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Abstract

Background: Exosomes, derived from endocytic membrane vesicles are thought to participate in cell-cell communication
and protein and RNA delivery. They are ubiquitous in most body fluids (breast milk, saliva, blood, urine, malignant ascites,
amniotic, bronchoalveolar lavage, and synovial fluids). In particular, exosomes secreted in human saliva contain proteins and
nucleic acids that could be exploited for diagnostic purposes. To investigate this potential use, we isolated exosomes from
human saliva and characterized their structural and transcriptome contents.

Methodology: Exosomes were purified by differential ultracentrifugation and identified by immunoelectron microscopy
(EM), flow cytometry, and Western blot with CD63 and Alix antibodies. We then described the morphology, shape, size
distribution, and density using atomic force microscopy (AFM). Microarray analysis revealed that 509 mRNA core transcripts
are relatively stable and present in the exosomes. Exosomal mRNA stability was determined by detergent lysis with RNase A
treatment. In vitro, fluorescently labeled saliva exosomes could communicate with human keratinocytes, transferring their
genetic information to human oral keratinocytes to alter gene expression at a new location.

Conclusion: Our findings are consistent with the hypothesis that exosomes shuttle RNA between cells and that the RNAs
present in the exosomes may be a possible resource for disease diagnostics.
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Introduction

Exosomes-small nanovesicles released from various cells have

increasingly studied for their potential use in therapeutics and

diagnostics [1,2]. Exosomes are derived from endosomal mem-

brane compartments after fusion with the plasma membrane and

are released from activated cell surfaces [3,4,5]. These exosomes,

or microvesicular bodies (MVBs), are produced by different cell

types, including dendritic cells [6], macrophages [7], and

lymphocytes [8], as well as salivary gland epithelial cells [9] and

tumor cells [10]. Exosomes have been found in physiological fluids

such as saliva [11,12], plasma [2], urine [13], amniotic fluid [14],

malignant ascites [15], bronchoalveolar lavage fluid [16], synovial

fluids [17], and breast milk [18]. Although exosomes have been

identified in human saliva, their biochemical and biophysical

characteristics are largely unknown. Due to their small size,

morphological analysis of purity and exosome characterization has

solely been limited to electron microscopy (EM). Here, we

employed atomic force microscopy (AFM) to more thoroughly

characterize native exosomes without the need for fixation,

staining, or labeling of these particles. AFM has previously been

used to yield nanometer-scale topographical images of biological

molecules [19]. Using AFM, we showed a 3D structure of

exosomes from human saliva. To the best of our knowledge, such a

structure has not been reported previously for any exosome.

Messenger RNA profiling of saliva from both healthy

individuals and those with oral cancer has led to the nucleic acid

characterization of human saliva, and RNA enrichment in saliva

holds the promise of salivary biomarkers as future tools

[20,21,22,23]. Several studies suggest that exosomes may stimulate

target cells and transfer surface receptors and genetic information

[24,25,26]. In fact, exosomes were shown to transfer surface

molecules, tumor cell mRNA, and infective agents such as HIV or

prions [27,28]. In addition, Valadi and colleagues [29] demon-
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strated that secretory exosomes released from mast cells in vitro

contain not only proteins but also a population of mRNA and

miRNA. Recently, exosomes derived from glioblastoma tumor

cells and blood from cancer patients were reported to promote

tumor growth and to contain mRNA and proteins useful for

diagnostic biomarkers [30]. These exosomes are attractive vesicles

for intercellular mRNA transfer because they likely provide a

protected environment to ensure stability in the presence of

extracellular RNases. Interestingly, Deregibus and colleagues

isolated microvesicles containing mRNA from endothelial precur-

sor cells and verified their transfer using GFP-tagged mRNA [24].

Additionally, Smalheiser and colleagues showed that exosomes

transfer synaptic proteins such as CAM kinase II alpha and

synaptic mRNA to the presynaptic terminal, where these factors

contribute to synaptic plasticity [31]. Although exosome mRNA

has been implicated in cell-cell signaling, the characteristic features

and transfer abilities of these vesicles are largely unknown in body

fluid such as saliva.

An intriguing aspect of the present work is the mechanism of

RNA targeting to exosomes. MVBs, the organelles from which

exosomes are derived, generated from the fusion of early

endosomes and have a well established role in the degradation

of proteins internalized from the cell surface via fusion with

lysosomes [28]. In addition to fusion with lysosomes, MVBs also

undergo exocytotic fusion with the plasma membrane and release

their ‘‘intraluminal vesicles,’’ which refers to the exosomes that are

contained within the MVBs [32]. Possibly, RNAs may initially be

internalized in the cytoplasm via early endosomes and subse-

quently incorporated into MVBs before being secreted through

the fusion of MVBs with the plasma membrane. The accumula-

tion of RNA in exosomes is a concept that has not been

investigated thoroughly. Thus, we hypothesize that saliva RNA

and proteins are secreted via the process of exosome formation.

