = 0.2) in solvers relative to non-solvers. Mainly due to this

differential reduction, there was a clear left . right asymmetry in

solvers contrasting with the left,right tendency in non-solvers

(Processing Strategy x Laterality (F(1/44) = 6.8, p = 0.01;

Processing Strategy x Laterality after sleep (F(1/44) = 11.4,

p = 0.002; Processing Strategy x Laterality before sleep (F(1/

44) = 3.1, p = 0.08). The stronger post-sleep decrease of beta power

on the right side in solvers was more expressed after early- than

after late-night sleep (Sleep Group x Processing Strategy x Session

x Laterality F(1/44) = 6.1, p = 0.017).

Figure 3A shows that alpha-2 EEG power decreased significantly

after sleep (Session, F(1/44) = 17.3, p,0.0001; Session x Laterality,

F(1/44) = 1.2, p = 0.3) but only in the Early-NG (Session x Sleep

Group (F(1/44) = 7.25, p = 0.01; Session in the Early-NG (1/

23) = 36.5, p,0.0001; Session in the Late-NG F(1/21) = 0.7,

p = 0.4). As demonstrated in Fig. 3C, both before and after sleep,

alpha-2 power was significantly smaller at the right frontal location

in solvers than non-solvers from each group (Processing Strategy x

Laterality (1/44) = 9.4, p = 0.004; Processing Strategy x Sleep

Group x Laterality, F(1/44) = 2.2, p = 0.15; Processing Strategy x

Session x Laterality F(1/44) = (1/44) = 0.2, p = 0.6) thus providing a

marker for the subsequent insight in solvers.

As found for alpha-2, only the early-night sleep had an effect on

alpha-1 power (Sleep Group x Session, F(1/44) = 4.9, p = 0.03;

Early-NG, F(1/23) = 6.5, p = 0.017; Late-NG, F(1/21) = 0.3,

p = 0.5). Figure 3C further shows that similar to alpha-2, alpha-1

power significantly differentiated solvers from non-solvers at the

right frontal location both before and after sleep, independently of

the sleep group and of the session (Processing Strategy x Laterality

(1/44) = 4.8, p = 0.03; Processing Strategy x Sleep Group x

Laterality, F(1/44) = 0.5, p = 0.45; Processing Strategy x Session

x Laterality F(1/44) = 0.2, p = 0.65). As found for the occipital

recordings, the three frontal spectral measures decreased from R1

to R7 both before and after sleep (p,0.001).
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Asymmetric effects on spectral EEG at parietal

recordings. For all spectral measures, power was significantly

lower at P3 than P4 (Beta: F(1/44) = 4.1, p = 0.05; Alpha-2: F(1/

44) = 10.9, p = 0.002; Alpha-1: F(1/44) = 3.26, p = 0.07). As found

for occipital recordings, beta and alpha-2 decreased only after early

sleep (Sleep Group x Session, (F(1/44) = 4.5, p = 0.04). Importantly,

no main or interactive effects of Processing Strategy were detected

for any of these spectral measures at parietal locations.

Spatial Synchronization
Figure 4 demonstrates differences between post- and pre-sleep

spatial synchronization of EEG theta activity. To detail, the

synchronization between left and right occipito-parietal regions

(PO3-PO4) did not change after either early or late night sleep,

nor was it affected by the processing strategy. However, for the

phase-synchronization between parieto-occipital and centro-pari-

etal regions, sleep induced a significant increase in the right-

Figure 3. Spectral EEG measures. Power values are log10-transformed. (A) Power measures for beta and alpha-2 frequency bands at Oz and for
consecutive response numbers (from R1 to R7) in the pre-sleep (PRE) and post-sleep (POST) sessions. Early-NG, early-night group; Late-NG, late-night group.
(B) Frontal measures (F3, F4) of the spectral beta power for the non-solvers (NS) and solvers (S). PRE, pre-sleep session, POST, post-sleep session. (C) Frontal
measures (F3, F4) of the spectral alpha (alpha-2 and alpha-1) power for the non-solvers (NS) and solvers (S) in the two sleep sessions pooled together.
doi:10.1371/journal.pone.0009442.g003
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hemisphere for the Early-NG (PO4-C4, PO4-CP6: Z = 22.2,

p = 0.03) whereas no significant effects were found for the Late-

NG (p.0.5). In contrast, early-night sleep had no effect on phase-

synchronization between frontal and motor (contra-lateral and

ipsi-lateral) areas, whereas late-night sleep produced a significant

decrease (Z = 22.7, p = 0.006; Z = 22, p = 0.05). Sleep-related

changes in synchronization across sessions did not depend on

Processing Strategy.