More specifically, delivery of the exosomes to the oral cavity

occurs by fusion of the MVB outer membrane with the plasma

membrane of oral epithelial cells. Thus, saliva exosomes should

have the characteristic features of internal vesicles of MVBs [26],

and the vesicles should be small (,100 nm) and relatively uniform

in size, similar to other exosomes [33] secreted by other cells and

tissues. In addition, saliva exosomes should contain proteins like

CD63 and Alix, which is typical of MVBs and other exosomes

[29], along with genetic information. Finally, saliva exosomes

should be capable of communicating with neighboring cells such

as human oral keratinocytes and altering gene expression at the

new location.

Results

Evidence of Exosomes in Human Saliva
Exosomes were isolated from human saliva through a series of

ultracentrifugation steps with a modified version of a previously

described technique [34]. Exosomes obtained from the ultracen-

trifuge pellets were examined by EM or stained using negative

staining procedures with uranyl acetate. Electron micrographs

revealed that saliva exosomes were cup-shaped, rounded vesicles

of ,30–70 nm (Fig. 1A) similar to exosomes released in other body

fluids [13]. Notably, no visual evidence of contamination with

other membrane particles was observed in our exosome

preparations. To confirm the structures studied were exosome-

specific, the exosomes were labeled with immunogold antibody

and examined by EM (Fig. 1B). Antibody to the tetraspanin

molecule CD63 was used, as this molecule is a commonly used

marker for exosomes. The exosomes isolated from saliva appeared

as electron-dense membranous structures with an average

diameter of 30–100 nm and abundant CD63 immunoreactivity

on the surface (Fig. 1B). Furthermore, FACS analysis showed

enrichment of CD63 (trace peak) (Fig. 1C). Finally, Western blot

analysis of saliva exosomes confirmed the presence of CD63 and

Alix proteins in the ultracentrifugation pellets (Fig. 1D) and

revealed that saliva-derived vesicles are positive for CD63 and

Alix, confirming that the vesicles are indeed exosomes.

AFM Analysis of Saliva Exosomes
While EM is a standard technique for exosome characteriza-

tion, this technique may not provide a representative view of the

exosomes due to the inherently harsh sample processing

requirements. To assess the native exosome structure, we used

AFM to study the size and structure of individual isolated vesicles.

Isolated exosomes were immobilized on a mica surface (Fig. 2A

control surface with no exosomes). Exosomes appeared as isolated

vesicles with characteristic flattened donut-like structures in a 3D

topographic image (Fig. 2B). A high-resolution phase image

(Fig. 2C) of a single exosome revealed a contrast between the outer

dense walls and the inner less dense region. As the exosomes were

essentially free of cytoskeletal components, this fine structure

reflects an inherent organization of the vesicular membrane itself.

Measurements for the same exosome as shown in the topography

image revealed a width of 65 nm and a height of 2.5 nm (Fig. 2D).

Since the characteristic shape and size of exosomes is distinct from

any other structures seen on the surface, the height profile of three

individual exosomes and the size distribution of exosomes is shown

(Fig. 2E and 2F), indicating consistent morphology. Furthermore,

the size distribution shows cross-contamination of the exosomes

with small vesicles due to limitations of the separation method-

ology. Next, we have extensively used molecular recognition

spectroscopy with anti-CD63 IgG functionalized AFM tips for

imaged and investigated the highly specific and sensitive detection

of individual exosome in saliva (unpublished observation).

Presence of mRNAs in Saliva Exosomes
The presence of nucleic acids in saliva was examined to

determine a potential mechanism by which exosomes exchange

genetic information. Assessment of isolated exosomes showed that

these vesicles contained a substantial amount of RNA and not

much DNA (Fig. 3A). Treatment with RNase A and DNase

revealed the presence of mRNA in the saliva exosome preparation

(Fig. 3A lanes 3 and 4). The extracted total RNA did not contain

intact ribosomal RNA, as most of the ribosomal RNA was

degraded, heterogeneous in nature, and ,200 nucleotides in

length (Fig. 3B 1–5). These observations are consistent with

previous data which indicate no or minimal ribosomal RNA in

exosomes [29]. Microarray assessment of saliva exosomes revealed

509 core mRNA transcripts (see supplementary data Table S1)

that were common to four different microarray chip data sets (each

set was derived from pooled whole saliva samples from six healthy

subjects). A gene ontology-based analysis (www.bioinfo.vanderbilt.

edu/gotm) implicated the saliva exosome RNA in various

biological processes, including cellular and physiological processes

(Fig. 3C).

Exosome mRNA Is Stable
Enrichment of sphingomyelin, GM3, and cholesterol is a

characteristic of the so-called lipid raft domains [35], which are

otherwise known as exosomes. Such domains are usually sensitive

to solubilization with ionic detergents [36]. To determine whether

saliva exosomes display lipid raft-like properties, we determined

their solubility in the presence of 1% Triton X-100 followed by

extraction and quantification of RNA by qRT-PCR (Fig. 4). The

Exosomes in Human Saliva
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solubility of the exosomes was greater in Triton X-100 than

without detergent or in NP-40 (data not shown). To confirm that

the RNA is confined within the exosomes, detergent (Triton X-

100) and RNase treatment of the saliva exosomes was performed

at 37uC, and then the RNA was extracted as described in

1Materials and Methods. No differences in RNA decay were

observed between the RNase-treated and control exosomes,

whereas treatment with Triton X-100 followed by RNase

treatment destroyed the RNA molecules (Fig. 4). These observa-

tions are consistent with our previous observations on the stability

of mRNA in whole saliva [23].

Saliva Exosomes Are Biologically Functional
The transfer of mRNA from saliva exosomes to human oral

keratinocytes was demonstrated using vesicles derived from saliva

that was labeled with fluorescent lipid BODIPY-PC. The labeled

exosomes were incubated with keratinocytes and BODIPY-PC-

positive exosomes transferred to recipient cells sufficiently for

detection by fluorescence microscopy (Fig. 5, panels 1–4). The

increasing concentration of labeled exosomes incorporated into

oral keratinocytes confirmed the cell-cell communication between

these two partners. The negative control detergent lyses of

exosomes did not exhibit this interaction with oral keratinocytes.

Although exosomes obtained from saliva of healthy individuals

suggested a role in the oral microenvironment, the underlying

mechanism of salivary exosomes interaction is still unclear largely

because of limited information about saliva exosomes. Surprising-

ly, several reports have predicted cell-cell communication

functions of exosomes, but saliva exosomes have not been

examined experimentally. Because exosomes are thought to

regulate gene expression in recipient cells, we determined the

differential expression of proteins in keratinocytes after treatment

with saliva exosomes. Protein was extracted from keratinocytes

treated with either a negative control of detergent treated

exosomes and labeled with Cy3 or saliva exosomes labeled with

Cy5. Unlike conventional two-dimensional gels in which the two

samples are run in separate gels, we separated the two samples,

which were labeled with different fluorescent dyes, in a single gel,

thus eliminating gel-to-gel variation and allowing for easy

comparison of relative expression levels. After separation, several

proteins were either upregulated or downregulated (Fig. 6, red or

green, respectively). This result, in fact, is in agreement with data

indicating that mast cell-derived exosomes also up- or down-

regulate many proteins [29]. We are particularly interested in

those proteins that are differentially regulated by saliva exosomes,

because those are potentially direct targets for exosomes. Nine

protein spots with more than 2-fold expression changes in

keratinocytes treated with exosomes compared with the negative

control were chosen for closer examination (Fig. 6, indicated by

circles and numbers). Mass spectrometry analysis identified all

nine of these proteins with a good score (Table 1). Next we

investigated whether the modulated gene transcripts are present in

the saliva exosomes and could possibly be involved in the

translation. To identify these specific genes in exosomes, we

analyzed RNAs extracted from the respective saliva exosomes

using quantitative RT–PCR. The housekeeping gene b-actin was

used a reference control, and the relative quantity of mRNA

targets were measured in saliva exosomes (Fig. 7). As noted by

others, genes for annexin A1, annexin A2, moesin, keratin-6A,

eukaryotic elongation factor-2, OS-9 and interleukin-8 are present

in exosomes, suggesting that possible translation of proteins occurs

in the recipient keratinocytes [29]. In other words, altered protein

expression by recipient cells could be an ongoing translation of

these mRNAs. These data suggest that the RNA incorporated into

the exosomes may be delivered into the recipient cells and

generate a functional protein.