Slow Potentials
Occipito-parietal slow potentials. Effects of sleep were

similar for unpredictable and predictable responses and for LOP

Figure 4. Spatial synchronization. Time-frequency plots of difference (post-sleep minus pre-sleep) phase-locking values (PLV) of selected pairs of
electrodes from the left and right hemisphere for the two sleep groups, Early-NG and Late-NG. PLV increase after sleep is presented in red, whereas
PLV decrease after sleep is presented in blue.
doi:10.1371/journal.pone.0009442.g004
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and ROP (Session x Predictability, F(1/44) = 0.2, p.0.6; Session x

Predictability x ROI, (1/44) = 0.01, p.0.9). Yet, in the Early-NG,

occipito-parietal SPs tended to decrease (become more positive)

after sleep indicating a reduction in functional activation, whereas

in the Late-NG, SPs tended to increase (become more negative)

after sleep indicating a stronger functional activation within the

visual system. This differential effect of early vs. late sleep was

captured statistically by difference SP measures obtained by

subtracting pre-sleep from post-sleep SP values (Sleep Group, F(1/

44) = 6.4, p = 0.015, Fig. 5).

Asymmetric effects on slow potentials. Figure 5 further

illustrates that after late sleep, the values of difference measures

were negative indicating that late sleep led to an overall

negativization of SPs at the two hemispheres. This negativization

was also similar for the unpredictable and predictable responses

(Laterality x Predictability, (F(1/21) = 1.29, p.0.3; Laterality x

Predictability x ROI, F(2/44) = 1.42, p.0.25). In contrast, early-

night sleep produced a negativization at the two hemispheres for

unpredictable responses, whereas for predictable responses, SPs

became more negative only over the right hemisphere (Laterality x

Predictability, F(1/23) = 4.2, p,0.05). This difference is also

verified by the significant Sleep Group x Laterality x

Predictability interaction (F(1/44) = 4.61, p,0.05) and tended to

disappear at parieto-occipital regions as reported above (Laterality

x Predictability x ROI x Sleep Group, F(2/92) = 2.56,

0.1.p.0.05). Thus, hemispheric asymmetry did not change for

either the unpredictable or predictable responses after late-night

sleep, whereas the right hemisphere appeared more activated for

predictable responses after early-night sleep (Fig. 5). No significant

main or interactive effects of Processing Strategy were found.

Correlations of Spectral EEG Power with Sleep Stages
Table 2 presents the results of correlation analyses testing the

associations between sleep-related changes in spectral EEG, and

the amount of sleep stages. There were significant negative

correlations between the decrease of both alpha-2 and beta EEG

Figure 5. Slow potentials (SPs). Difference SPs obtained by subtracting pre-sleep from post-sleep SP measures in two sleep groups, Early-NG and
Late-NG, for six regions of interest (LFT, left fronto-temporal, LC, left central, LOP, left occipito-parietal, RFT, right fronto-temporal, RC, right central,
ROP, right occipito-parietal). Time windows 1 to 8 correspond to 1-s epochs of measurement, with the first one starting 1.5 s after string on-set.
doi:10.1371/journal.pone.0009442.g005
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power at occipital locations after early sleep and SWS, meaning

that more SWS (S3, in particular) was associated with a greater

occipital reduction of alpha-2 and beta. No significant correlations

were found between other spectral measures and sleep stages.

Correlations of Spectral EEG Power with Slow Potentials
Sleep-related changes in occipital spectral measures and in SPs

were found only after early-night sleep. This raises the question if

these alterations were interrelated. To explore this question, a

multiple regression analysis was performed, in which the

dependent variables were the occipital spectral measures reflecting

the change of the parameter from before to after sleep. The

independent variables were the rates of change in SPs from all

time windows and all regions of interest. The major assumption

was that in case of interdependence, a solution of a model would

be found that would select time- and region-specific SP predictors

of sleep-related changes of occipital EEG. Table 3 shows that for

both the rate of change of occipito-parietal beta and alpha-2 after

early-night sleep, the rate of change of the left temporo-frontal SPs

from the second half of string processing was modeled as a

significant predictor.