Figure 1. EM image of human saliva showing round-shaped exosomes. The 120,0006g pellets from saliva were used for exosomes analysis.
(A) Electron micrographs of saliva exosomes were fixed in 2% formaldehyde and contrasted using 2% uranyl acetate. The image shows small vesicles
of ,60 nm in diameter. (B) Exosomes were labeled with immunogold anti-CD63. Note the immunoreactivity of CD63 on the surface of the single
exosome. (C) Representative FACS analysis of exosomes showing expression of CD63. Open trace shows the saliva exosomes, filled trace shows saliva
exosomes incubated with latex beads and stained with anti-CD63 followed by secondary Alexa Fluor 488-conjugated antibody. (D) Western blot
analysis of saliva exosomes using an antibody against CD63 and Alix. Lane 1 is the protein extract of normal saliva, and lane 2 contains protein from
the exosome pellet obtained from ultracentrifugation.
doi:10.1371/journal.pone.0008577.g001

Exosomes in Human Saliva
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Thus, here we show that exosomes are formed similarly to

other previously identified types of MVBs. Microarray analysis

revealed the presence of 509 mRNA transcripts known to be

present in exosomes, confirming the observation that exosomes

in saliva contain RNA. In addition, experimental in vitro transfer

of saliva exosomes altered the gene expression of recipient

oral keratinocytes. Together, these studies demonstrate that

saliva exosomes are biologically active and may potentially be

a useful agent in studies aimed at disease diagnostics and

therapeutics.

Discussion

Exosomes and their genetic contents can regulate a variety of

cellular pathways through regulation of the expression of multiple

target genes in recipient cells [31]. In this regard, exosomes have

Figure 2. AFM images of saliva exosomes. Exosomes (panels B–F) were adsorbed to WGA-coated mica surfaces. (A) Topography images were
obtained with the use of the Mac mode in water (negative control—no exosomes). (B) A 3D AFM image of isolated exosomes adhering to a mica
sheet. The bar denotes 200mM. (C) A high-resolution single image of the exosome structure on the mica. (D) Graphical representation of height and
width of a single exosome. (E) Size distribution of several saliva exosomes imaged with AFM. (F) Graphical representation of the size distribution of
exosomes showing near homogeneity with respect to height and width.
doi:10.1371/journal.pone.0008577.g002

Exosomes in Human Saliva
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been suggested to function as immune-response modifiers because

these vesicles are secreted by many types of tumors cells. Exosomes

were previously found to be secreted in saliva [12]; although, no

physiological function was assigned. Exosomes are released into

the saliva via either ductal or acinar cells [37]. Essentially salivary

glands have been implicated in a constitutive-like secretory

pathway involved in secretion of exosomal-like vesicles. These

secretory vesicles are derived directly from the trans-Golgi or

involve elements of the endosomal-lysosomal trafficking pathway

[38]. In this study, we isolated saliva exosomes and showed that

these vesicles were, in fact, physiologically active. Consistent with

previous EM images of exosomes in body fluids [13,16,18],

ultrastructural examination of saliva exosomes revealed small

vesicles with diameters ,100 nm and a unique ‘‘cup-like’’ shape,

which are both characteristic features of exosomes. AFM also

revealed the ultrastructural features and distribution of the

exosomes.

In addition, microarray analysis indicated the presence of

mRNA inside the exosomes, and these nucleic acids were

protected against ribonucleases in saliva. Furthermore, the

exosomal RNA analysis of Valadi et al. [29] demonstrated that

virtually no ribosomal RNA was present and that most of the RNA

molecules were ,200 nucleotides in length. Moreover, saliva

exosome RNA exhibited characteristic features similar to mast

cell-derived exosomal RNA. Finally, RNA present in exosomes

was functional as modulation of gene expression was observed in

keratinocytes incubated with the exosomes. This finding was in

accord with recent reports that exosomes can transfer mRNA

horizontally to neighboring cells [24,39]. The notion that exosome

RNA is delivered to other cells provides added functional

significance to salivary exosomes.

Figure 3. Exosomes contain mRNA species. (A) RNA from saliva
exosomes was detected using an Agilent bioanalyser. Lane 1, RNA
ladder showing sizes of the nucleotides on the left. Representative lanes
(2–5) showing sizes of the mRNA species identified using an Agilent
bioanalyser electrophorogram. The saliva exosomal RNA contains no
ribosomal RNA as seen by the small heterogeneous RNA fragments
(,200 nucleotides). (B) Bioanalyzer graphical data shows the size
distribution of total RNA extracted from saliva exosomes (1) profile of
RNA standard (2) total RNA extracted from saliva exosomes without any
treatments (3) total RNA treated with DNase (4) total RNA treated with
RNase A and (5) total RNA treated with both DNase and RNase A. (C)

Figure 4. Saliva exosomes treated with Triton X-100 and RNase
had different RNA content compared to control, indicating
that RNA is protected inside the exosomes. Higher Ct values
represent lower RNA content. Error bars denote SEM (n = 3).
doi:10.1371/journal.pone.0008577.g004

The biological process ontology of the 509 core mRNA species
identified in the saliva exosomes.
doi:10.1371/journal.pone.0008577.g003

Exosomes in Human Saliva
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The functions of exosomes should be reflected by their proteins

and mRNA molecules, which originate from endocytic release.

Because exosomes are formed as MVBs, these particles likely

contain factors required for MVB formation and protein sorting.

Analysis of exosomes derived from human mast cells, dendritic

cells, and epithelial cells as well as other cell types revealed the

presence of common and cell type-specific proteins and mRNA.

For example, the aquaporin family of proteins was especially

enriched in exosomes derived from body fluids such as urine and

amniotic fluid [13,14]. Human saliva and saliva exosomal proteins

have been identified and cataloged in detail [11,40,41] including

aquaporins, cytoskeleton proteins, and membrane proteins, which

have also been found in exosomes from other cell types.

Importantly, sorting of disease-specific proteins into exosomes is

quite useful for diagnostic applications [9]. The molecular factors

and mechanisms behind this cell-specific sorting process in

exosomes are still unknown, and such an analysis may help their

translational utility.

Proteomics analysis of saliva ductal fluids revealed 1,166

proteins, including various membrane-bound proteins [40].

Interestingly, the aquaporin protein family, which is involved in

water flow through membranes, was identified in saliva. Aqua-

porins have been identified on both the apical and basolateral

membranes of secretory acinar cells of salivary glands [37].

Surprisingly, AQP1 and AQP2 proteins identified in urine

exosomes via secretion through renal ductal cells were implicated

in pathophysiological processes in urinary epithelial cells [13].

Additionally, decreases in aquaporin expression are linked to

various kidney and pancreas diseases, while reduced aquaporin

expression in salivary glands is linked to Sjögren’s syndrome [42].

Furthermore, the annexin family of proteins bind to intracellular

membranes and is involved in intracellular membrane fusion [43].

Association of annexins with exosomes may result from the

presence of phosphatidylserine in these vesicles [44]. Interestingly,

Annexins and Alix proteins are reportedly present in saliva

exosomes [11]. Differential expression of annexin A1, annexin A2,

moesin, and OS-9 proteins indicated the influence of saliva

exosomes in oral keratinocytes. Interestingly, presence of annexin

A1 mRNA in saliva exosomes may translate protein in the

recipient cell gene expression. In addition, moesin, which is an

actin-binding protein of the ERM family in exosomes, has been

demonstrated to play a role in de novo actin assembly on

phagosomal membranes [45]. Further, moesin has been reported

to be present in B cell-derived exosomes [46] and breast milk [18].

Clearly, exosome-like microvesicles are present in body fluids

such as saliva, blood, amniotic fluid, and pleural effusions under

both healthy and disease conditions; however, the origin of these

exosomes and their intended destination for stimulation of distal

cells remains unclear. Here, we demonstrated that saliva exosomes

can be taken up by oral keratinocytes. Interestingly, our

observation establishes another dimension of cell-cell communi-

cation of body fluid exosomes. Notably, keratinocytes are able to

secrete exosomes and externalize stratifin protein, which is a

potent stimulant of metalloproteinases in fibroblasts [47]. Argu-

ably, both keratinocytes and saliva exosomes engage in cell-cell

communication, and the possibility exists that part of the saliva

Figure 5. Oral keratinocytes (56107 cells/well) were incubated for 24 hr in KSFM media with fluorescently labeled exosomes and
examined under fluorescence microscopy. The lysed lanes serve as a negative control. Magnification was 106, and the smaller boxed panels
represent magnification of 406. Note the fluorescence intensity increases with increasing amounts of exosomes (32 and 64 ml, respectively).
doi:10.1371/journal.pone.0008577.g005
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exosomes originates from oral keratinocytes. Whether these

interactions are involved in a novel mechanism of cell-cell

communication is an intriguing, yet unanswered, question. Our

studies do not directly identify the functional consequence of

mRNA release via exosomes; however, saliva exosomes carrying

mRNA transcripts of these specific altered proteins suggest that

these RNAs could possibly be translated into proteins at their new

location. Also, recent studies suggest an important role for

exosomes in the modulation of host gene expression levels.

Interestingly, exosomes purified from mast cells [29] and neuronal

cells [24] are enriched in mRNA molecules that stimulate and

alter gene expression of recipient cells. These data have led to the

suggestion that secreted exosomes expressing relevant mRNAs

may play a role in the generation of new genes and modulate gene

expression of recipient cells. Indeed, annexin and moesin are

overexpressed in keratinocytes following incubation with saliva

exosomes. We cannot rule out the presence of lipids and proteins

in saliva exosomes that also can trigger gene expression at their

new recipient cells. We have observed several ceramide lipid

species in saliva exosomes that could potentially have impact on

oral keratinocytes (unpublished observation). Finally, the source of

these exosomes in saliva, however, is probably heterogeneous, and

formal demonstration that salivary glands secrete exosomes in vivo

awaits further analyses.