Subjective Ratings
Ratings of subjective feelings of sleepiness, activation, tension,

boredom, motivation, and concentration were obtained before

and after each session of initial practice and retest. In line with the

results reported in Yordanova et al. (2008) [16], the present

subsamples did not differ on the whole in these variables, as

indicated by non-significant main effects of early vs. late night (all

p.0.2). In the two sleep groups, subjects felt more sleepy and less

activated, motivated and concentrated in task sessions performed

in the middle of the night (i.e., initial practice for Late-NG, retest

for Early-NG) than in sessions performed in the evening (initial

practice for Early-NG) or in the morning (retest for Late-NG)

(p,0.05, for Sleep Group x Session interactions). This effect was,

however, much weaker than an activating effect of task

performance itself independent of the time of the session, i.e.,

subjects felt less sleepy and more activated at the end as compared

to the beginning of a task session (p,0.001).

Discussion

Specific functional activations of the brain can increase the

probability of solving problems with insight in tasks with verbal

anagrams. The mediating mechanisms have been associated with

less selective attention in the occipital visual cortex and an

asymmetric right-hemisphere activation [7,9–10,27–28,49]. The

present study explored (1) if such activations may be induced by

sleep, (2) if their appearance may be affected differentially by

early-night sleep, rich in SWS, and late-nigh sleep, rich in REM

sleep, (3) if they may promote the gain of insight after sleep in the

number reduction task [14,16], and (4) if they depend on the

processing of task-specific information in the NRT, or may emerge

as non-specific post-sleep functional activations.

One major result was that functional activation patterns linked

with the insight mode of processing [27–28] were induced by

early-night sleep but not by late-night sleep. Changes included a

reduction of occipital beta and alpha-2 spectral EEG power

accompanied by a widespread decrease of alpha activity, and an

increase in the spatial synchronization of the right parieto-occipital

association cortex indicating increased functional connectivity only

in the early-night group [52–53,73]. Yet, these changes were not

associated with a higher rate of insight to NRT regularity after

early sleep. Instead, as the second major result of the present study

shows, a reduction of spectral beta and alpha activity at the right

frontal region appeared as a specific functional marker of insight in

the NRT, since this effect was detected only in those subjects who

would subsequently gain insight to the hidden regularity of the

task. Notably, both the SWS and REM sleep produced an

increased right frontal asymmetry in subsequent solvers. Thus,

only the early-night sleep modified functional activation patterns

of occipito-parietal regions, but the critical determinant of post-

sleep insight to NRT regularity was the right frontal activation,

which was enhanced by sleep only in subsequent solvers

independently of the predominant sleep stage.

The gradual reduction of beta and alpha power at occipital

locations across single string processing indicates a dependence on

response sequence. This reduction appears as a specific feature of

NRT processing by being present both before and after sleep,

early and late. Previously, a BOLD signal at the superior parietal

cortex has been found to increase toward the end of string

processing in the NRT irrespective of whether a hidden mirror

rule was incorporated in the string or not, reflecting a fast short-

term proceduralization of stimulus- response associations [74–75].

Likewise, a progressive decline of alpha power maximally

expressed at the central cortex contra-lateral to movement has

Table 2. Results of correlational analyses. Significant
correlations between amount of sleep stages and occipital
spectral EEG in the early-night group (n = 24).

Variables Pearson r P

beta: electrode PO4 - S3 (%) 20.42 0.03

alpha-2: electrode PO4 - S3 (%) 20.39 0.05

beta, EEG beta power; alpha-2, EEG alpha-2 power; PO4, right parieto-occipital
electrode; S3, sleep stage 3; P, P-value.
doi:10.1371/journal.pone.0009442.t002

Table 3. Summary of multiple regression analysis (MRA).

No. Dependent variable R R2 R2adj F(1/22) P Prediction B b t P

1. Rate of occipital EEG beta
power change

0.496 0.246 0.212 7.18 0.014 Constant LFT
(TW-5)

214.800
0.066

20.50 22.85
2.68

0.009
0.014

2. Rate of occipital EEG
alpha-2 power change

0.512 0.263 0.229 7.80 0.010 LFT (TW-5) 0.088 0.52 2.80 0.010

Significant SP predictors of occipital EEG spectral measures are presented only. MRA parameters: R, multiple correlation coefficient (between observed and model-
predicted values); R2, coefficient of determination; R2adj, adjusted coefficient of determination (compensates for model complexity); B, regression coefficient; b,
standardized coefficient for the predictor.
F, t, P, ANOVA parameters; LFT, left fronto-temporal region; TW-5, time window 6.5–7.5 s during predictable response processing.
doi:10.1371/journal.pone.0009442.t003
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been correlated with implicit learning of structured motor

sequences [72,76]. With regard to these observations, currently

observed effects of response sequence imply that in the beginning

of each string processing, visual attention is more strongly focused

to support computational demands [77–78]. With advancing

sequence, a short-term proceduralization occurs and modifies

attention from focused to automatic [74–75], which facilitates

(reduces) the maintenance of active processing of task-specific

elements [41] and enhances non-specific diffuse activations. These

observations from the NRT substantiate previously found

associations between occipital beta and alpha activity and attentive

visual processing [27–28].