In summary, saliva exosomes may regulate cell-cell environment

by altering their gene expression. This study extends our

knowledge about human saliva exosomes. In addition to genetic

regulation, as mentioned above, saliva exosomes are involved in

protecting nucleic acids against nucleases in the oral cavity. Thus,

saliva exosomes, like other types of exosomes, clearly have multiple

Figure 6. Identification of differentially expressed proteins from oral keratinocytes treated with saliva exosomes by 2-DIGE. Proteins
from cells treated with the negative control were labeled with Cy3 (green) and proteins from cells treated with saliva exosomes were labeled with Cy5
(red). Isoelectric focusing was carried out at pH 3–10, and 2D separation was performed with 8–14% gradient SDS-PAGE. The negative control
represents protein profiles of keratinocytes treated with detergent lysed exosomes. The bottom gel image reveals differentially expressed proteins in
the control and treated samples after merging. Protein spots shown in red are presumably due to upregulation by exosome treatment, and those in
green are due to downregulation by exosome treatment. Such spots are circled and numbered.
doi:10.1371/journal.pone.0008577.g006

Exosomes in Human Saliva
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functions. We expect that more saliva exosome targets will be

identified in the near future using the same proteomic approach

for various systemic diseases. These discoveries will allow us to

better understand the molecular basis of oral diseases. The studies

of Valadi [29], Skog [30], and Ratajczak [39] as well as the present

study open up a new research perspective on the use of exosomal

transfer of mRNA to target another cell type. In particular, the

results of the present study indicate that exosomes derived from

human saliva activate or modulate gene expression in oral

keratinocytes.

Methods

In this study, we employed several molecular approaches

including EM and AFM to characterize saliva exosomes. Next, we

determined whether RNAs present in saliva exosomes are

protected and whether this genetic information is shared between

cells.

Participants
Saliva samples were obtained from healthy volunteers from the

Division of Otolaryngology, Head, and Neck Surgery, at the

Medical Center, University of California, Los Angeles (UCLA),

CA in accordance with a protocol approved by the UCLA

Institutional Review Board. All participants gave written informed

consent, and the ethics committee of UCLA approved the study.

The mean age of the volunteers was 31 years (range 26–43 years).

The volunteers had no history of malignancy, immune deficien-

cies, autoimmune disorders, hepatitis, or HIV infection.

Purification of Exosomes
Exosomes were prepared as described [34] with slight

modifications. Briefly, 50 ml of saliva was mixed with an equal

volume of PBS and centrifuged at 26006g for 15 min to remove

cells. The supernatants were then sequentially centrifuged at

12,0006g for 20 min and 120,0006g for 3 hours. The final pellet

was resuspended in PBS and then used either for immunoblotting

or for EM. Notably, saliva is highly viscous in nature and it is

very difficult to apply filtration procedures with specific

membrane filters (0.2 mM or 0.45 mM size) before it undergoes

ultracentrifugation.

Immunoelectron Microscopy
The isolated exosomes were loaded onto carbon-coated grids,

fixed in 2% paraformaldehyde, washed, and then immunolabeled

with anti-CD63 antibody (Santa Cruz Biotechnology, Santa Cruz,

CA) followed by a 10 nm gold-labeled secondary antibody (Sigma

Aldrich, St. Louis, MO). The exosomes were post-fixed in 2.5%

glutaraldehyde, washed three times, contrasted with 2% uranyl

acetate, and then examined with a JEOL 100CX transmission

electron microscope (JEOL USA, Inc. Peabody, MA).

Atomic Force Microscopy
For AFM imaging of isolated exosomes purified samples were

diluted 1:100 in deionized water and adsorbed to freshly cleaved

mica sheets for 10 min. The sheets were rinsed thoroughly with

deionized water to remove unbound exosomes and dried under a

Figure 7. Protein expression modulated in saliva exosomes.
ANXA1, ANXA2, moesin, keratin-6A, EEF2, OS-9, and IL-8 RNA expression
was normalized using a factor calculated from b-Actin gene expression.
doi:10.1371/journal.pone.0008577.g007

Table 1. Proteins expressed differentially in oral keratinocytes.

Spot
number Protein name Accession No.