With this account, spectral EEG changes across sleep point to a

reduction of selective visual attention after early-night sleep.

Although various neurohumoral, neurotransmitter and circadian

variatons in the neural mechanisms known to accompany SWS

dominance in the first half of the night and REM sleep dominance

in the second half of the night may contribute to the observed

effects, currently found associations with the amount of SWS

emphasize the specific role of SWS for changes in spectral EEG

parameters at occipito-parietal regions. Of note, the reduction of

selective visual attention after early-night sleep reflected by

spectral EEG was similar for all response types indicating a

state-dependent rather than a task-specific effect. This effect

cannot be associated with the activation of explicit processing

systems since none of the subjects had discovered the abstract

mirror principle during the first block after sleep analyzed here.

Nor can these changes reflect a mere behavioural speeding

because RT decrease after sleep was similar for the early- and late-

night groups. Ratings of subjective feelings also did not differ

between the groups, and overall performance variance did not

change after sleep nor did it either differ between the early- and

late-night groups. Thus, gross arousal/attention variations may

not account for the spectral EEG changes after early sleep.

Instead, changes in occipital spectral measures after early sleep

were predicted by the sleep-related changes in left temporal-frontal

negative potentials associated with the implicit processing of

predictable items (Table 3). Hence, the accumulation of implicit

knowledge before sleep or the consolidation of implicit task

representations during sleep [16,18] appear to provide a critical

prerequisite for the changes in occipital functional states after early

sleep. Notably, item non-specific positivization of parieto-occipital

slow potentials indicating reduced controlled visual processing

[18,57] was also found here only after early sleep. Altogether,

these correlational results imply that SWS dominating in the first

half of the night basically supports off-line learning within the

visual system, which confirms previously reported specific

associations of early- but not late-night sleep with improvement

in visual discrimination skills [79]. Further, these results point to

co-existent functional alterations of state-dependent and task-

dependent activation patterns in the visual system as reflected by

spectral EEG measures and slow cortical potentials, both of which

are co-supported by SWS. Finally, the present results indicate that

sleep-related alterations in functional visual states are induced by a

reorganization of implicit task representations during SWS [18]

and are therefore determined by information-specific mechanisms.

Importantly, insight to the hidden regularity of the NRT after

sleep, early or late, was associated with activation of the right

frontal region. Previously, visuomotor tasks have been found to

differ in the reduction of alpha and beta activity at dorsolateral

frontal areas depending on the required degree of cognitive

control, which reflected a difference in the spread of task-relevant

information across frontal areas [80]. According to the present

results, sleep induced a decrease of spectral beta and alpha-2

activity at right frontal areas but only in those subjects who

subsequently gained insight into the NRT. Of note, solvers

manifested signs of greater right frontal involvement already

before sleep. This confirms the role of right-hemisphere activation

for promoting insight also in the NRT [27–28]. Further, evidence

is provided that sleep enhances the insight-related activation of the

right frontal areas. Yet, a specific contribution of different sleep

stages (SWS and REM sleep) in these mechanisms cannot be

delineated with the measures used here. Nor can it be excluded

that individual traits or specific processing modes at pre-sleep

learning could have promoted subsequent insight, irrespective of

whether sleep occurred or not in the retention interval [17]. It is,

however, notable that increased post-sleep synchronization

indicating a stronger connectivity of the parieto-occipital regions

of the right hemisphere was found here only after early-night sleep.

Given the role of right parieto-occipital regions for visual

awareness [81–84], and the role of right frontal activation for

bringing hidden task regularity to awareness as described above,

an increased signaling within the right hemisphere may be

involved in a mechanism that activates explicit processing systems

or promotes the transformation of implicit knowledge into explicit

[16]. According to the results, SWS may contribute to this

mechanism by facilitating the connectivity and information

transfer within the right hemisphere.

Conclusions
It is concluded that changes in functional activation patterns

during NRT performance occur only after early- but not after late-

night sleep. These changes are associated with a decrease in

controlled processing within the visual system and with an increase

in the functional connectivity of the right hemisphere, and are

supported by SWS in the first half of the night. Insight to the

hidden NRT regularity is coupled with right frontal activation,

thus being specifically prone to potentiation by SWS.
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