Protein
MW

Protein
Abundance

Peptide
count Functional Annonation

1 OS-9 gi|48145699 69189.4 Increased 9 Protein binding

6 Eukaryotic translation elongation factor 2 gi|4503483 95277 Increased 29 GTP binding, translation elongation
activity

12 Keratin 6A gi|15559584 59981.3 Decreased 8 Structural molecule activity

22 Serine (or cysteine) proteinase inhibitor, clade B
(ovalbumin), member 2

gi|4505595 46566.1 Increased 22 Serine-type endopeptidase activity

24 Annexin A1 gi|54696696 38690 Increased 16 Calcium/phospholipid-binding
protein, Involved in exocytosis

25 Annexin A2 gi|30583703 38579.8 Decreased 18 Calcium binding protein, involved in
exocytosis

27 Human Muscle L-Lactate Dehydrogenase M Chain gi|13786856 36534.3 Increased 17 dehydrogenase activity, protein
binding

10 Moesin gi|5419633 67777.8 Increased 31 Cytoskeletal protein binding

doi:10.1371/journal.pone.0008577.t001

Exosomes in Human Saliva
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gentle stream of nitrogen. Bioscope II (Veeco Digital Instruments,

Santa Barbara, CA) was used for tapping mode AFM imaging

using silicon probes with spring constant k = 305 KHz (OTESPA,

Veeco). Topographic height and phase images were recorded

simultaneously at 5126512 pixels at a scan rate of 0.4 Hz. The

height of the exosomes was obtained from a line profile of height

images (Nanoscope software). Image processing was performed

using the WxSM free software (Nanotec, Spain).

Immunoblotting and Flow Cytometry
Exosomal proteins were extracted and separated on a

polyacrylamide gel before transfer to a nitrocellulose membrane.

The blotting membrane was blocked and incubated with CD63

antibody followed by incubation with horseradish peroxidase-

coupled secondary antibody. The proteins were detected using

enhanced chemiluminescence. For FACS analysis, saliva exosomes

were absorbed onto 4-mm aldehyde-sulfate latex beads (Interfacial

Dynamics, OR) and incubated with CD63 antibody and/or Alix

(Santa Cruz Biotechnology, Santa Cruz, CA) followed by an

incubation with a secondary antibody (Molecular Probes, Invitro-

gen, CA). The exosomes were then washed and analyzed on a

FACSscan (BD Biosciences, San Diego, CA).

RNA Isolation and Amplification
RNA was isolated from 300 mg of saliva exosomes with the

RNeasy Mini Kit (Qiagen, Valencia, CA), according to the

manufacturer’s instructions. All samples were treated with TURBO

DNA-free (Ambion, Austin, TX) to remove trace amounts of

genomic DNA. A 2-round amplification was performed with the

RiboAmp RNA Amplification Kit (Molecular Devices, Sunnyvale,

CA) according to the manufacturer’s instructions.

RNA Detection and Analysis
Detection of RNA was achieved using the Agilent 2100

Bioanalyser (http://www.chem.agilent.com). Triton X-100 (Sig-

ma) was added at a final concentration of 1%, and exosomes were

incubated at room temperature for up to 30 min with and without

RNase A and DNase at a final concentration of 100 units/ml.

After RNA isolation, additional water and Triton X-100 were

added to the respective samples to balance the chemical

composition.

Microarray Analysis
The microarray experiments were performed by the UCLA

microarray core facility according to the Affimetrix microarray

analysis protocols. Briefly, single-stranded cDNA was generated

from the amplified cRNA with the WT cDNA Synthesis Kit

(Affymetrix, Santa Clara, CA) and then fragmented and labeled

with the WT Terminal Labeling Kit (Affymetrix). Samples were

hybridized with GeneChip HGU-133 plus 2 Arrays (Affymetrix)

and scanned at the UCLA Microarray Core Facility. Raw data

were processed with the Quantile normalization (part of GCRMA

package). A detection p-value was obtained for each probe set. Any

probe set with p,0.04 was assigned as ‘‘present’’, indicating that

the matching gene transcript was reliably detected. The total

number of present probe sets on each array was obtained, and the

percentage (P%) of present genes was calculated. The program R-

package was used for gene profiling analysis, and the gene

ontology software was used for the biological process analysis.

RT-PCR Preamplification
Multiplex RTPCR preamplifications were performed in 10-mL

reaction volumes with a pool of outer primers at 300 nmol/L each

and the SuperScript III Platinum One-Step qRT-PCR System

(Invitrogen). Reactions were prepared on ice, loaded into a

preheated thermocycler, and performed as follows: 1 min at 60uC,

15 min at 50uC, 2 min at 95uC, and 15 cycles of 15 s at 95uC, 30 s

at 50uC, 10 s at 60uC, and 10 s at 72uC. These steps were followed

with a final extension of 5 min at 72uC and cooling to 4uC.

Immediately after the RT-PCR, we treated 5 mL of the reaction

with 2 mL of ExoSAP-IT (USB Corporation) for 15 min at 37uC
to remove excess primers and deoxynucleoside triphosphates and

then heated the mixtures to 80uC for 15 min to inactivate the

enzyme mix. The preamplification products were then diluted 40-

fold with water to 200 mL to enable qPCR analysis of all targets.

Quantitative PCR
Each transcript was quantified from 2 mL aliquots of pre-

amplified samples via a singleplex qPCR in an SDS 7500 Fast

instrument (Applied Biosystems, Foster City, CA) with a 10-mL

reaction volume containing 300 nmol/L of each of the inner

primers and the SYBR Green Power Master Mix (Applied

Biosystems). After 10 min of polymerase activation at 95uC, we

carried out 40 cycles of 15 s at 95uC and 60 s at 60uC and then

performed a melting curve analysis. Table S2 shows the primers

sets used for this study (supplementary methods).

In Vitro Labeling of Exosomes
The in vitro labeling of exosomes was performed as described

[48] with slight modification. Briefly, purified saliva exosomes

were incubated with 10 mM of BODIPY-PC in PBS for 30 min at

37uC in the dark. Excess fluorescent lipids were removed by

ultracentrifugation at 120,0006g for 1.5 hours at 4uC. Labeled

exosomes were then resuspended with PBS and then used for in

vitro transfer experiments.

Cells and In Vitro Transfer Experiments
Immortalized human oral keratinocytes (OKF6tert1) were

cultured and harvested under log phase conditions as described

previously [49]. For in vitro transfer experiments, the labeled saliva

exosomes were added to oral keratinocytes (26107) at a final

concentration of 2 mg/ml. At 0 hr and 24 hr, cells were harvested

and washed three times. Total cellular proteins were extracted and

separated by 2D electrophoresis. A sample with 1% Triton X-100

of lysed exosomes was treated similarly and used as a negative

control.

Accession Numbers
Details about the microarray data deposition can be found at

http://www.ncbi.nlm.nih.gov/geo (the GEO accession number is:

GSE13494). All the data obtained from Microarray are in

accordance with MIAME compliant, as detailed on the website

www.mged.org/workgroups/MIAME.miame.html.

Proteomic Analysis of Exosomes Transfer Experiment
Samples

Oral keratinocytes that were harvested after incubation with

exosomes were sent directly for 2-DIGE and mass spectrometry

analysis by Applied Biomics (Hayward, CA) Briefly, total protein

was extracted, labeled with Cy3 and Cy5 dyes (GE Healthcare,

Piscataway, NJ), and subjected to isoelectric focusing (pH 3–10)

and sodium dodecyl sulfate–polyacrylamide gel electrophoresis

(SDS-PAGE). Gel scanning was carried out immediately after

SDS-PAGE using Typhoon TRIO (GE Healthcare, Piscataway,

NJ). Scanned images were analyzed by Image Quant software

(version 5.0, GE Healthcare) and subjected to in-gel analysis and
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cross-gel analysis using the DeCyder software (version 6.0, GE

Healthcare) with a detection limit of 0.2 ng of protein per spot.

The ratio change for differentially expressed protein spots was

obtained from the in-gel DeCyder analysis. Protein spots of

interest that were consistently differentially expressed in exosomes-

versus vehicle-treated samples across a minimum of two SDS gels

were picked up by Ettan Spot Picker (GE Healthcare, Piscataway,

NJ) and subjected to in-gel trypsin digestion, peptide extraction,

and desalting prior to MALDI-TOF/MS-MS (ABI 4700, Applied

Biosystems, CA). Peptide fingerprints and partial amino acid

sequence information were used for protein identification in the

nrNCBI nonredundant National Center for Biotechnology)

databases. Searches were performed without constraining protein

molecular weight (MW) or isoelectric point (IP), with variable

carbamidomethylation of cysteine and oxidation of methionine

residues, and with one missed cleavage allowed in the search

parameters. Candidates with protein and ion scores greater than

95% were considered significant.

Statistical Analysis
Data are expressed as means6SEM and P values ,0.01 were

considered statistically significant according to the Student’s t test.

Supporting Information

Table S1 Supplementary data

Found at: doi:10.1371/journal.pone.0008577.s001 (0.08 MB

XLS)

Table S2 Supplementary methods

Found at: doi:10.1371/journal.pone.0008577.s002 (0.03 MB

DOC)
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